Transcriptional Analysis Reveals the Iron Regulation Network of the Pathogenic Yeast Metschnikowia bicuspidata in Response to Iron Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains
2.2. Library Preparation and RNA Sequencing
2.3. RNA-Seq Data Analysis
2.4. Real-Time qRT-PCR Validation
2.5. Statistical Analyses
3. Results
3.1. Overviews of Yeast Cultivation and RNA-Seq Data Analysis
3.2. Identification of Differentially Expressed Genes (DEGs) Related to Iron Stress
3.3. Gene Ontology (GO) Functional Annotation and Enrichment Analysis of the DEGs
3.4. DEGs Involved in MAPK Signaling Pathway in Iron Stress
3.5. DEGs Involved in Oxidative Phosphorylation in Low-Iron Stress
3.6. DEGs Involved in Autophagy-Related Genes in Low-Iron Stress
3.7. DEGs Involved in Iron Transport and Homeostasis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cáceres, C.E.; Tessier, A.J.; Duffy, M.A.; Hall, S.R. Disease in Freshwater Zooplankton: What Have We Learned and Where Are We Going? J. Plankton Res. 2014, 36, 326–333. [Google Scholar] [CrossRef]
- Ebert, D. Ecology, Epidemiology, and Evolution of Parasitism in Daphnia; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2005; ISBN 1-932811-06-0.
- Stewart Merrill, T.E.; Cáceres, C.E. Within-host Complexity of a Plankton-parasite Interaction. Ecology 2018, 99, 2864–2867. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Bao, J.; Cao, G.; Xing, Y.; Feng, C.; Hu, Q.; Li, X.; Chen, Q. Experimental Transmission of the Yeast, Metschnikowia bicuspidata, in the Chinese Mitten Crab, Eriocheir sinensis. J. Fungi 2022, 8, 210. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, T.; Wang, P.; Chen, Y.; Huang, J.; Lin, Y.; Chaung, H. Metschnikowia bicuspidata and Enterococcus faecium co-infection in the giant freshwater prawn Macrobrachium rosenbergii. Dis. Aquat. Org. 2003, 55, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chi, Z.; Yue, L.; Li, J.; Li, M.; Wu, L. A Marine Killer Yeast against the Pathogenic Yeast Strain in Crab (Portunus trituberculatus) and an Optimization of the Toxin Production. Microbiol. Res. 2007, 162, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Jiang, H.; Shen, H.; Xing, Y.; Feng, C.; Li, X.; Chen, Q. First Description of Milky Disease in the Chinese Mitten Crab Eriocheir sinensis Caused by the Yeast Metschnikowia bicuspidata. Aquaculture 2021, 532, 735984. [Google Scholar] [CrossRef]
- Cao, G.; Bao, J.; Feng, C.; Li, X.; Lang, Y.; Xing, Y.; Jiang, H. First Report of Metschnikowia bicuspidata Infection in Chinese Grass Shrimp (Palaemonetes sinensis) in China. Transbounding Emerg. Dis 2022, 69, 3133–3141. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.M.; Strom, M.S. Infection and Mortality by the Yeast Metschnikowia bicuspidata Var. bicuspidata in Chinook Salmon Fed Live Adult Brine Shrimp (Artemia franciscana). Aquaculture 2003, 220, 43–57. [Google Scholar] [CrossRef]
- Chen, C.; Pande, K.; French, S.D.; Tuch, B.B.; Noble, S.M. An Iron Homeostasis Regulatory Circuit with Reciprocal Roles in Candida albicans Commensalism and Pathogenesis. Cell Host Microbe 2011, 10, 118–135. [Google Scholar] [CrossRef]
- Martínez-Pastor, M.T.; Puig, S. Adaptation to Iron Deficiency in Human Pathogenic Fungi. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2020, 1867, 118797. [Google Scholar] [CrossRef]
- Ramos-Alonso, L.; Romero, A.M.; Martínez-Pastor, M.T.; Puig, S. Iron Regulatory Mechanisms in Saccharomyces cerevisiae. Front. Microbiol. 2020, 11, 582830. [Google Scholar] [CrossRef] [PubMed]
- Labbé, S.; Pelletier, B.; Mercier, A. Iron Homeostasis in the Fission Yeast Schizosaccharomyces pombe. Biometals 2007, 20, 523. [Google Scholar] [CrossRef] [PubMed]
- Fourie, R.; Kuloyo, O.O.; Mochochoko, B.M.; Albertyn, J.; Pohl, C.H. Iron at the Centre of Candida albicans Interactions. Front. Cell. Infect. Microbiol. 2018, 8, 185. [Google Scholar] [CrossRef] [PubMed]
- Misslinger, M.; Hortschansky, P.; Brakhage, A.A.; Haas, H. Fungal Iron Homeostasis with a Focus on Aspergillus fumigatus. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2021, 1868, 118885. [Google Scholar] [CrossRef]
- Horianopoulos, L.C.; Kronstad, J.W. Connecting Iron Regulation and Mitochondrial Function in Cryptococcus neoformans. Curr. Opin. Microbiol. 2019, 52, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Devaux, F.; Thiébaut, A. The Regulation of Iron Homeostasis in the Fungal Human Pathogen Candida glabrata. Microbiology 2019, 165, 1041–1060. [Google Scholar] [CrossRef]
- Gupta, M.; Outten, C.E. Iron–Sulfur Cluster Signaling: The Common Thread in Fungal Iron Regulation. Curr. Opin. Chem. Biol. 2020, 55, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Pijuan, J.; Moreno, D.F.; Yahya, G.; Moisa, M.; Ul Haq, I.; Krukiewicz, K.; Mosbah, R.; Metwally, K.; Cavalu, S. Regulatory and Pathogenic Mechanisms in Response to Iron Deficiency and Excess in Fungi. Microb. Biotechnol. 2023, 16, 2053–2071. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-Length Transcriptome Assembly from RNA-Seq Data without a Reference Genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A Universal Tool for Annotation, Visualization and Analysis in Functional Genomics Research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Chen, Y.; Feng, C.; Bao, J.; Li, X.; Jiang, H. Establishment and Application of Real-Time Fluorescence Quantitative PCR Detection Technology for Metschnikowia bicuspidata Disease in Eriocheir sinensis. J. Fungi 2023, 9, 791. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Soto, D.; Ruiz-Herrera, J. Functional Analysis of the MAPK Pathways in Fungi. Rev. Iberoam. Micol. 2017, 34, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Sellam, A.; Chaillot, J.; Mallick, J.; Tebbji, F.; Richard Albert, J.; Cook, M.A.; Tyers, M. A Systematic Cell Size Screen Uncovers Coupling of Growth to Division by the P38/HOG Network in Candida albicans. Cell Biol. 2016. [Google Scholar] [CrossRef]
- Miller, K.E.; Kang, P.J.; Park, H.-O. Regulation of Cdc42 for Polarized Growth in Budding Yeast. Microb. Cell 2020, 7, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhao, B.; Zhou, X.; Lu, D.; Wang, Y.; Chen, Y.; Xiao, D. Analysis of the Molecular Basis of Saccharomyces Cerevisiae Mutant with High Nucleic Acid Content by Comparative Transcriptomics. Food Res. Int. 2021, 142, 110188. [Google Scholar] [CrossRef]
- Pujol-Carrion, N.; Pavón-Vergés, M.; Arroyo, J.; De La Torre-Ruiz, M.A. The MAPK Slt2/Mpk1 Plays a Role in Iron Homeostasis through Direct Regulation of the Transcription Factor Aft1. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2021, 1868, 118974. [Google Scholar] [CrossRef]
- Kaba, H.E.; Nimtz, M.; Müller, P.P.; Bilitewski, U. Involvement of the Mitogen Activated Protein Kinase Hog1p in the Response of Candida albicans to Iron Availability. BMC Microbiol. 2013, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Puri, S.; Lai, W.K.M.; Rizzo, J.M.; Buck, M.J.; Edgerton, M. Iron-responsive Chromatin Remodelling and MAPK Signalling Enhance Adhesion in Candida albicans. Mol. Microbiol. 2014, 93, 291–305. [Google Scholar] [CrossRef]
- Tripathi, A.; Liverani, E.; Tsygankov, A.Y.; Puri, S. Iron Alters the Cell Wall Composition and Intracellular Lactate to Affect Candida albicans Susceptibility to Antifungals and Host Immune Response. J. Biol. Chem. 2020, 295, 10032–10044. [Google Scholar] [CrossRef]
- Lavín, J.L.; Oguiza, J.A.; Ramírez, L.; Pisabarro, A.G. Comparative Genomics of the Oxidative Phosphorylation System in Fungi. Fungal Genet. Biol. 2008, 45, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Philpott, C.C.; Leidgens, S.; Frey, A.G. Metabolic Remodeling in Iron-Deficient Fungi. Biochim. Et Biophys. Acta (BBA) Mol. Cell Res. 2012, 1823, 1509–1520. [Google Scholar] [CrossRef]
- Duval, C.; Macabiou, C.; Garcia, C.; Lesuisse, E.; Camadro, J.; Auchère, F. The Adaptive Response to Iron Involves Changes in Energetic Strategies in the Pathogen Candida albicans. Microbiologyopen 2020, 9, e970. [Google Scholar] [CrossRef]
- Shakoury-Elizeh, M.; Protchenko, O.; Berger, A.; Cox, J.; Gable, K.; Dunn, T.M.; Prinz, W.A.; Bard, M.; Philpott, C.C. Metabolic Response to Iron Deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 2010, 285, 14823–14833. [Google Scholar] [CrossRef] [PubMed]
- Pollack, J.; Harris, S.; Marten, M. Autophagy in Filamentous Fungi. Fungal Genet. Biol. 2009, 46, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Richie, D.L.; Askew, D.S. Autophagy: A Role in Metal Ion Homeostasis? Autophagy 2008, 4, 115–117. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; Wang, W.; Geng, X.; Shi, Y.; Na, R.; Dou, D.; Li, H. Network and Role Analysis of Autophagy in Phytophthora sojae. Sci. Rep. 2017, 7, 1879. [Google Scholar] [CrossRef] [PubMed]
- Richie, D.L.; Fuller, K.K.; Fortwendel, J.; Miley, M.D.; McCarthy, J.W.; Feldmesser, M.; Rhodes, J.C.; Askew, D.S. Unexpected Link between Metal Ion Deficiency and Autophagy in Aspergillus fumigatus. Eukaryot. Cell 2007, 6, 2437–2447. [Google Scholar] [CrossRef] [PubMed]
- Nagi, M.; Tanabe, K.; Nakayama, H.; Ueno, K.; Yamagoe, S.; Umeyama, T.; Ohno, H.; Miyazaki, Y. Iron-Depletion Promotes Mitophagy to Maintain Mitochondrial Integrity in Pathogenic Yeast Candida glabrata. Autophagy 2016, 12, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
- Saikia, S.; Oliveira, D.; Hu, G.; Kronstad, J. Role of Ferric Reductases in Iron Acquisition and Virulence in the Fungal Pathogen Cryptococcus neoformans. Infect. Immun. 2014, 82, 839–850. [Google Scholar] [CrossRef]
- Gerwien, F.; Skrahina, V.; Kasper, L.; Hube, B.; Brunke, S. Metals in Fungal Virulence. FEMS Microbiol. Rev. 2018, 42, 1–21. [Google Scholar] [CrossRef] [PubMed]
Gene ID | Gene Name | Function | log2FC | |
---|---|---|---|---|
−Fe | +Fe | |||
METBIDRAFT_9918 | Cdc42 | Cell division control protein | 0.834 | - |
METBIDRAFT_14861 | Bem3 | GTPase-activating protein | 0.699 | - |
METBIDRAFT_33613 | Bnr1 | BNI1-related protein | 0.761 | - |
METBIDRAFT_34905 | Swe1 | Mitosis inhibitor protein kinase | 1.285 | 0.911 |
METBIDRAFT_35886 | Mss4 | Guanine nucleotide exchange factor | 0.646 | - |
METBIDRAFT_37147 | Pkc1 | Protein kinase C-like 1 | 0.716 | - |
METBIDRAFT_42909 | Ste18 | Guanine nucleotide-binding protein subunit gamma | 0.944 | - |
METBIDRAFT_45818 | Sst2 | GTPase-activating protein | 0.834 | 0.660 |
METBIDRAFT_50157 | Hsl1 | Serine/threonine-protein kinase | 1.161 | 0.883 |
METBIDRAFT_12244 | Sac7 | GTPase-activating protein | −1.408 | - |
METBIDRAFT_31719 | Paf1 | RNA polymerase II-associated factor 1 | −0.711 | - |
METBIDRAFT_35187 | Swi4 | Regulatory protein | −1.205 | - |
METBIDRAFT_46850 | Gre2 | NADPH-dependent methylglyoxal reductase | −1.184 | - |
METBIDRAFT_77780 | Ctt1 | Catalase T | −0.898 | - |
Gene ID | Gene Name | Function | log2FC |
---|---|---|---|
NADH dehydrogenase | |||
METBIDRAFT_78307 | Ndufs1 | NADH dehydrogenase Fe-S protein 1 | −0.924 |
METBIDRAFT_37748 | Ndufs4 | NADH dehydrogenase Fe-S protein 4 | 0.724 |
METBIDRAFT_43754 | Ndufs6 | NADH dehydrogenase Fe-S protein 6 | 0.633 |
METBIDRAFT_42962 | Ndufs7 | NADH dehydrogenase Fe-S protein 7 | −0.625 |
METBIDRAFT_31904 | Ndufv1 | NADH dehydrogenase flavoprotein 1 | −0.827 |
METBIDRAFT_45893 | Ndufv2 | NADH dehydrogenase flavoprotein 2 | −0.645 |
METBIDRAFT_80181 | Ndufa5 | NADH dehydrogenase 1 alpha subcomplex subunit 5 | 0.622 |
METBIDRAFT_44517 | Ndufa12 | NADH dehydrogenase 1 alpha subcomplex subunit 12 | 0.588 |
METBIDRAFT_47330 | Ndufb7 | NADH dehydrogenase 1 beta subcomplex subunit 7 | 0.690 |
METBIDRAFT_39898 | Ndufb9 | NADH dehydrogenase 1 beta subcomplex subunit 9 | 1.111 |
Fumarate reductase/Succinate dehydrogenase | |||
METBIDRAFT_44503 | SDHD | Succinate dehydrogenase membrane anchor subunit | 0.810 |
METBIDRAFT_39988 | SDH2 | Succinate dehydrogenase iron–sulfur subunit | −0.704 |
Cytochrome c reductase | |||
METBIDRAFT_33203 | QCR2 | Ubiquinol–cytochrome c reductase core subunit 2 | −0.682 |
METBIDRAFT_148564 | QCR7 | Ubiquinol–cytochrome c reductase core subunit 7 | 1.016 |
METBIDRAFT_39158 | QCR9 | Ubiquinol–cytochrome c reductase core subunit 9 | 0.824 |
METBIDRAFT_133809 | QCR10 | Ubiquinol–cytochrome c reductase core subunit 10 | 0.766 |
Cytochrome c oxidase | |||
METBIDRAFT_38491 | COX4 | Cytochrome c oxidase subunit 4 | 0.641 |
METBIDRAFT_176365 | COX6B | Cytochrome c oxidase subunit 6B | 0.712 |
METBIDRAFT_94133 | COX7C | Cytochrome c oxidase subunit 7C | 0.811 |
ATPase | |||
METBIDRAFT_40477 | Epsilon | F-type H+-transporting ATPase subunit epsilon | 0.734 |
METBIDRAFT_69189 | J | F-type H+-transporting ATPase subunit j | 0.688 |
METBIDRAFT_47409 | K | F-type H+-transporting ATPase subunit k | 0.863 |
METBIDRAFT_32979 | C | V-type H+-transporting ATPase subunit C | 0.603 |
Gene ID | Gene Name | Description | log2FC |
---|---|---|---|
Autophagy-yeast pathway | |||
METBIDRAFT_12655 | ATG17 | Autophagy-related protein 17 | −1.12 |
METBIDRAFT_17838 | Sak1 | Protein kinase domain | −0.977 |
METBIDRAFT_76078 | Tap42 | Immunoglobulin-binding protein 1 | 0.754 |
METBIDRAFT_33670 | ATG6 | Beclin | 0.589 |
METBIDRAFT_77080 | ATG9 | Autophagy-related protein 9 | −0.737 |
METBIDRAFT_36203 | ATG11 | Autophagy-related protein 11 | 1.063 |
METBIDRAFT_29480 | ATG18 | Autophagy-related protein 18 | 1.025 |
METBIDRAFT_30282 | Ymr1 | Myotubularin-related protein 6/7/8 | 0.890 |
METBIDRAFT_142269 | VPS16 | Vacuolar protein sorting-associated protein 16 | −0.905 |
METBIDRAFT_29468 | VPS33 | Vacuolar protein sorting-associated protein 33 | 1.125 |
METBIDRAFT_45021 | VPS41 | Vacuolar protein sorting-associated protein 41 | 0.802 |
METBIDRAFT_12087 | UME6 | Transcriptional regulatory protein UME6 | 1.000 |
Mitophagy pathway | |||
METBIDRAFT_76611 | PCL5 | PHO85 cyclin-5 | 0.897 |
METBIDRAFT_35886 | MSS4 | 1-phosphatidylinositol-4-phosphate 5-kinase | 0.646 |
METBIDRAFT_31772 | MDM12 | Mitochondrial distribution and morphology protein 12 | 1.595 |
METBIDRAFT_76985 | CK2 | Casein kinase II subunit beta | −0.644 |
METBIDRAFT_37147 | PKC1 | Classical protein kinase C alpha type | 0.717 |
System | Gene Name | Function | Gene ID | log2FC | S. cerevisiae | C. albicans | A. fumigatus | C. neoformans | |
---|---|---|---|---|---|---|---|---|---|
−Fe | +Fe | ||||||||
Ferric reductase | Fre1 | Ferric iron reductase | METBIDRAFT_38885 | 1.620 | - | Fre1 Fre2 | Fre7 Fre10 | FreB | Fre2 |
Cfl1 | Ferric iron reductase | METBIDRAFT_58735 | 2.582 | - | Cfl1 | ||||
Cfl1 | Ferric iron reductase | METBIDRAFT_40351 | 0.751 | - | |||||
Multicopper ferroxidase | Fet3 | Iron transport multicopper oxidase | METBIDRAFT_37244 | 0.949 | - | Fet3 | Fet3 Fet31 Fet33 Fet34 Fet99 | FetC | Cfo1 Cfo2 |
Iron permease | Ftr1 | High-affinity iron permease | METBIDRAFT_77840 | 1.139 | - | Ftr1 | Ftr1 Ftr2 | FtrA | Cft1-3 |
Siderophore transport | Sit1 | Siderophore iron transporter | METBIDRAFT_32319 | 1.851 | - | Arn1 Arn2/Taf1 Arn3/Sit1 Arn4/Enb1 | Arn1/Sit1 | Sit1 Sit2 MirB | Sit1 |
Iron regulation | Sfu1 | Suppressor of ferric uptake (GATA-type transcription factor) | METBIDRAFT_12358 | -0.666 | Aft1/2 | Sfu1 | SreA | Cir1 | |
HapX | bZIP transcription factor | METBIDRAFT_210934 | - | - | Hap43 | HapX | HapX | ||
Sef1 | Zinc finger transcription factor | METBIDRAFT_77284 | - | - | Sef1 | - | - | ||
Grx5 | Iron sensing and transcription factors (CGFS-type monothiol glutaredoxin) | METBIDRAFT_78255 | 0.681 | - | Grx3 | Grx3 | GrxD | Grx4 | |
Intracellular iron homeostasis | Ccc1 | Vacuolar irontransporter | METBIDRAFT_219790 | −1.110 | 0.969 | Ccc1 | Ccc1 | Ccc1 | CccA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; You, S.; Wang, Y.; Bao, J.; Jiang, H. Transcriptional Analysis Reveals the Iron Regulation Network of the Pathogenic Yeast Metschnikowia bicuspidata in Response to Iron Stress. Fishes 2024, 9, 236. https://doi.org/10.3390/fishes9060236
Liu J, You S, Wang Y, Bao J, Jiang H. Transcriptional Analysis Reveals the Iron Regulation Network of the Pathogenic Yeast Metschnikowia bicuspidata in Response to Iron Stress. Fishes. 2024; 9(6):236. https://doi.org/10.3390/fishes9060236
Chicago/Turabian StyleLiu, Jun, Songyue You, Yuting Wang, Jie Bao, and Hongbo Jiang. 2024. "Transcriptional Analysis Reveals the Iron Regulation Network of the Pathogenic Yeast Metschnikowia bicuspidata in Response to Iron Stress" Fishes 9, no. 6: 236. https://doi.org/10.3390/fishes9060236
APA StyleLiu, J., You, S., Wang, Y., Bao, J., & Jiang, H. (2024). Transcriptional Analysis Reveals the Iron Regulation Network of the Pathogenic Yeast Metschnikowia bicuspidata in Response to Iron Stress. Fishes, 9(6), 236. https://doi.org/10.3390/fishes9060236