Sustainability Assessment of Brown Trout Populations in Serbia (Central Balkans) Using the Modified ESHIPPO Model
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. The Utility of the ESHIPPOsalmo Model for Assessing the Vulnerability and Sustainable Use of Brown Trout Populations
4.2. Utility of ESHIPPOsalmo Model for Fisheries Management Guidelines
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Behnke, R.J. Brown trout. Trout 1986, 27, 42–47. [Google Scholar]
- Baric, S.; Riedl, A.; Meraner, A.; Medgyesy, N.; Lackner, R.; Pelster, B.; Via, J.D. Alpine headwater streams as reservoirs of remnant populations of the Danubian clade of brown trout. Freshw. Biol. 2010, 55, 866–880. [Google Scholar] [CrossRef]
- Lobón-Cerviá, J. Introduction: Princess of the streams: The brown trout Salmo trutta L. as aquatic royalty. In Brown Trout: Biology, Ecology and Management; Lobón-Cerviá, J., Sanz, N., Eds.; Wiley: New York, NY, USA, 2018; pp. 1–13. [Google Scholar]
- Kottelat, M.; Freyhof, J. Handbook of European Freshwater Fishes; Publications Kottelat: Cornol, Switzerland, 2007; p. 646. [Google Scholar]
- Simonović, P.; Marić, S.; Nikolić, V. Trout Salmo spp. complex in Serbia and adjacent regions of the western Balkans: Reconstruction of evolutionary history from external morphology. J. Fish Biol. 2007, 70, 359–380. [Google Scholar] [CrossRef]
- Apostolidis, A.P.; Stoumboudi, M.T.; Kalogianni, E.; Cote, G.; Bernatchez, L. Genetic divergence among native trout Salmo trutta populations from southern Balkans based on mitochondrial DNA and microsatellite variation. J. Fish Biol. 2011, 79, 1950–1960. [Google Scholar] [CrossRef]
- Snoj, A.; Marić, S.; Sušnik Bajec, S.; Berrebi, P.; Janjani, S.; Schöffmann, J. Phylogeographic structure and demographic patterns of brown trout in North-West Africa. Mol. Phylogenet. Evol. 2011, 61, 203–211. [Google Scholar] [CrossRef]
- Snoj, A.; Bravničar, J.; Marić, S.; Sušnik Bajec, S.; Benaissa, H.; Schöffmann, J. Nuclear dna reveals multiple waves of colonisation, reticulate evolution and a large impact of stocking on trout in north-west Africa. Hydrobiologia 2021, 848, 3389–3405. [Google Scholar] [CrossRef]
- Berrebi, P.; Tougard, C.; Dubois, S.; Shao, Z.; Koutseri, I.; Petkovski, S.; Crivelli, A.J. Genetic diversity and conservation of the Prespa trout in the Balkans. Int. J. Mol. Sci. 2013, 14, 23454–23470. [Google Scholar] [CrossRef]
- Sanz, N. Phylogeographic history of brown trout: A review. In Brown Trout: Biology, Ecology and Management; Lobón-Cerviá, J., Sanz, N., Eds.; Wiley: New York, NY, USA, 2018; pp. 15–63. [Google Scholar]
- Veličković, T.; Snoj, A.; Simić, V.; Šanda, R.; Vukić, J.; Barcytė, D.; Stanković, D.; Marić, S. A new perspective on the molecular dating of the brown trout complex with an extended phylogeographic information on the species in Serbia. Contrib. Zool. 2023, 92, 362–389. [Google Scholar] [CrossRef]
- Schöffmann, J.; Marić, S. Salmonid fish species—Opportunities for sustainable use under multiple pressures and current climatic change. In Ecological Sustainability of Fish Resources of Inland Waters of the Western Balkans. Freshwater Fish Stocks, Sustainable Use and Conservation; Simić, V., Simić, S., Pešić, V., Eds.; Springer: Berlin, Germany, 2024; pp. 375–410. [Google Scholar]
- Stevanović, M.P. Istorijska Geologija; Rudarsko–Geološki Fakultet, Univerzitet u Beogradu: Beograd, Serbia, 1982; p. 604. (In Serbian) [Google Scholar]
- Marić, S.; Sušnik, S.; Simonović, P.; Snoj, A. Phylogeographic study of brown trout from Serbia, based on mitochondrial DNA control region analysis. Genet. Sel. Evol. 2006, 38, 411–430. [Google Scholar] [CrossRef]
- Tošić, A.; Škraba, D.; Nikolić, V.; Mrdak, D.; Simonović, P. New mitochondrial DNA haplotype of brown trout Salmo trutta L. from Crni Timok drainage area in Serbia. Turk. J. Fish. Aquat. Sci. 2014, 14, 37–42. [Google Scholar]
- Tošić, A.; Škraba, D.; Nikolić, V.; Čanak Atlagić, J.; Mrdak, D.; Simonović, P. Haplotype diversity of brown trout Salmo trutta (L.) in the broader Iron Gate area. Turk. J. Zool. 2016, 40, 655–662. [Google Scholar] [CrossRef]
- Simonović, P.; Tošić, A.; Škraba Jurlina, D.; Nikolić, V.; Piria, M.; Tomljanović, T.; Šprem, N.; Mrdak, D.; Milošević, D.; Bećiraj, A.; et al. Diversity of brown trout Salmo cf. trutta in the River Danube basin of western Balkans as assessed from the structure of their mitochondrial control region haplotypes. J. Ichthyol. 2017, 57, 603–616. [Google Scholar]
- Kanjuh, T.; Tomić, S.; Marić, A.; Škraba Jurlina, D.; Nikolić, V.; Simonović, P. Trout Salmo spp. (Salmoniformes: Salmonidae) molecular diversity in streams on the southern slopes of the Stara Planina Mts. in Serbia. Acta Zool. Bulg. 2021, 7, 425–429. [Google Scholar]
- Marić, S. Evolucijska Istorija Kompleksa Potočne Pastrmke Salmo trutta L. 1758 na Području Republike Srbije i Značaj za Ribarstvo. Ph.D. Thesis, Biološki Fakultet, Univerzitet u Beogradu, Beograd, Srbija, 2005. (In Serbian). [Google Scholar]
- Veličković, T. Koncipiranje Modela za Održivo Korišćenje Populacija Kompleksa Potočne Pastrmke (Salmo spp.) na Području Srbije. Ph.D. Thesis, Prirodno-matematički Fakultet, Univerzitet u Kragujevcu, Kragujevac, Srbija, 2023. (In Serbian). [Google Scholar]
- Allendorf, F.W. Conservation biology of fishes. Conserv. Biol. 1988, 2, 145–148. [Google Scholar] [CrossRef]
- Laikre, L.; Ryman, N. Effects on intraspecific biodiversity from harvesting and enhancing natural populations. Ambio 1996, 25, 504–509. [Google Scholar]
- Laikre, L.; Antunes, A.; Apostolidis, A.; Berrebi, P.; Dugid, A.; Ferguson, A.; García-Marín, J.L.; Guyomard, R.; Hansen, M.M.; Hindar, K.; et al. Conservation Genetic Management of Brown Trout (Salmo trutta) in Europe; Report by the concerted action on identification, management and exploitation of genetic resources in the brown trout (Salmo trutta), ”TROUTCONCERT”; EU FAIR CT97–3882. Silkeborg, Danmarks fiskeri undersrgelser; Stockholm University: Stockholm, Sweden, 1999. [Google Scholar]
- Berrebi, P.; Horvath, Á.; Splendiani, A.; Palm, S.; Bernaś, R. Genetic diversity of domestic brown trout stocks in Europe. Aquaculture 2021, 544, 737043. [Google Scholar] [CrossRef]
- Araguas, R.M.; Sanz, N.; Fernandez, R.; Utter, F.M.; Pla, C.; García-Marín, J.L. Genetic refuges for a self-sustained fishery: Experience in wild brown trout populations in the eastern Pyrenees. Ecol. Freshw. Fish 2008, 17, 610–616. [Google Scholar] [CrossRef]
- Berrebi, P.; Caputo Barucchi, V.; Splendiani, A.; Muracciole, S.; Sabatini, A.; Palmas, F.; Tougard, C.; Arculeo, M.; Marić, S. Brown trout (Salmo trutta L.) high genetic diversity around the Tyrrhenian Sea as revealed by nuclear and mitochondrial markers. Hydrobiologia 2019, 826, 209–231. [Google Scholar] [CrossRef]
- Berrebi, P.; Marić, S.; Snoj, A.; Hasegawa, K. Brown trout in Japan− introduction history, distribution and genetic structure. Knowl. Manag. Aquat. Ecosyst. 2020, 421, 18. [Google Scholar] [CrossRef]
- Stanković, D.; Crivelli, A.J.; Snoj, A. Rainbow Trout in Europe: Introduction, Naturalization, and Impacts. Rev. Fish. Sci. Aquac. 2015, 23, 39–71. [Google Scholar] [CrossRef]
- Piria, M.; Simonović, P.; Kalogianni, E.; Vardakas, L.; Koutsikos, N.; Zanella, D.; Ristovska, M.; Apostolou, A.; Adrović, A.; Mrdak, D.; et al. Alien freshwater fish species in the Balkans—Vectors and pathways of introduction. Fish Fish. 2018, 19, 138–169. [Google Scholar] [CrossRef]
- Marić, S.; Stanković, D.; Sušnik Bajec, S.; Vukić, J.; Šanda, R.; Stefanov, T.; Nikolić, D.; Snoj, A. Perils of brown trout (Salmo spp.) mitigation-driven translocations: A case study from the Vlasina Plateau, Southeast Serbia. Biol. Invasions 2022, 24, 999–1016. [Google Scholar] [CrossRef]
- Simić, V.; Bănăduc, D.; Curtean-Bănăduc, A.; Petrović, A.; Veličković, T.; Stojković-Piperac, M.; Simić, S. Assessment of the ecological sustainability of river basins based on the modified the ESHIPPO fish model on the example of the Velika Morava basin (Serbia, Central Balkans). Front. Environ. Sci. 2022, 10, 952692. [Google Scholar] [CrossRef]
- Muhlfeld, C.C.; Dauwalter, D.C.; D’Angelo, V.S.; Ferguson, A.; Giersch, J.J.; Impson, D.; Koizumi, I.; Kovach, R.; McGinnity, P.; Schöffmann, J.; et al. Global status of trout and char: Conservation challenges in the twenty-first century. In Trout and Char of the World; Kershner, J., Williams, J., Gresswell, R., Lobón-Cerviá, J., Eds.; American Fisheries Society: Bethesda, MD, USA, 2019; pp. 717–760. [Google Scholar]
- Simić, V.; Simić, S.; Paunović, M.; Cakić, P. Model of the assessment of the critical risk of extinction and the priorities of protection of endangered aquatic species at the national level. Biodivers. Conserv. 2007, 16, 2471–2493. [Google Scholar] [CrossRef]
- Simić, V.; Simić, S.; Stojković-Piperac, M.; Petrović, A.; Milošević, D. Commercial fish species of inland waters: A model for sustainability assessment and management. Sci. Total Environ. 2014, 497, 642–650. [Google Scholar] [CrossRef]
- Simić, V.; Maguire, I.; Rajković, M.; Petrović, A. Conservation strategy for the endangered crayfish species of the family Astacidae: The ESHIPPO crayfish model. Hydrobiologia 2015, 760, 1–13. [Google Scholar] [CrossRef]
- Simić, V.; Simić, S.; Paunović, M.; Radojković, N.; Petrović, A.; Talevski, T.; Milošević, D. The Alburnus benthopelagic fish species of the Western Balkan Peninsula: An assessment of their sustainable use. Sci. Total Environ. 2016, 540, 410–417. [Google Scholar] [CrossRef]
- Fisher, O.D.; Owens, P.F.I. The comparative method in conservation biology. Trends Ecol. Evol. 2004, 9, 391–398. [Google Scholar] [CrossRef]
- Brennan, S.; Withgott, J. Biodiversity and conservation biology. In Environment; The Science behind the Stories; Pearson, Benjamin-Cummings: San Francisco, CA, USA, 2005. [Google Scholar]
- SRPS EN 14011; Water Quality—Sampling Fish Using Electricity. Institute for Standardization of Serbia: Belgrade, Serbia, 2008.
- Chapman, D.W. Production. In Methods for Assessment of Fish Production in Fresh Waters; Ricker, W.E., Ed.; Blackwell Scientific Publications: Oxford, UK; Edinburgh, UK, , 1971; pp. 199–214. [Google Scholar]
- Lager, K.; Huet, M. Dynamics of Fish Populations in Inland Waters; Academic Press: London, UK, 1964. [Google Scholar]
- Simić, V.; Simić, S.; Petrović, A.; Šorić, V.; Paunović, M.; Dimitrijević, V. Database: Biodiversity in Aquatic Ecosystems in Serbia (Ex Situ Conservation) BAES Ex Situ. 2006. Available online: http://baes.pmf.kg.ac.rs (accessed on 12 April 2023).
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2010, 129, 271–280. [Google Scholar] [CrossRef]
- Milošević, D.; Medeiros, A.; Stojković-Piperac, M.; Cvijanović, D.; Soininen, J.; Milosavljević, A.; Predić, B. The application of Uniform Manifold Approximation and Projection (UMAP) for unconstrained ordination and classification of biological indicators in aquatic ecology. Sci. Total Environ. 2022, 815, 152365. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, M.; Nikolić, M.; Kojadinović, N.; Ðuretanović, S.; Radenković, M.; Veličković, T.; Simić, V. Population characteristics of spirlin Alburnoides bipunctatus (Bloch, 1782) in Serbia (Central Balkans): Implications for conservation. Diversity 2023, 15, 616. [Google Scholar] [CrossRef]
- Xu, B.; Li, J.; Pei, X.; Bian, L.; Zhang, T.; Yi, G.; Bie, X.; Peng, P. Dominance of topography on vegetation dynamics in the Mt. Qomolangma National Nature Reserve: A UMAP and PLS-SEM Analysis. Forests 2023, 14, 1415. [Google Scholar] [CrossRef]
- Hall, M.A. Correlation-Based Feature Subset Selection for Machine Learning. Ph.D. Thesis, University of Waikato, Hamilton, New Zealand, 1998. [Google Scholar]
- Arrighi, C.; Castelli, F. Prediction of ecological status of surface water bodies with supervised machine learning classifiers. Sci. Total Environ. 2023, 857, 159655. [Google Scholar] [CrossRef]
- Jakovljević, M.; Đuretanović, S.; Kojadinović, N.; Nikolić, M.; Petrović, A.; Simović, P.; Simić, V. Assessing spirlin Alburnoides bipunctatus (Bloch, 1782) as an early indicator of climate change and anthropogenic stressors using ecological modeling and machine learning. Sci. Total Environ. 2024, 951, 175723. [Google Scholar] [CrossRef]
- Diaz-Papkovich, A.; Anderson-Trocmé, L.; Gravel, S. A review of UMAP in population genetics. J. Hum. Genet. 2021, 68, 85–91. [Google Scholar] [CrossRef]
- Simić, V.; Miljanović, B.; Petrović, A.; Radenković, M.; Stojković-Piperac, M.; Veličković, T.; Jakovljević, M.; Simić, S. Inland fisheries in Serbia: Historical aspect, fish resources, management and conservation. In Ecological Sustainability of Fish Resources of Inland Waters of the Western Balkans. Freshwater Fish Stocks, Sustainable Use and Conservation; Simić, V., Simić, S., Pešić, V., Eds.; Springer: Berlin, Germany, 2024; pp. 113–200. [Google Scholar]
- Owen, C.L.; Bracken-Grissom, H.; Stern, D.; Crandall, K.A. A synthetic phylogeny of freshwater crayfish: Insights for conservation. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140009. [Google Scholar] [CrossRef]
- Marić, S.; Sušnik Bajec, S.; Schöffmann, J.; Kostov, V.; Snoj, A. Phylogeography of stream-dwelling trout in the Republic of Macedonia and a molecular genetic basis for revision of the taxonomy proposed by S. Karaman. Hydrobiologia 2017, 785, 249–260. [Google Scholar] [CrossRef]
- Bonin, A.; Nicole, F.; Pompanon, F.; Miaud, C.; Taberlet, P. Population adaptive index: A new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv. Biol. 2007, 21, 697–708. [Google Scholar] [CrossRef]
- Lobón-Cerviá, J.; Elvira, B.; Rincón, P.A. Historical changes in the fish fauna of the River Duero basin. In Historical Change of Large Alluvial Rivers: Western Europe; Petts, G.E., Moller, H., Roux, A.L., Eds.; John Wiley & Sons: Chichester, UK, 1989; pp. 221–232. [Google Scholar]
- De Sostoa, A.; Lobón-Cerviá, J. Fish and fisheries of the River Ebro: Actual state and recent history. In Historical Change of Large Alluvial Rivers: Western Europe; Petts, G.E., Moller, H., Roux, A.L., Eds.; John Wiley & Sons: Chichester, UK, 1989; pp. 233–247. [Google Scholar]
- Vøllestad, L.A.; Hesthagen, T. Stocking of freshwater fish in Norway: Management goals and effects. Nord. J. Freshw. Res. 2001, 75, 143–152. [Google Scholar]
- Splendiani, A.; Ruggeri, P.; Giovannotti, M.; Caputo Barucchi, V. Role of environmental factors in the spread of domestic trout in Mediterranean streams. Freshw. Biol. 2013, 58, 2089–2101. [Google Scholar] [CrossRef]
- Splendiani, A.; Ruggeri, P.; Giovannotti, M.; Pesaresi, S.; Occhipinti, G.; Fioravanti, T.; Lorenzoni, M.; Nisi Cerioni, P.; Caputo Barucchi, V. Alien brown trout invasion of the Italian peninsula: The role of geological, climate and anthropogenic factors. Biol. Invasions 2016, 18, 2029–2044. [Google Scholar] [CrossRef]
- Splendiani, A.; Giovannotti, M.; Righi, T.; Fioravanti, T.; Cerioni, P.N.; Lorenzoni, M.; Carosi, A.; La Porta, G.; Barucchi, V.C. Introgression despite protection: The case of native brown trout in Natura 2000 network in Italy. Conserv. Genet. 2019, 20, 343–356. [Google Scholar] [CrossRef]
- Vera, M.; Aparicio, E.; Heras, S.; Abras, A.; Casanova, A.; Roldán, M.I.; García-Marin, J.L. Regional environmental and climatic concerns on preserving native gene pools of a least concern species: Brown trout lineages in Mediterranean streams. Sci. Total Environ. 2023, 862, 160739. [Google Scholar] [CrossRef]
- Stojanović, K.; Milić, D.; Ranković Perišić, M.; Miličić, M.; Živić, I. Destiny of two caddisfly species under global climate change. Diversity 2023, 15, 995. [Google Scholar] [CrossRef]
- Perrier, C.; Le Gentil, J.; Ravigne, V.; Gaudin, P.; Salvado, J.C. Origins and genetic diversity among Atlantic salmon recolonizing upstream areas of a large South European river following restoration of connectivity and stocking. Conserv. Genet. 2014, 15, 1095–1109. [Google Scholar] [CrossRef]
- Schwartz, M.; Cook, C.; Pressey, R.; Pullin, A.; Runge, M.; Salafsky, N.; Sutherland, W.; Williamson, M. Decision support frameworks and tools for conservation. Conserv. Lett. 2018, 11, e12385. [Google Scholar] [CrossRef]
- Zin, T.T.; Morimoto, T.; Suanyuk, N.; Itami, T.; Tantikitti, C. Image technology based detection of infected shrimp in adverse environments. Songklanakarin J. Sci. Technol. 2022, 44, 112–118. [Google Scholar]
- Conservation Measures Partnership. The Open Standards for the Practice of Conservation. Ver. 3.0. 2013. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.iai.int/admin/site/sites/default/files/uploads/2015/08/CMP_Open_Standards_Version_3.0_April_2013.pdf&ved=2ahUKEwi_quGQkKGJAxWxj68BHRiGJT4QFnoECBkQAQ&usg=AOvVaw28-9_AGuEYhdOXYW1_u8Iq (accessed on 16 April 2024).
- Bernos, T.A.; Jeffries, K.M.; Mandrak, N.E. Linking genomics and fish conservation decision making: A review. Rev. Fish Biol. Fish. 2020, 30, 587–604. [Google Scholar] [CrossRef]
- Young, K.A.; Gaskell, P.; Jacklin, T.; Williams, J.E. Brown trout management for the 21st century. In Brown Trout: Biology, Ecology and Management; Lobón-Cerviá, J., Sanz, N., Eds.; Wiley: New York, NY, USA, 2018; pp. 735–769. [Google Scholar]
- Pinter, K.; Epifanio, J.; Unfer, G. Release of hatchery-reared brown trout (Salmo trutta) as a threat to wild populations? A case study from Austria. Fish. Res. 2019, 219, 105296. [Google Scholar] [CrossRef]
- Arlinghaus, R.; Riepe, C.; Theis, S.; Pagel, T.; Fujitani, M. Dysfunctional information feedbacks cause the emergence of management panaceas in social-ecological systems: The case of fish stocking in inland recreational fisheries. J. Outdoor Recreat. Tour. 2022, 38, 100475. [Google Scholar] [CrossRef]
- Weeks, A.R.; Sgro, C.M.; Young, A.G.; Frankham, R.; Mitchell, N.J.; Miller, K.A.; Byrne, M.; Coates, D.J.; Eldridge, M.D.; Sunnucks, P.; et al. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol. Appl. 2011, 4, 709–725. [Google Scholar] [CrossRef] [PubMed]
- Cowx, I.G. Stocking strategies. Fish. Manag. Ecol. 1994, 1, 15–30. [Google Scholar] [CrossRef]
- Wenne, R. Microsatellites as molecular markers with applications in exploitation and conservation of aquatic animal populations. Genes 2023, 14, 808. [Google Scholar] [CrossRef]
Ecological Specialization (ES) | ||
---|---|---|
Indicator Code * | Point ES | |
Habitat (h) | h1, h2, h3, h4, h5 | 1–(h) (d) (rs) (lc): low specialized, tolerant; eurivalent (euritope) for all or >3 indicators-h. (d): d1. (rs): rs1.1, rs2.1, rs3.1, rs3.2, rs4.3, (lc): lc1.1, lc1.3, lc2.1, lc3.1, lc3.4, lc4.1, lc4.4, lc6.2. (bs): bs1.1. (re): re1. |
Diet (d) | d1, d2, d3 | |
Reproductive strategy (rs) | rs1, rs2, rs3, rs4 | 3–(h) (d) (rs) (lc): moderately specialized and sensitive; stenovalent (moderate), for 1–3 indicators-h. (d): d2; (rs): rs2.2, rs3.3, lc): lc1.2, lc2.2, lc3.2, lc3.5, lc4.2, lc4.5; (bs): bs1.2; (re): re2. |
Life cycle (lc) | lc1, lc2, lc3, lc4 | |
Body size (bs) | bs1 | 5–(h) (d) (rs) (lc); high specialized; stenovalent (stenotope) for all or >3 indicators-h. (d): d3, (rs): rs1.3, rs2.3; (lc): lc1.3, lc3.3, lc3.6, lc4.3, lc4.6, lc6.1; (bs): bs1.3; (re): re3. |
Range endemic and isolation of population (re) | re1, re2, re3 |
Genetic Structure (GS) of the Population | ||
---|---|---|
Parameter | Scoring Criteria | Point GS |
Phylogeographic structure of the population (ps) a | the presence of allochthonous mtDNA haplotypes | 1 |
uncertainty exists whether the recorded mtDNA haplotypes are truly autochthonous to a specific locality despite belonging to the autochthonous lineage | 3 | |
the presence of autochthonous and/or new/private mtDNA haplotypes | 5 | |
Index of Local Sustainability of Fish Population | ||
Parameter | Scoring Criteria | Point GS |
Population density (pd; N/m2) | <0.1 | 1 |
0.1–1 | 3 | |
>1 | 5 | |
Actual production (ap; kg/km) | real: potential production < 30% | 1 |
real: potential production 30–60% | 3 | |
real: potential production > 60% | 5 | |
Number of age classes (nAge) | <2 | 1 |
2–3 | 3 | |
>3 | 5 | |
Average recorded length of individuals in the population (Lmean; cm) b | <20 cm | 1 |
20–25 cm | 3 | |
>25 cm | 5 | |
Percentage of population in the protected area (pa; %) | the population is not within the protected area | 1 |
≈50% of the population in protected area | 3 | |
the entire population is within the protected area | 5 |
HIPPO | ||
---|---|---|
Parameter | Scoring Criteria | Point HIPPO |
Habitat alterations–without fragmentation (H) | present due to continuous negative anthropogenic influence | 1 |
expected due to natural processes or anthropogenic influence (predicted or planned activities in the near future) | 3 | |
absent | 5 | |
Habitat destruction (de) | present due to negative anthropogenic influence and/or ecosystem sensitivity already recorded | 1 |
expected due to natural changes or anthropogenic influence (predicted or planned activities in the near future) | 3 | |
absent | 5 | |
Fragmentation (and isolation) of habitat (fe) | present with a complete lack of communication between populations | 1 |
processes occurring due to anthropogenic influence are still ongoing, but the communication between populations is not present | 3 | |
absent and very low likelihood of occurring in the near future (protected area) | 5 | |
Invasive species (I) = Allochthonous species and/or brown trout individuals | presence of allochthonous species and/or allochthonous mtDNA haplotypes of the brown trout complex | 1 |
presence of allochthonous species while allochthonous mtDNA haplotypes of the brown trout complex are not recorded | 3 | |
absence of allochthonous species and allochthonous mtDNA haplotypes of the brown trout complex | 5 | |
Pollution (P) (eutrophication, organic pollution, toxic pollution, acidification, mixed pollution) | negative effects present | 1 |
moderate negative effects present | 3 | |
absence of pollution with potential for occurrence | 5 | |
Population growth (P) | accelerated growth | 1 |
moderate growth | 3 | |
absence of growth | 5 | |
Overexploitation (O) | uncontrolled exploitation present | 1 |
plans for exploitation exist, but it is not yet happening | 3 | |
absent and not planned in the future | 5 |
ESHIPPOsalmo Model | ||||
---|---|---|---|---|
Ecological Specialization (ES) | ≤10 | 11–20 | 21–30 | ˃30 |
critically low | low | moderate | high | |
Genetic Structure (GS) of population | / | 1 | 3 | 5 |
Index of Local Sustainability of Fish Population (ILSFP) | ≤6 | 7–15 | 16–20 | ˃20 |
Level of ILSFP | critically low | low | moderate | high |
Impact of HIPPO factors | ≤10 | 11–20 | 21–30 | ˃30 |
Level of negative impacts of HIPPO factors | high | moderate | low | critically low |
Total number of points (ES + GS + ILSFP + HIPPO) | ≤60 | 61–70 | 71–80 | ˃80 |
Level of population sustainability | critically low | low | moderate | high |
0 | 1 | 2 | 3 |
UMAPModel Cluster | ES | ∑ ES | GS | ILSFP | ∑ ILSFP | HIPPO | ∑ HIPPO | ∑ | Degree of Population Sustainability | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
h | d | rs | lc | bs | re | pd | ap | nAge | Lmean | pa | H | I | P | P | O | ||||||||||
1. Boranjska R. | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 5 | 1 | 3 | 3 | 1 | 1 | 9 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 35 | 73 | moderate |
2. Ljuboviđa | 2 | 5 | 3 | 5 | 3 | 5 | 1 | 22 | 3 | 3 | 1 | 3 | 3 | 1 | 11 | 3 | 5 | 3 | 5 | 5 | 3 | 3 | 27 | 63 | low |
3. Rača | 1 | 5 | 3 | 5 | 3 | 5 | 1 | 22 | 5 | 3 | 3 | 1 | 1 | 3 | 11 | 3 | 3 | 3 | 5 | 5 | 5 | 5 | 29 | 67 | low |
4. Gračanica | 1 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 3 | 1 | 1 | 1 | 1 | 5 | 9 | 1 | 5 | 3 | 5 | 5 | 5 | 5 | 29 | 67 | low |
5. Vapa | 1 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 3 | 3 | 3 | 5 | 1 | 3 | 15 | 5 | 5 | 5 | 3 | 5 | 3 | 3 | 29 | 73 | moderate |
6. Povlenska R. | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 5 | 3 | 5 | 3 | 1 | 1 | 13 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 35 | 77 | moderate |
7. Gradac | 0 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 1 | 5 | 3 | 3 | 3 | 3 | 17 | 3 | 3 | 3 | 1 | 5 | 5 | 3 | 23 | 65 | low |
8. Đetinja | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 5 | 5 | 5 | 3 | 1 | 3 | 17 | 1 | 3 | 3 | 5 | 5 | 3 | 5 | 25 | 71 | moderate |
9. Katušnica | 1 | 5 | 3 | 5 | 3 | 5 | 1 | 22 | 5 | 1 | 3 | 3 | 1 | 3 | 11 | 3 | 3 | 3 | 5 | 5 | 3 | 5 | 27 | 65 | low |
10. Veliki Rzav | 0 | 5 | 3 | 5 | 3 | 5 | 1 | 22 | 1 | 3 | 3 | 3 | 3 | 5 | 17 | 1 | 3 | 3 | 1 | 5 | 5 | 3 | 21 | 61 | low |
11. Panjica | 1 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 5 | 3 | 3 | 3 | 1 | 3 | 13 | 3 | 3 | 3 | 5 | 5 | 5 | 5 | 29 | 71 | moderate |
12. Tolišnica | 2 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 5 | 1 | 1 | 3 | 1 | 1 | 7 | 3 | 5 | 3 | 5 | 5 | 5 | 5 | 31 | 67 | low |
13. Brvenica | 0 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 1 | 3 | 3 | 3 | 1 | 3 | 13 | 5 | 5 | 5 | 1 | 5 | 5 | 5 | 31 | 69 | low |
14. Maglička R. | 2 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 3 | 1 | 1 | 3 | 1 | 1 | 7 | 1 | 3 | 3 | 5 | 3 | 5 | 5 | 25 | 59 | critically low |
15. Bresnička R. | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 3 | 3 | 3 | 1 | 1 | 1 | 9 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 35 | 71 | moderate |
16. Studenica | 1 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 3 | 1 | 1 | 1 | 1 | 5 | 9 | 3 | 3 | 3 | 5 | 3 | 3 | 1 | 21 | 57 | critically low |
17. Izubra | 1 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 5 | 3 | 1 | 1 | 1 | 5 | 11 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 35 | 75 | moderate |
18. Brevina | 1 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 3 | 3 | 3 | 3 | 1 | 5 | 15 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 35 | 77 | moderate |
19. Gokčanica | 0 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 1 | 3 | 3 | 3 | 1 | 1 | 11 | 3 | 3 | 3 | 1 | 5 | 5 | 5 | 25 | 61 | low |
20. Samokovska R. | 0 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 1 | 1 | 3 | 1 | 1 | 3 | 9 | 1 | 3 | 3 | 1 | 3 | 3 | 3 | 17 | 51 | critically low |
21. Brzećka R. | 0 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 1 | 1 | 3 | 1 | 1 | 5 | 11 | 3 | 3 | 5 | 1 | 5 | 3 | 3 | 23 | 59 | critically low |
22. Štavska R. | 3 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 3 | 3 | 5 | 3 | 1 | 1 | 13 | 5 | 5 | 5 | 5 | 3 | 3 | 3 | 29 | 71 | moderate |
23. S. Moravica | 0 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 1 | 1 | 3 | 3 | 3 | 3 | 13 | 3 | 5 | 3 | 1 | 3 | 3 | 5 | 23 | 63 | low |
24. Toplodolska R. | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 5 | 3 | 5 | 3 | 1 | 1 | 13 | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 33 | 75 | moderate |
25. Visočica | 0 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 1 | 3 | 3 | 3 | 3 | 5 | 17 | 5 | 5 | 5 | 1 | 5 | 3 | 3 | 27 | 69 | low |
26. Dojkinačka R. | 1 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 3 | 5 | 3 | 1 | 1 | 5 | 15 | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 33 | 75 | moderate |
27. Dursunska R. | 2 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 5 | 1 | 3 | 3 | 1 | 1 | 9 | 1 | 1 | 1 | 5 | 5 | 5 | 3 | 21 | 61 | low |
28. Bistrička R. | 2 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 3 | 1 | 1 | 3 | 3 | 1 | 9 | 1 | 1 | 1 | 5 | 5 | 5 | 3 | 21 | 59 | critically low |
29. Vlasina | 0 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 1 | 1 | 3 | 3 | 1 | 3 | 11 | 1 | 1 | 1 | 1 | 3 | 1 | 3 | 11 | 49 | critically low |
30. Polomska R. | 1 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 5 | 1 | 1 | 3 | 1 | 5 | 11 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 35 | 77 | moderate |
31. Vučja R. | 0 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 1 | 1 | 3 | 3 | 1 | 3 | 11 | 5 | 5 | 5 | 1 | 5 | 5 | 5 | 31 | 69 | low |
32. Jerma | 0 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 1 | 3 | 3 | 3 | 1 | 3 | 13 | 3 | 3 | 3 | 1 | 3 | 3 | 3 | 19 | 57 | critically low |
33. Jelašnička R. | 2 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 5 | 1 | 5 | 1 | 1 | 1 | 9 | 1 | 1 | 1 | 5 | 5 | 5 | 3 | 21 | 59 | critically low |
34. Garvanica | 2 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 5 | 1 | 3 | 3 | 1 | 1 | 9 | 1 | 1 | 1 | 5 | 5 | 5 | 3 | 21 | 61 | low |
35. Šaovice | 0 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 1 | 3 | 1 | 1 | 1 | 5 | 11 | 3 | 5 | 5 | 1 | 5 | 5 | 5 | 29 | 67 | low |
36. Resava | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 3 | 5 | 5 | 3 | 1 | 3 | 17 | 3 | 5 | 5 | 5 | 5 | 3 | 3 | 29 | 73 | moderate |
37. Mlava | 0 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 1 | 3 | 5 | 5 | 3 | 3 | 19 | 3 | 5 | 5 | 1 | 3 | 3 | 3 | 23 | 67 | low |
38. Krupaja | 0 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 1 | 3 | 3 | 3 | 1 | 3 | 13 | 3 | 3 | 3 | 1 | 5 | 5 | 3 | 23 | 61 | low |
39. Kožica | 0 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 1 | 1 | 3 | 1 | 1 | 5 | 11 | 5 | 5 | 5 | 1 | 5 | 5 | 5 | 31 | 69 | low |
40. Vratna | 0 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 1 | 3 | 3 | 3 | 1 | 3 | 13 | 5 | 5 | 5 | 1 | 5 | 5 | 5 | 31 | 71 | moderate |
41. Zlotska R. | 1 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 3 | 3 | 3 | 1 | 1 | 3 | 11 | 3 | 5 | 5 | 5 | 5 | 5 | 3 | 31 | 69 | low |
42. Mirovštica | 3 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 3 | 5 | 3 | 3 | 1 | 1 | 13 | 3 | 5 | 5 | 5 | 5 | 5 | 3 | 31 | 73 | moderate |
43. Janjska R. | 1 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 3 | 3 | 3 | 3 | 1 | 5 | 15 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 35 | 77 | moderate |
44. Tripušnica | 0 | 5 | 3 | 5 | 3 | 5 | 5 | 26 | 1 | 3 | 1 | 1 | 3 | 3 | 11 | 1 | 1 | 1 | 1 | 5 | 5 | 3 | 17 | 55 | critically low |
45. Lisinska R. | 2 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 5 | 3 | 3 | 3 | 3 | 1 | 13 | 3 | 1 | 1 | 3 | 5 | 5 | 3 | 21 | 63 | low |
46. Dragovištica | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 24 | 5 | 3 | 5 | 3 | 3 | 1 | 15 | 3 | 5 | 5 | 5 | 5 | 5 | 1 | 29 | 73 | moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veličković, T.; Marić, S.; Stanković, D.; Milošković, A.; Radenković, M.; Šanda, R.; Vukić, J.; Đuretanović, S.; Kojadinović, N.; Jakovljević, M.; et al. Sustainability Assessment of Brown Trout Populations in Serbia (Central Balkans) Using the Modified ESHIPPO Model. Fishes 2024, 9, 423. https://doi.org/10.3390/fishes9110423
Veličković T, Marić S, Stanković D, Milošković A, Radenković M, Šanda R, Vukić J, Đuretanović S, Kojadinović N, Jakovljević M, et al. Sustainability Assessment of Brown Trout Populations in Serbia (Central Balkans) Using the Modified ESHIPPO Model. Fishes. 2024; 9(11):423. https://doi.org/10.3390/fishes9110423
Chicago/Turabian StyleVeličković, Tijana, Saša Marić, David Stanković, Aleksandra Milošković, Milena Radenković, Radek Šanda, Jasna Vukić, Simona Đuretanović, Nataša Kojadinović, Marija Jakovljević, and et al. 2024. "Sustainability Assessment of Brown Trout Populations in Serbia (Central Balkans) Using the Modified ESHIPPO Model" Fishes 9, no. 11: 423. https://doi.org/10.3390/fishes9110423
APA StyleVeličković, T., Marić, S., Stanković, D., Milošković, A., Radenković, M., Šanda, R., Vukić, J., Đuretanović, S., Kojadinović, N., Jakovljević, M., & Simić, V. (2024). Sustainability Assessment of Brown Trout Populations in Serbia (Central Balkans) Using the Modified ESHIPPO Model. Fishes, 9(11), 423. https://doi.org/10.3390/fishes9110423