Influence of Adding Small Instream Wood on Fishes and Hydraulic Conditions in Channelized Agricultural Headwater Streams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instream Wood Survey Methods
2.2. Small Instream Wood Addition Experiment Methods
2.2.1. Experimental Design
2.2.2. Before Small Wood Addition Fish and Hydraulic Condition Sampling Methods
2.2.3. Small Instream Wood Addition and Treatment Period
2.2.4. After Small Wood Addition Fish and Hydraulic Condition Sampling Methods
2.2.5. Statistical Analysis
3. Results
3.1. Instream Wood Survey Results
3.2. Small Instream Wood Addition Experiment Results
4. Discussion
4.1. Fish Community Responses
4.2. Hydraulic Variable Responses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harmon, M.E.; Anderson, N.H.; Franklin, J.F.; Cline, S.P.; Swanson, F.J.; Aumen, N.G.; Sollins, P.; Sedell, J.R.; Gregory, S.V.; Lienkaemper, G.W.; et al. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 1986, 15, 133–302. [Google Scholar] [CrossRef]
- Angermeier, P.L.; Karr, J.R. Relationships between woody debris and fish habitat in a small warmwater stream. Trans. Am. Fish. Soc. 1984, 113, 716–726. [Google Scholar] [CrossRef]
- Matthews, W.J. Patterns in Freshwater Fish Ecology; Springer Science+Business Media: Berlin, Germany, 1998. [Google Scholar]
- Zika, U.; Peter, A. The introduction of woody debris into a channelized stream: Effect on trout populations and habitat. River Res. Appl. 2002, 18, 355–366. [Google Scholar] [CrossRef]
- Elosegi, A.; Díez, J.R.; Flores, L.; Molinero, J. Pools, channel form, and sediment storage in wood-restored streams: Potential effects on downstream reservoirs. Geomorphology 2017, 279, 165–175. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Drummond, J.; Wright-Stow, A.E.; Franklin, P.A.; Quinn, J.M.; Packman, A.I. Fine particle transport dynamics in response to wood additions in a small agricultural stream. Hydrol. Proc. 2020, 34, 4128–4138. [Google Scholar] [CrossRef]
- O’Connor, N.A. The effects of habitat complexity on the macroinvertebrates colonising wood substrates in a lowland stream. Oecologia 1991, 85, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Hrodey, P.J.; Kalb, B.J.; Sutton, T.M. Macroinvertebrate community response to large-woody debris additions in small warmwater streams. Hydrobiologia 2008, 605, 193–207. [Google Scholar] [CrossRef]
- de Brouwer, J.H.F.; Verdonschot, P.F.M.; Eekhout, J.; Verdonschot, R. Macroinvertebrate taxonomic and trait-based responses to large-wood reintroduction in lowland streams. Freshw. Sci. 2020, 39, 693–703. [Google Scholar] [CrossRef]
- Trautman, M.B. Fishes of Ohio, 2nd ed.; Ohio State University Press: Columbus, OH, USA, 1981. [Google Scholar] [CrossRef]
- Shields, F.D., Jr.; Knight, S.S.; Stofleth, J.M. Large wood addition for aquatic habitat rehabilitation in an incised, sand-bed stream, Little Topashaw Creek, Mississippi. River Res. Appl. 2006, 22, 803–817. [Google Scholar] [CrossRef]
- Naiman, R.J.; Johnston, C.A.; Kelley, J.C. Alteration of North American streams by beaver. BioScience 1988, 38, 753–762. [Google Scholar] [CrossRef]
- Burton, J.I.; Olson, D.H.; Puettmann, K.J. Effects of riparian buffer width on wood loading in headwater streams after repeated forest thinning. For. Ecol. Manag. 2016, 372, 247–257. [Google Scholar] [CrossRef]
- Brooks, A.P.; Gehrke, P.C.; Jansen, J.D.; Abbe, T. Experimental reintroduction of woody debris on the Williams River, NSW: Geomorphic and ecological responses. River Res. Appl. 2004, 20, 513–536. [Google Scholar] [CrossRef]
- Blann, K.L.; Anderson, J.L.; Sands, G.R.; Vondracek, B. Effects of agricultural drainage on aquatic ecosystems: A review. Crit. Rev. Environ. Sci. 2009, 39, 909–1001. [Google Scholar] [CrossRef]
- Smiley, P.C., Jr.; Gillespie, R.B. Influence of physical habitat and agricultural contaminants on fishes within agricultural drainage ditches. In Agricultural Drainage Ditches: Mitigation for the 21st Century; Moore, M.T., Kroger, R., Eds.; Research Signpost: Kerula, India, 2009; pp. 37–73. [Google Scholar]
- Smiley, P.C., Jr.; Gillespie, R.B.; King, K.W.; Huang, C. Management implications of the relationships between water chemistry and fishes within channelized headwater streams in the midwestern United States. Ecohydrology 2009, 2, 294–302. [Google Scholar] [CrossRef]
- Sanders, K.E.; Smiley, P.C., Jr.; Gillespie, R.B.; King, K.W.; Smith, D.R.; Pappas, E.A. Conservation implications of fish-habitat relationships in channelized agricultural headwater streams. J. Environ. Qual. 2020, 49, 1585–1598. [Google Scholar] [CrossRef] [PubMed]
- Lester, R.E.; Boulton, A.J. Rehabilitating agricultural streams in Australia with wood: A review. Environ. Manag. 2008, 42, 310–326. [Google Scholar] [CrossRef]
- Colvin, S.; Sullivan, S.; Shirey, P.D.; Colvin, R.; Winemiller, K.O.; Hughes, R.M.; Fausch, K.D.; Infante, D.M.; Olden, J.D.; Bestgen, K.R.; et al. Headwater streams and wetlands are critical for sustaining fish, fisheries, and ecosystem services. Fisheries 2019, 44, 73–91. [Google Scholar] [CrossRef]
- Stammler, K.L.; McLaughlin, R.L.; Mandrak, N.E. Streams modified for drainage provide fish habitat in agricultural areas. Can. J. Fish. Aquat. Sci. 2008, 65, 509–522. [Google Scholar] [CrossRef]
- Roni, P.; Beechie, T.J.; Bilby, R.E.; Leonetti, F.E.; Pollock, M.M.; Pess, G.R. A review of stream restoration techniques and a hierarchical strategy for prioritizing restoration in Pacific Northwest watersheds. N. Am. J. Fish. Manag. 2002, 22, 1–20. [Google Scholar] [CrossRef]
- Kail, J.; Hering, D.; Muhar, S.; Gerhard, M.; Preis, S. The use of large wood in stream restoration: Experiences from 50 projects in Germany and Austria. J. Appl. Ecol. 2007, 44, 1145–1155. [Google Scholar] [CrossRef]
- Elosegi, A.; Johnson, L.B. Wood in streams and rivers in developed landscapes. In The Ecology and Management of Wood in World Rivers; Gregory, S.V., Boyer, K.L., Gurnell, A.M., Eds.; American Fisheries Society Symposium 37: Bethesda, MD, USA, 2003; pp. 337–353. [Google Scholar] [CrossRef]
- Gatz, A.J. The use of floating overhead cover by warmwater stream fishes. Hydrobiologia 2008, 600, 307–310. [Google Scholar] [CrossRef]
- Hrodey, P.J.; Sutton, T.M. Fish Community responses to half-log additions in warmwater streams. N. Am. J. Fish. Manag. 2008, 28, 70–80. [Google Scholar] [CrossRef]
- Ehrman, T.P.; Lamberti, G.A. Hydraulic and particulate matter retention in a third order Indiana stream. J. N. Am. Benthol. Soc. 1992, 11, 341–349. [Google Scholar] [CrossRef]
- Lester, R.E.; Wright, W. Reintroducing wood to streams in agricultural landscapes: Changes in velocity profile, stage and erosion rates. River Res. Appl. 2008, 25, 376–392. [Google Scholar] [CrossRef]
- Schneider, K.N.; Winemiller, K.O. Structural complexity of woody debris patches influences fish and macroinvertebrate species richness in a temperate floodplain-river system. Hydrobiologia 2008, 610, 235–244. [Google Scholar] [CrossRef]
- Enefalk, Å.; Bergman, E. Effect of fine wood on juvenile brown trout behaviour in experimental stream channels. Ecol. Freshw. Fish 2016, 25, 664–673. [Google Scholar] [CrossRef]
- Enefalk, Å.; Watz, J.; Greenberg, L.; Bergman, E. Winter sheltering by juvenile brown trout (Salmo trutta)–effects of stream wood and an instream ectothermic predator. Freshw. Biol. 2017, 62, 111–118. [Google Scholar] [CrossRef]
- Sterling, K.A.; Warren, M.L. Effects of introduced small wood in a degraded stream on fish community and functional diversity. Southeast. Nat. 2018, 17, 74–94. [Google Scholar] [CrossRef]
- Enefalk, Å.; Huusko, A.; Louhi, P.; Bergman, E. Fine stream wood decreases growth of juvenile brown trout (Salmo trutta L.). Environ. Biol. Fishes 2019, 102, 759–770. [Google Scholar] [CrossRef]
- Magurran, A.E. Ecological Diversity and Its Measurement, 1st ed.; Croom Helm Ltd.: London, UK, 1988. [Google Scholar] [CrossRef]
- SAS Institute. Statistical Analysis System for Windows, version 8; SAS Institute: Cary, NC, USA, 1999. [Google Scholar]
- Smiley, P.C., Jr.; Shields, F.D., Jr.; Knight, S.S. Designing impact assessments for evaluating the ecological effects of conservation practices on streams in agricultural landscapes. J. Am. Water Resour. Assoc. 2009, 45, 867–878. [Google Scholar] [CrossRef]
- Hilderbrand, R.H.; Lemly, A.D.; Dolloff, C.A.; Harpster, K.L. Design considerations for large woody debris placement in stream enhancement projects. N. Am. J. Fish. Manag. 1998, 18, 161–167. [Google Scholar] [CrossRef]
- Gippel, C.J. Environmental hydraulics of large woody debris in streams and rivers. J. Environ. Eng. 1995, 121, 388–395. [Google Scholar] [CrossRef]
- Shields, F.D., Jr.; Gippel, C.J. Prediction of effects of woody debris removal on flow resistance. J. Hydraul. Eng. 1995, 121, 341–354. [Google Scholar] [CrossRef]
- Mutz, M. Hydraulic effects of wood in streams and rivers. In The Ecology and Management of Wood in World Rivers; Gregory, S.V., Boyer, K.L., Gurnell, A.M., Eds.; American Fisheries Society Symposium 37: Bethesda, MD, USA, 2003; pp. 93–107. [Google Scholar] [CrossRef]
- Manga, M.; Kirchner, J.W. Stress partitioning in streams by large woody debris. Water Resour. Res. 2000, 36, 2373–2379. [Google Scholar] [CrossRef]
Instream Wood Type | Small 1 | Large 1 |
---|---|---|
Simple—single piece lacking branches or branches with one branch < 10 cm long | Small simple | Large simple |
Branching—Single piece with minimum of 1 branch ≥ 10 cm long | Small branching | Large branching |
Overhanging vegetation—wood vegetation branches breaking the water surface | Small overhanging vegetation | Large overhanging vegetation |
Accumulation (e.g., wood jams)—aggregate of 2 or more individual pieces | 2 | Large accumulation |
Rootwad | Small rootwad | Large rootwad |
Artificial—Non-natural instream wood (e.g., plywood) | Small artificial | Large artificial |
Bark—residual bark | Small bark | 2 |
Stream | ||||
---|---|---|---|---|
S1 | S2 | S3 | S4 | |
Watershed size (km2) | 1.16 | 4.44 | 4.50 | 3.78 |
Percent Agriculture | 95.1 | 60.9 | 75.8 | 75.1 |
Percent Residential | 3.9 | 25.7 | 21.3 | 18.5 |
Percent Forest/Shrub | 1.0 | 13.4 | 2.9 | 6.4 |
Slope (m/m) | 0.003 | 0.003 | 0.001 | 0.003 |
Sinuosity (m/m) | 1.00 | 1.00 | 1.04 | 1.28 |
Cross-section area (m2) | 9.34 | 7.30 | 8.89 | 7.01 |
Maximum channel depth (m) | 2.10 | 1.84 | 1.84 | 1.52 |
Mean riparian width (m) | 9.16 | 5.11 | 39.16 | 41.45 |
Mean percent canopy cover | 0.00 | 0.23 | 5.15 | 0.12 |
Mean riparian woody vegetation density (no./m2) | 0.00 | 0.38 | 0.10 | 0.02 |
Stream | ||||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | |
Abundance (no.) | 0 | 8 | 10 | 14 | 61 | 188 |
Density (no./m2) | 0.00 | 0.03 | 0.03 | 0.03 | 0.13 | 0.29 |
Instream wood richness | 0 | 4 | 3 | 5 | 8 | 9 |
% small instream wood | 0.00 | 87.50 | 100.00 | 21.43 | 40.98 | 81.38 |
% large instream wood | 0.00 | 12.50 | 0.00 | 78.57 | 59.02 | 18.62 |
no. small simple pieces | 0 | 4 | 8 | 1 | 13 | 120 |
no. small branching pieces | 0 | 2 | 0 | 0 | 8 | 31 |
no. small overhanging vegetation | 0 | 1 | 0 | 0 | 3 | 1 |
no. small rootwad | 0 | 0 | 1 | 2 | 0 | 0 |
no. small artificial | 0 | 0 | 0 | 0 | 1 | 1 |
no. small bark | 0 | 0 | 1 | 0 | 0 | 0 |
no.large simple pieces | 0 | 0 | 0 | 1 | 0 | 1 |
no. large branching pieces | 0 | 0 | 0 | 0 | 0 | 1 |
no. large overhanging vegetation | 0 | 1 | 0 | 2 | 26 | 20 |
no. large rootwad | 0 | 0 | 0 | 8 | 3 | 1 |
no. large accumulation | 0 | 0 | 0 | 0 | 5 | 12 |
no. large artificial | 0 | 0 | 0 | 0 | 2 | 0 |
no. parallel orientation | 0 | 8 | 6 | 11 | 32 | 112 |
no. diagonal orientation | 0 | 0 | 3 | 2 | 16 | 50 |
no. perpendicular orientation | 0 | 0 | 1 | 1 | 13 | 26 |
Species | Before Small Wood Addition | After Small Wood Addition | ||
---|---|---|---|---|
Control Pools | Treatment Pools | Control Pools | Treatment Pools | |
Black bullhead Ameiurus melas | 0 | 0 | 0 | 1 |
Bluegill Lepomis macrochirus | 11 | 20 | 20 | 25 |
Bluntnose minnow Pimephales notatus | 1 | 0 | 27 | 4 |
Creek chub Semotilus atromaculatus | 68 | 33 | 32 | 29 |
Fathead minnow Pimephales promelas | 8 | 1 | 103 | 58 |
Green sunfish Lepomis cyanellus | 4 | 3 | 6 | 8 |
Johnny darter Etheostoma nigrum | 6 | 3 | 24 | 20 |
Largemouth bass Micropterus nigricans | 1 | 0 | 1 | 4 |
Orangethroat darter Etheostoma spectabile | 11 | 1 | 16 | 3 |
Pumpkinseed Lepomis gibbosus | 2 | 0 | 0 | 0 |
Central stoneroller Campostoma anomalum | 20 | 0 | 1 | 1 |
White sucker Catostomus commersonii | 2 | 0 | 1 | 4 |
Response Variable | Before Small Wood Addition | After Small Wood Addition | F | df | p | ||
---|---|---|---|---|---|---|---|
Control Pools | Treatment Pools | Control Pools | Treatment Pools | ||||
Abundance | 17.63 (3.78) | 8.50 (2.18) | 32.75 (15.53) | 23.63 (11.63) | 0.34 | 3 | 0.795 |
Species richness | 3.38 (0.63) | 2.25 (0.37) | 3.63 (1.00) | 3.63 (1.12) | 0.83 | 3 | 0.494 |
Percent sunfishes | 26.73 (16.02) | 36.77 (14.68) | 16.57 (8.50) | 38.45 (14.55) | 0.37 | 3 | 0.775 |
Percent minnows | 62.43 (14.06) | 48.38 (14.63) | 56.11 (14.83) | 30.41 (11.62) | 0.21 | 3 | 0.887 |
Mean length (cm) | 5.14 (0.63) | 4.71 (0.49) | 6.31 (1.14) | 6.31 (0.82) | 0.08 | 3 | 0.971 |
Shannon Diversity Index | 0.73 (0.21) | 0.50 (0.15) | 0.94 (0.24) | 1.13 (0.17) | 0.97 | 3 | 0.426 |
Response Variable | Before Small Wood Addition | After Small Wood Addition | F | df | p | ||
---|---|---|---|---|---|---|---|
Control Pools | Treatment Pools | Control Pools | Treatment Pools | ||||
Water velocity (m/s) | −0.01 (0.01) | 0.00 (0.00) | −0.02 (0.00) | −0.02 (0.00) | 0.30 | 3 | 0.828 |
Water depth (m) | 0.18 (0.01) | 0.19 (0.02) | 0.17 (0.01) | 0.17 (0.02) | 0.21 | 3 | 0.890 |
Wetted width (m) | 1.86 (0.18) | 1.79 (0.14) | 1.81 (0.19) | 1.71 (0.19) | 0.07 | 3 | 0.975 |
Pool discharge (m3/s) | 0.001 (0.000) | 0.001 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.30 | 3 | 0.825 |
Pool area (m2) | 5.57 (0.54) | 5.36 (0.43) | 5.44 (0.57) | 5.13 (0.56) | 0.07 | 3 | 0.975 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gates, E.J.; Smiley, P.C., Jr. Influence of Adding Small Instream Wood on Fishes and Hydraulic Conditions in Channelized Agricultural Headwater Streams. Fishes 2024, 9, 296. https://doi.org/10.3390/fishes9080296
Gates EJ, Smiley PC Jr. Influence of Adding Small Instream Wood on Fishes and Hydraulic Conditions in Channelized Agricultural Headwater Streams. Fishes. 2024; 9(8):296. https://doi.org/10.3390/fishes9080296
Chicago/Turabian StyleGates, Eric J., and Peter C. Smiley, Jr. 2024. "Influence of Adding Small Instream Wood on Fishes and Hydraulic Conditions in Channelized Agricultural Headwater Streams" Fishes 9, no. 8: 296. https://doi.org/10.3390/fishes9080296
APA StyleGates, E. J., & Smiley, P. C., Jr. (2024). Influence of Adding Small Instream Wood on Fishes and Hydraulic Conditions in Channelized Agricultural Headwater Streams. Fishes, 9(8), 296. https://doi.org/10.3390/fishes9080296