Enhancing Growth and Intestinal Health in Triploid Rainbow Trout Fed a Low-Fish-Meal Diet through Supplementation with Clostridium butyricum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Management
2.2. Diets
2.3. Sample Collection
2.4. Nutrient Content
2.5. Digestive Enzyme
2.6. Biochemical Analysis
2.7. Real-Time Polymerase Chain Reaction (PCR) Analysis
2.8. Intestinal Microflora Analysis
2.9. Challenge with Aeromonas salmonicida
2.10. Calculations and Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Body Composition
3.3. Digestive Enzyme
3.4. Antioxidant Capacity and Immune Response
3.5. Serum Metabolic Markers
3.6. Relative Gene Expression in the Intestine
3.7. Intestinal Microflora
3.8. Challenge with A. salmonicida
4. Discussion
4.1. Growth Performance
4.2. Body Composition
4.3. Digestive Enzyme
4.4. Antioxidant Capacity
4.5. Serum Metabolites
4.6. Immunity
4.7. Intestinal Barrier
4.8. Intestinal Microflora
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitra, A. Thought of alternate aquafeed: Conundrum in aquaculture sustainability? Proc. Zool. Soc. 2020, 74, 1–18. [Google Scholar] [CrossRef]
- Albrektsen, S.; Kortet, R.; Skov, P.V.; Ytteborg, E.; Gitlesen, S.; Kleinegris, D.; Mydland, L.; Hansen, J.Ø.; Lock, E.; Mørkøre, T.; et al. Future feed resources in sustainable salmonid production: A review. Rev. Aquac. 2022, 14, 1790–1812. [Google Scholar] [CrossRef]
- Linh, N.V.; Wannavijit, S.; Tayyamath, K.; Dinh-Hung, N.; Nititanarapee, T.; Sumon, M.A.A.; Srinual, O.; Permpoonpattana, P.; Doan, H.; Brown, C.L. Black soldier fly (Hermetia illucens) larvae meal: A sustainable alternative to fish meal proven to promote growth and immunity in koi carp (Cyprinus carpio var. Koi). Fishes 2024, 9, 53. [Google Scholar] [CrossRef]
- Linh, N.V.; Lubis, A.R.; Dinh-Hung, N.; Wannavijit, S.; Montha, N.; Fontana, C.M.; Lengkidworraphiphat, P.; Srinual, O.; Jung, W.-K.; Paolucci, M.; et al. Effects of shrimp shell-derived chitosan on growth, immunity, intestinal morphology, and gene expression of nile tilapia (Oreochromis niloticus) reared in a biofloc system. Mar. Drugs 2024, 22, 150. [Google Scholar] [CrossRef] [PubMed]
- Azarm, H.M.; Lee, S.M. Effects of partial substitution of dietary fish meal by fermented soybean meal on growth performance, amino acid and biochemical parameters of juvenile black sea bream Acanthopagrus schlegeli. Aquac. Res. 2014, 45, 994–1003. [Google Scholar] [CrossRef]
- Sookying, D.; Davis, D.A.; Soller Dias da Silva, F. A review of the development and application of soybean-based diets for Pacific white shrimp Litopenaeus vannamei. Aquac. Nutr. 2013, 19, 441–448. [Google Scholar] [CrossRef]
- Gemede, H.F.; Ratta, N. Antinutritional factors in plant foods: Potential health benefits and adverse effects. Int. J. Nutr. Food Sci. 2014, 3, 284–289. [Google Scholar] [CrossRef]
- Chen, X.; Xie, J.; Liu, Z.; Yin, P.; Chen, M.; Liu, Y.; Tian, L.; Niu, J. Modulation of growth performance, non-specific immunity, intestinal morphology, the response to hypoxia stress and resistance to aeromonas hydrophila of grass carp (Ctenopharyngodon idella) by dietary supplementation of a multi-strain probiotic. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 231, 108724. [Google Scholar] [CrossRef]
- Meng, X.; Cai, H.; Li, H.; You, F.; Jiang, A.; Hu, W.; Zhou, Z. Clostridium butyricum-fermented Chinese herbal medicine enhances the immunity by modulating the intestinal microflora of largemouth bass (Micropterus salmoides). Aquaculture 2023, 562, 738768. [Google Scholar] [CrossRef]
- Foysal, M.J.; Fotedar, R.; Tay, A.C.Y.; Gupta, S.K. Effects of long-term starvation on health indices, gut microbiota and innate immune response of freshwater crayfish, marron (Cherax cainii, Austin 2002). Aquaculture 2020, 514, 734444. [Google Scholar] [CrossRef]
- Poolsawat, L.; Li, X.; He, M.; Ji, D.; Leng, X. Clostridium butyricum as probiotic for promoting growth performance, feed utilization, gut health and microbiota community of tilapia (Oreochromis niloticus × O. aureus). Aquac. Nutr. 2020, 26, 657–670. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, Q.; Yu, W.; Xu, C.; Hong, M.; Jiang, K.; Mai, X.; Chen, H.; Lin, H.; Yang, K. Effects of dietary supplementation of Clostridium butyricum on growth performance, serum biochemical indexes, intestinal flora, and short-chain fatty acid contents of juvenile Trachinotus ovatus. Chin. J. Anim. Nutr. 2023, 35, 5904–5918. [Google Scholar] [CrossRef]
- Du, Y.; Cheng, L.; Zhao, J.; de Cruz, C.R.; Xu, H.; Wang, L.; Xu, Q. Effects of Clostridium butyricum and sodium butyrate on growth performance, immunity, and gut microbiota of mirror carp Cyprinus carpio fed with soybean meal based diet. Aquac. Rep. 2023, 29, 101501. [Google Scholar] [CrossRef]
- Bao, S.; Zhuo, L.; Qi, D.; Tian, H.; Wang, D.; Zhu, B.; Meng, Y.; Ma, R. Comparative study on the fillet nutritional quality of diploid and triploid rainbow trout (Oncorhynchus mykiss). Aquac. Rep. 2023, 28, 101431. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Liu, S.; Zhang, S.; Lu, S.; Liu, H.; Han, S.; Jiang, H.; Zhang, Y. Effects of dietary arginine on growth performance, digestion, absorption ability, antioxidant capability, gene expression of intestinal protein synthesis, and inflammation-related genes of triploid juvenile Oncorhynchus mykiss fed a low-fish meal diet. Aquac. Nutr. 2022, 2022, 3793727. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, C.; Liu, S.; Wang, Y.; Lu, S.; Han, S.; Jiang, H.; Liu, H.; Yang, Y. Effect of dietary phenylalanine on growth performance and intestinal health of triploid rainbow trout (Oncorhynchus mykiss) in low fish meal diets. Front. Nutr. 2023, 10, 1008822. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International; AOAC: Washington, DC, USA, 2016. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−ΔΔC(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, M.; Xia, L.; Fang, Z.; Yu, S.; Gao, J.; Feng, Q.; Yang, P. Alteration of salivary microbiome in periodontitis with or without type-2 diabetes mellitus and metformin treatment. Sci. Rep. 2020, 10, 15363. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.F.; Wu, T.X.; Cai, L.S.; Zhang, L.J.; Zheng, X.D. Effects of dietary supplementation with Clostridium butyricum on the growth performance and humoral immune response in Miichthys miiuy. J. Zhejiang Univ. Sci. B 2006, 7, 596–602. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Q.; Liu, Y.; Gao, S.; He, Y.; Yao, C.; Huang, W.; Gong, Y.; Mai, K.; Ai, Q. Early life intervention using probiotic Clostridium butyricum improves intestinal development, immune response, and gut microbiota in large yellow croaker (Larimichthys crocea) larvae. Front. Immunol. 2021, 12, 640767. [Google Scholar] [CrossRef]
- Lan, F.F. The promotive Effect of Adding Clostridium butyricum to Feed on the Growth and Health of Eels. Ph.D. Thesis, Jimei University, Xiamen, China, 2019. [Google Scholar]
- Ichikawa, H.; Shineha, R.; Satomi, S.; Sakata, T. Gastric or rectal instillation of short-chain fatty acids stimulates epithelial cell proliferation of small and large intestine in rats. Dig. Dis. Sci. 2002, 47, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Piao, X.; Mahfuz, S.; Long, S.; Wang, J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Anim. Nutr. 2022, 9, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Huang, L. Study on the Effects of Probiotics Supplementation in Feed on Growth, Non-Specific Immunity, and Disease Resistance of Juvenile Tiger Grouper (Epinephelus fuscoguttatus × E. lanceolatus). Ph.D. Thesis, Guangzhou University, Guangzhou, China, 2017. [Google Scholar]
- Fan, C.W. The Impact of Clostridium butyricum on the Intestinal Health of Cherax quadricarinatus. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2020. [Google Scholar]
- He, R.P.; Feng, J.; Tian, X.L.; Dong, S.L.; Li, H.D. Effects of butyric acid bacteria on growth, digestive enzymes, serum antioxidase, and lysozyme activity of pearl gentian grouper. J. Ocean Univ. China: Nat. Sci. Ed. 2017, 47, 15–23. [Google Scholar]
- Ye, H.B.; Fan, Y.; Yan, F. Effects of probiotic formulations on serum biochemical indices and immune functions in rainbow trout. J. South China Norm. Univ. 2018, 50, 65–71. [Google Scholar]
- Li, H.Q.; Zhou, Y.; Ling, H.Y.; Luo, L.; Qi, D.; Feng, L. The effect of dietary supplementation with Clostridium butyricum on the growth performance, immunity, intestinal microbiota and disease resistance of tilapia (Oreochromis niloticus). PLoS ONE 2019, 14, e0223428. [Google Scholar] [PubMed]
- Hasan, M.T.; Jang, W.J.; Tak, J.Y.; Lee, B.J.; Kim, K.W.; Hur, S.W.; Kong, I.S. Effects of Lactococcus lactis subsp. lactis I2 with β-glucooligosaccharides on growth, innate immunity and streptococcosis resistance in olive flounder (Paralichthys olivaceus). J. Microbiol. Biotechnol. 2018, 28, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Cheng, H.; Damte, D.; Lee, S.J.; Kim, J.C.; Rhee, M.H.; Park, S.C. Effects of dietary supplementation of Lactobacillus pentosus PL11 on the growth performance, immune and antioxidant systems of Japanese eel Anguilla japonica challenged with Edwardsiella tarda. Fish Shellfish Immun. 2013, 34, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Cheng, Y.; Chen, X.; Liu, Z.; Long, X. Effects of small peptides, probiotics, prebiotics, and synbiotics on growth performance, digestive enzymes, and oxidative stress in orange-spotted grouper, Epinephelus coioides, juveniles reared in artificial seawater. Chin. J. Oceanol. Limnol. 2016, 35, 89–97. [Google Scholar] [CrossRef]
- Kawasaki, S.; Nakagawa, T.; Nishiyama, Y.; Benno, Y.; Uchimura, T.; Komagata, K.; Niimura, Y. Effect of oxygen on the growth of Clostridium butyricum (type species of the genus Clostridium), and the distribution of enzymes for oxygen and for active oxygen species in Clostridia. J. Ferment. Bioeng. 1998, 86, 368–372. [Google Scholar] [CrossRef]
- Dan, J.; Fang, Z.; Chin, S.X.; Tian, X.F.; Su, T.C. Biohydrogen production from hydrolysates of selected tropical biomass wastes with Clostridium butyricum. Sci. Rep. 2016, 6, 27205. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Shukry, M.; Farrag, F.A.; El-Shafai, N.M.; Dawood, M.A.O.; AbdelLatif, H.M.R. Dietary sodium butyrate nanoparticles enhanced growth, digestive enzyme activities, intestinal histomorphometry, and transcription of growth-related genes in Nile tilapia juveniles. Aquaculture 2021, 536, 736467. [Google Scholar] [CrossRef]
- Haller, D. Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 2000, 47, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, F. Probiotics in inflammatory bowel disease--therapeutic rationale and role. Adv. Drug Deliv. Rev. 2004, 56, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.P.; Yu, L.T.; Gui, G.H.; Gong, Y.; Wen, X.; Xia, W.; Zhang, L. Molecular cloning and expression analysis of interleukin-8 and -10 in yellow catfish and in response to bacterial pathogen infection. Biomed. Res. Int. 2019, 9617659. [Google Scholar] [CrossRef]
- Zuo, H.N.; Yang, W.F. The effect of combined use of Lactobacillus and Clostridium butyricum on acute ulcerative colitis in mice. Int. J. Lab. Med. 2009, 30, 33–35. [Google Scholar]
- Mohammadian, T.; Alishahi, M.; Mohammad, R.T.; Jangaran Nejad, A.; Karami, E.; Zarea, M. Effects of autochthonous probiotics, isolated from Tor grypus (Karaman, 1971) intestine and Lactobacillus casei (PTCC 1608) on expression of immune-related genes. Aquac. Int. 2019, 27, 239–260. [Google Scholar] [CrossRef]
- Sun, Y.Z.; Xia, H.Q.; Yang, H.L.; Wang, Y.L.; Zou, W.C. TLR2 signaling may play a key role in the probiotic modulation of intestinal microbiota in grouper Epinephelus coioides. Aquac. 2014, 430, 50–56. [Google Scholar] [CrossRef]
- He, S.; Zhang, Y.; Xu, L.; Yang, Y.; Marubashi, T.; Zhou, Z.; Yao, B. Effects of dietary Bacillus subtilis C-3102 on the production, intestinal cytokine expression and autochthonous bacteria of hybrid tilapia Oreochromis niloticus × Oreochromis aureus. Aquaculture 2013, 412, 125–130. [Google Scholar] [CrossRef]
- Gong, L.; He, H.; Li, D.; Cao, L.; Khan, T.A.; Li, Y.; Xia, L. A new isolate of Pediococcus pentosaceus (SL001) with antibacterial activity against fish pathogens and potency in facilitating the immunity and growth performance of grass carp. Front. Microbiol. 2019, 10, 1384. [Google Scholar] [CrossRef]
- Ringø, E. Probiotics in shellfish aquaculture. Aquac. Fish. 2020, 5, 1–27. [Google Scholar] [CrossRef]
- Fu, Y.; Lyu, J.; Wang, S. The role of intestinal microbes on intestinal barrier function and host immunity from a metabolite perspective. Front. Immunol. 2023, 14, 1277102. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Li, Z.R.; Green, R.S.; Holzmanr, I.R.; Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 2009, 139, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Bertiaux-Vandaële, N.; Youmba, S.B.; Belmonte, L.; Lecleire, S.; Antonietti, M.; Gourcerol, G.; Coëffier, M. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am. Coll. Gastroenterol. | ACG 2011, 106, 2165–2173. [Google Scholar] [CrossRef] [PubMed]
- Schönherr-Hellec, S.; Klein, G.; Delannoy, J.; Ferraris, L.; Friedel, I.; Rozé, J.C.; Aires, J. Comparative phenotypic analysis of Clostridium neonatale and Clostridium butyricum isolates from neonates. Anaerobe 2017, 48, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Ma, M.C.; Yang, C.M.C.K. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 1993, 80, 193–201. [Google Scholar] [CrossRef]
- Bermudez-Brito, M.; Plaza-Diaz, J.; Munoz-Quezada, S. Probiotic mechanisms of action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef]
- Ringø, E.; Zhou, Z.; Vecino, J.L.G.; Wadsworth, S.; Romero, J.; Krogdahl, Å.; Merrifield, D.L. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac. Nutr. 2016, 22, 219–282. [Google Scholar] [CrossRef]
Items | Contents |
---|---|
Wheat middings | 19.60 |
Soybean meal | 21.60 |
Compound amino acid | 17.02 |
Fish meal | 15.00 |
Beer yeast | 6.00 |
Soybean oil | 7.78 |
Fish oil | 7.80 |
Premix | 4.00 |
Ca(H2PO4)2 | 1.00 |
Calcium propionate | 0.20 |
Total | 100.00 |
Nutritional level | |
Gross energy (MJ/kg) | 18.68 |
Moisture | 9.24 |
Crude protein | 40.16 |
Crude lipid | 17.02 |
Crude fiber | 2.65 |
Ash | 9.25 |
Items | Product Number | Method |
---|---|---|
SOD | A001-3 | Based on the scavenging effect of SOD on superoxide radicals, one may gauge the activity of SOD indirectly through the measurement of the absorbance of the purple product (at 450 nm). |
MDA | A003-1 | MDA present in degradation products of lipid peroxides can react with thiobarbituric acid (TBA), and the amount of MDA can be determined by measuring the absorbance of the resulting red product (532 nm). |
CAT | A007-2-1 | Catalase activity is assessed by its capacity to decompose hydrogen peroxide (H2O2), reflected in a decrease in absorbance at 240 nm. This is executed by blending a specified volume of reagent one with a ten-fold volume of reagent two’s working solution, aiming for an absorbance between 0.5 and 0.55. The assay is initiated by mixing 0.02 mL of the sample with 3 mL of this substrate solution, warmed to 25 °C, and measuring the absorbance immediately and after one minute. The activity is quantified by the change in absorbance, indicating H2O2 decomposition. |
LZM | A050-1-1 | At a specific concentration of opaque bacterial solution, the lysozyme hydrolyses the peptidoglycan on the bacterial cell wall, resulting in bacterial cleavage and reduced concentration. This leads to an increase in transmittance, which is measured at 530 nm to determine the lysozyme content. |
IgM | H109-1-1 | The IgM level can be determined by measuring the turbidity produced when IgM in the sample forms an immune complex with anti-IgM antibodies in the reagents. After incubation with the reagents at 37 °C, the absorbance is measured at 340 nm, and the concentration is calculated from a nonlinear calibration curve. |
Genes | Forward Primer Sequences (5′–3′) | Reverse Primer Sequences (5′–3′) | Accession Number | Amplification Efficiency |
---|---|---|---|---|
β-Actin | GGACTTTGAGCAGGAGATGG | ATGATGGAGTTGTAGGTGGTCT | CP137043.2 | 95.72% |
IL-1β | ACATTGCCAACCTCATCATC | GTTCTTCCACAGCACTCTCC | AJ278242.2 | 97.89% |
IL-2 | GAAACCCAATTCCCAGACTC | TCCGTTGTGCTGTTCTCCT | NM_001164065.2 | 96.43% |
IL-8 | GAATGTCAGCCAGCCTTGTC | TCCAGACAAATCTCCTGACCG | XM_021625342.2 | 98.56% |
IL-10 | CGACTTTAAATCTCCCATCGAC | GCATTGGACGATCTCTTTCTTC | LR584431.1 | 98.01% |
MyD88 | CCCGAGAAACACTGTGGCA | TCTTCCGTGTTGGGTCCTG | HG325726.1 | 95.95% |
TNF-α | GGTGATGGTGTCGAGGAGGAA | TGGAAAGACACCTGGCTGTA | XM_059555332.1 | 97.26% |
NF-κB | CAGGACCGCAACATACTGGA | GCTGCTTCCTCTGTTGTTCCA | XM_036989126.1 | 96.87% |
Occludin | CAGCCCAGTTCCTCCAGTAG | GCTCATCCAGCTCTCTGTCC | NM_001190446.1 | 98.68% |
ZO-1 | AAGGAAGGTCTGGAGGAAGG | CAGCTTGCCGTTGTAGAGG | XM_052462150.1 | 95.34% |
Items | PCR Reaction Solution Preparation | PCR Amplification Procedure | |||
---|---|---|---|---|---|
Reagent | Consumption | Concentration | Procedure | Instrument | |
RT-PCR | TB Green Premix Ex Taq II (Tli RNaseH Plus) | 10 µL | 2× | Step 1: Reps: 1 95 °C 30 s Step 2: Reps: 40 95 °C 5 s 60 °C 34 s | 7500 Real-TimePCR System; Applied Biosystems, Waltham, MA, USA |
ROX Reference Dye II | 0.4 µL | 50× | |||
PCR Forward Primer | 0.8 µL | 10 µM | |||
PCR Reverse Primer | 0.8 µL | 10 µM | |||
cDNA | 2 µL | 50 ng/µL | |||
DEPC H2O | 6 µL |
Items | Groups | ||||
---|---|---|---|---|---|
G1 | G2 | G3 | G4 | G5 | |
IBW/g | 260.33 ± 1.53 | 258.33 ± 1.53 | 260.00 ± 0.00 | 260.00 ± 1.00 | 260.00 ± 0.00 |
FBW/g | 935.23 ± 19.34 a | 918.23 ± 21.48 a | 911.13 ± 50.50 a | 1002.82 ± 12.46 b | 896.35 ± 44.32 a |
WGR/% | 259.23 ± 7.46 a | 255.46 ± 1.52 a | 250.54 ± 20.15 a | 286.35 ± 5.13 b | 245.89 ± 17.15 a |
FCR | 1.19 ± 0.04 ab | 1.21 ± 0.05 b | 1.24 ± 0.10 b | 1.08 ± 0.02 a | 1.27 ± 0.09 b |
SGR/%·d−1 | 1.52 ± 0.03 a | 1.51 ± 0.05 a | 1.49 ± 0.10 a | 1.61 ± 0.03 b | 1.47 ± 0.09 a |
VSI/% | 13.97 ± 1.11 | 16.77 ± 2.02 | 16.01 ± 3.76 | 14.35 ± 1.01 | 15.75 ± 1.07 |
HSI/% | 1.36 ± 0.28 a | 1.97 ± 0.43 b | 1.62 ± 0.21 ab | 1.29 ± 0.34 a | 1.34 ± 0.19 a |
SR/% | 93.00 ± 0.00 | 94.33 ± 2.31 | 89.67 ± 5.77 | 94.33 ± 2.31 | 94.33 ± 2.31 |
Groups | Moisture | Ash | Crude Lipid | Crude Protein |
---|---|---|---|---|
G1 | 73.13 ± 1.04 | 2.49 ± 0.13 | 8.58 ± 0.56 | 16.32 ± 2.28 a |
G2 | 73.47 ± 1.43 | 2.36 ± 0.16 | 9.21 ± 1.64 | 16.94 ± 1.21 ab |
G3 | 72.82 ± 1.52 | 2.43 ± 0.10 | 9.75 ± 1.60 | 17.05 ± 0.52 ab |
G4 | 72.81 ± 1.26 | 2.45 ± 0.10 | 9.16 ± 0.30 | 16.93 ± 1.09 ab |
G5 | 73.77 ± 0.83 | 2.37 ± 0.07 | 8.40 ± 0.12 | 17.32 ± 1.52 b |
Groups | Lipase (U/mgprot) | Protease (U/mgprot) | Amylase (U/mgprot) |
---|---|---|---|
G1 | 42.79 ± 8.96 a | 940.23 ± 151.04 a | 2.51 ± 0.05 b |
G2 | 83.55 ± 10.22 b | 1015.49 ± 147.98 ab | 2.22 ± 0.04 b |
G3 | 79.12 ± 9.29 b | 1224.72 ± 272.36 bc | 2.51 ± 0.04 b |
G4 | 126.55 ± 27.90 c | 1310.29 ± 233.30 c | 1.73 ± 0.04 a |
G5 | 117.20 ± 30.58 c | 945.00 ± 85.02 a | 1.59 ± 0.03 a |
Groups | SOD (U/mL) | MDA (nmoL/mL) | CAT (U/mL) |
---|---|---|---|
Serum | |||
G1 | 16.40 ± 2.23 a | 21.67 ± 2.40 c | 13.96 ± 1.24 a |
G2 | 21.46 ± 2.71 a | 17.52 ± 0.79 b | 17.63 ± 1.71 ab |
G3 | 30.37 ± 6.09 b | 15.15 ± 1.17 b | 20.74 ± 3.83 b |
G4 | 41.48 ± 10.75 c | 10.11 ± 1.14 a | 24.46 ± 1.81 c |
G5 | 20.72 ± 3.97 a | 8.48 ± 0.97 a | 15.81 ± 2.93 ab |
Liver | |||
G1 | 226.26 ± 6.46 a | 11.36 ± 0.22 c | 12.17 ± 0.46 a |
G2 | 229.80 ± 7.90 a | 10.77 ± 0.89 c | 12.31 ± 0.40 a |
G3 | 329.85 ± 11.49 b | 8.45 ± 0.34 b | 16.90 ± 0.99 b |
G4 | 356.41 ± 8.31 c | 7.44 ± 0.54 a | 18.53 ± 1.79 c |
G5 | 355.39 ± 3.29 c | 7.02 ± 0.66 a | 18.45 ± 0.78 c |
Groups | GLU (mmol/L) | TP (g/L) | ALB (g/L) | ALT (U/mL) | AST (U/mL) | TG (mmol/L) |
---|---|---|---|---|---|---|
G1 | 5.65 ± 0.95 | 27.55 ± 6.54 | 11.20 ± 1.58 | 17.25 ± 3.34 | 360.65 ± 70.15 a | 4.95 ± 2.61 |
G2 | 5.40 ± 0.67 | 30.80 ± 4.17 | 11.70 ± 1.52 | 18.15 ± 4.52 | 400.18 ± 80.36 b | 5.35 ± 1.46 |
G3 | 5.57 ± 0.78 | 30.35 ± 3.14 | 11.75 ± 1.63 | 18.85 ± 3.22 | 395.82 ± 15.92 b | 5.28 ± 2.44 |
G4 | 5.70 ± 0.75 | 29.15 ± 3.18 | 11.52 ± 1.37 | 18.60 ± 1.85 | 385.89 ± 83.98 ab | 5.15 ± 2.05 |
G5 | 5.82 ± 1.22 | 29.35 ± 8.21 | 11.80 ± 2.55 | 18.30 ± 2.38 | 397.25 ± 47.92 b | 4.82 ± 2.20 |
Groups | Chao1 | ACE | Shannon | Simpson |
---|---|---|---|---|
G1 | 118.79 ± 19.04 | 120.20 ± 20.17 | 1.34 ± 0.24 | 0.49 ± 0.23 |
G2 | 125.56 ± 17.67 | 122.18 ± 15.16 | 1.19 ± 0.13 | 0.57 ± 0.06 |
G3 | 115.14 ± 22.18 | 128.15 ± 10.50 | 1.28 ± 0.39 | 0.58 ± 0.20 |
G4 | 121.91 ± 20.94 | 122.23 ± 19.10 | 1.14 ± 0.24 | 0.60 ± 0.12 |
G5 | 131.00 ± 34.66 | 123.41 ± 33.74 | 1.26 ± 0.30 | 0.58 ± 0.09 |
Species | Dose (CFU/g) | SGR (%/day) | FCR | SR (%) |
---|---|---|---|---|
Croaker (Miichthys miiuy) [20] | Control: Basal diet, CB1: 103, CB2: 105, CB3: 107, CB4: 109 | Control–CB4: 0.31 ± 0.01 b, 0.43 ± 0.03 ab, 0.45± 0.10 ab, 0.55 ± 0.17 ab, 0.58 ± 0.09 a | Control–CB4: 3.40 ± 0.25b, 2.64 ± 0.11 ab, 2.93 ± 0.93 ab, 2.18 ± 0.68 ab, 1.89 ± 0.39 a | All: 100 |
Tilapia (Oreochromis niloticus × O. aureus) [11] | Control, C-1: 0.75 × 108, C-2: 1.5 × 108, C-3: 3 × 108, C-4: 6 × 108, C-5: 1.2 × 109 | Control–C-5: 3.54 ± 0.02 d, 3.56 ± 0.02 cd, 3.65 ± 0.03 ab, 3.69 ± 0.05 a, 3.63 ± 0.03 abc, 3.59 ± 0.03 bcd | Control–C-5: 1.14 ± 0.02 d, 1.12 ± 0.01 cd, 1.06 ± 0.02 a, 1.03 ± 0.03 a, 1.07 ± 0.02 abc, 1.10 ± 0.02 bcd | All: 100 |
Large yellow croaker (Larimichthys crocea) [21] | Control: (0.00%), CB1: 5 × 106, CB2: 1 × 107, CB3: 2 × 107 | Control–CB3: 9.95 ± 0.10 b, 10.92 ± 0.09 a, 10.60 ± 0.21, 10.60 ± 0.17 ab | - | All: Control: 15.26 ± 1.87; CB1: 23.20 ± 2.60; CB2: 20.35 ± 1.77; CB3: 19.83 ± 2.05 |
Pompano (Trachinotus ovatus) [12] | C1: 0, C2: 2.5 × 106, C3: 5 × 106, 1 × 107, C4: 2 × 107, C5: 4 × 107 | C1–C5: 3.54 ± 0.02 b, 3.56 ± 0.04 abc, 3.57 ± 0.05 abc, 3.59 ± 0.02 bc, 3.62 ± 0.03 c, 3.53 ± 0.02 ab | C1–C5: 1.47 ± 0.01, 1.49 ± 0.04, 1.54 ± 0.02, 1.50 ± 0.03, 1.49 ± 0.06, 1.50 ± 0.04 | C1–C4: 100, C5: 98.67 ± 2.31 |
Carp (Cyprinus carpio) [13] | C0: 0, C1: 3 × 107, C2: 3 × 108, C3: 3 × 109 | C0–C3: 4.10 ± 0.08 ab, 4.23 ± 0.08 a, 4.17 ± 0.06 ab, 4.08 ± 0.07 b | C0–C3: 1.53 ± 0.04 ab, 1.47 ± 0.04 b, 1.51 ± 0.03 ab, 1.52 ± 0.04 ab | All: 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Li, F.; Wang, D.; Lu, S.; Han, S.; Gu, W.; Jiang, H.; Li, Z.; Liu, H. Enhancing Growth and Intestinal Health in Triploid Rainbow Trout Fed a Low-Fish-Meal Diet through Supplementation with Clostridium butyricum. Fishes 2024, 9, 178. https://doi.org/10.3390/fishes9050178
Wang C, Li F, Wang D, Lu S, Han S, Gu W, Jiang H, Li Z, Liu H. Enhancing Growth and Intestinal Health in Triploid Rainbow Trout Fed a Low-Fish-Meal Diet through Supplementation with Clostridium butyricum. Fishes. 2024; 9(5):178. https://doi.org/10.3390/fishes9050178
Chicago/Turabian StyleWang, Chang’an, Fangyuan Li, Di Wang, Shaoxia Lu, Shicheng Han, Wei Gu, Haibo Jiang, Zhuang Li, and Hongbai Liu. 2024. "Enhancing Growth and Intestinal Health in Triploid Rainbow Trout Fed a Low-Fish-Meal Diet through Supplementation with Clostridium butyricum" Fishes 9, no. 5: 178. https://doi.org/10.3390/fishes9050178
APA StyleWang, C., Li, F., Wang, D., Lu, S., Han, S., Gu, W., Jiang, H., Li, Z., & Liu, H. (2024). Enhancing Growth and Intestinal Health in Triploid Rainbow Trout Fed a Low-Fish-Meal Diet through Supplementation with Clostridium butyricum. Fishes, 9(5), 178. https://doi.org/10.3390/fishes9050178