Comparison of Growth Performance and Muscle Nutrition Levels of Juvenile Siniperca scherzeri Fed on an Iced Trash Fish Diet and a Formulated Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Fish and Feeding Trial
2.3. Growth Performance
2.4. Proximate Amino Acid and Fatty Acid Compositions
2.5. Amino Acids and Lipid Quality Indices
2.6. Statistical Analysis
3. Results
3.1. Growth Performance and Morphological Parameters
3.2. Muscle Proximate Composition
3.3. Amino Acid Composition
3.4. Comparison and Evaluation of the Fatty Acid Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, Y.F.; Zhao, J.L.; Lu, G.Q. Cloning, characterization and expression of the pepsinogen C from the golden mandarin fish Siniperca scherzeri (Teleostei: Perciformes). Fish. Sci. 2010, 76, 819–826. [Google Scholar] [CrossRef]
- Yang, M.; Liang, X.F.; Tian, C.X. Isolation and characterization of fifteen novel microsatellite loci in golden mandarin fish (Siniperca scherzeri) Steindachne. Conserv. Genet. Resour. 2012, 4, 599–601. [Google Scholar] [CrossRef]
- Sankian, Z.; Khosravi, S.; Kim, Y.O. Effect of dietary protein and lipid level on growth, feed utilization, and muscle composition in golden mandarin fish Siniperca scherzeri. Fish. Aquat. Sci. 2017, 20, 7. [Google Scholar] [CrossRef]
- MOA. 2021 China Fishery Statistical Yearbook; MOA: Beijing, China, 2022; p. 25. [Google Scholar]
- Li, Y.; Li, J.Z.; Lu, J.T. Effects of live and artificial feeds on the growth, digestion, immunity and intestinal microflora of mandarin fish hybrid (Siniperca chuatsi♀ × Siniperca scherzeri♂). Aquac. Res. 2017, 48, 4479–4485. [Google Scholar] [CrossRef]
- Tao, J.J.; Gui, J.F.; Zhang, Q.Y. Isolation and characterization of a rhabdovirus from co-infection of two viruses in mandarin fish. Aquaculture 2007, 262, 1–9. [Google Scholar] [CrossRef]
- Zhang, W.B.; Liu, M.; De Mitcheson, Y.S. Fishing for feed in China: Facts, impacts and implications. Fish Fish. 2020, 21, 47–62. [Google Scholar] [CrossRef]
- Woodcock, S.H.; Benkendorff, K. The impact of diet on the growth and proximate composition of juvenile whelks, Dicathais orbita (Gastropoda: Mollusca). Aquaculture 2008, 276, 162–170. [Google Scholar] [CrossRef]
- Ye, G.; Dong, X.; Yang, Q.; Chi, S.; Liu, H.; Zhang, H.; Tan, B.; Zhang, S. A formulated diet improved digestive capacity, immune function and intestinal microbiota structure of juvenile hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂) when compared with chilled trash fish. Aquaculture 2020, 523, 735230. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Santivarangkna, C.; Benjakul, S.; Maqsood, S. Fish protein hydrolysates as a health-promoting ingredient-recent update. Nutr. Rev. 2021, 80, 1013–1026. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, Y.; Chen, J.; Chen, W.; Xie, S.; Chen, Q. Growth, muscle nutrition composition, and digestive enzyme activities of the juvenile and adult Siniperca chuatsi fed on live baits and a formulated diet. Fishes 2022, 7, 379. [Google Scholar] [CrossRef]
- Shaikh, A.S.; Lohar, P.S. Biochemical composition and gonadosomatic index of three major carps in hatnoor reservoir, maharashtra, India. J. Ecobiotechnol. 2011, 3, 1–4. [Google Scholar]
- Siddik, M.A.; Chungu, P.; Fotedar, R.; Howieson, J. Bioprocessed poultry byproduct meals on growth, gut health and fatty acid synthesis of juvenile barramundi, Lates calcarifer (Bloch). PLoS ONE 2019, 14, e0215025. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Report of the Joint Expert Consultation on the Risks and Benefits of Fish Consumption; FAO: Roma, Italy, 2011; p. 50. [Google Scholar]
- Mekonnen, M.F.; Desta, D.T.; Alemayehu, F.R. Evaluation of fatty acid-related nutritional quality indices in fried and raw Nile tilapia, (Oreochromis niloticus), fish muscles. Food Sci. Nutr. 2020, 8, 4814–4821. [Google Scholar] [CrossRef] [PubMed]
- Chakma, S.; Rahman, M.A.; Siddik, M.A.B.; Hoque, M.S.; Islam, S.M.; Vatsos, I.N. Nutritional profiling of wild (Pangasius pangasius) and farmed (Pangasius hypophthalmus) pangasius catfish with implications to human health. Fishes 2022, 7, 309. [Google Scholar] [CrossRef]
- Mantri, V.A.; Kambey, C.S.B.; Cottier-Cook, E.J.; Usandizaga, S.; Buschmann, A.H.; Chung, I.K.; Liu, T.; Sondak, C.F.A.; Qi, Z.; Lim, P.; et al. Overview of global Gracilaria production, the role of biosecurity policies and regulations in the sustainable development of this industry. Rev. Aquac. 2023, 15, 801–819. [Google Scholar] [CrossRef]
- Li, W.; Zhang, T.; Ye, S. Feeding habits and predator-prey size relationships of mandarin fish Siniperca chuatsi (Basilewsky) in a shallow lake, central China. J. Appl. Ichthyol. 2013, 29, 56–63. [Google Scholar] [CrossRef]
- Bunlipatanon, P.; Songseechan, N.; Kongkeo, H.; Abery, N.W.; De Silva, S.S. Comparative efficacy of trash fish versus compounded commercial feeds in cage aquaculture of Asian seabass (Lates calcarifer) (Bloch) and tiger grouper (Epinephelus fuscoguttatus) (Forsskal). Aquac. Res. 2014, 45, 373–388. [Google Scholar] [CrossRef]
- Kim, Y.; Oh, S.; Kim, T. Effect of fasting and refeeding on juvenile leopard mandarin fish Siniperca scherzeri. Animals 2022, 12, 889. [Google Scholar] [CrossRef]
- Li, H.Y.; Xu, W.J.; Jin, J.Y. Effects of starvation on glucose and lipid metabolism in gibel carp (Carassius auratus gibelio var. CAS III). Aquaculture 2018, 496, 166–175. [Google Scholar] [CrossRef]
- Mohanta, K.N.; Mohanty, S.N.; Jena, J.K. Protein requirement of silver barb, Puntius gonionotus fingerlings. Aquac. Nutr. 2008, 14, 143–152. [Google Scholar] [CrossRef]
- Zhu, Z.M.; Ma, D.M.; Bai, J.J. Effects of formulated diets and frozen trash fish on growth and expression of LPL gene mRNA in largemouth bass Micropterus salmoides. J. Dalian Ocean. Univ. 2014, 29, 360–363. [Google Scholar]
- Tuan, L.A.; Williams, K.C. Optimum dietary protein and lipid specifications for juvenile malabar grouper (Epinephelus malabaricus). Aquaculture 2007, 267, 129–138. [Google Scholar] [CrossRef]
- Han, T.; Li, X.; Wang, J. Effect of dietary lipid level on growth, feed utilization and body composition of juvenile giant croaker Nibea japonica. Aquaculture 2014, 434, 145–150. [Google Scholar] [CrossRef]
- Prakash, S.; Maas, R.M.; Fransen, P.M.; Kokou, F.; Schrama, J.W.; Philip, A.J.P. Effect of feed ingredients on nutrient digestibility, waste production and physical characteristics of rainbow trout (Oncorhynchus Mykiss) faeces. Aquaculture 2023, 574, 739621. [Google Scholar] [CrossRef]
- Cardinal, M.; Cornet, J.; Donnay-moreno, C. Seasonal variation of physical, chemical and sensory characteristics of sea bream (Sparus aurata) reared under intensive conditions in Southern Europe. Food Control 2011, 22, 574–585. [Google Scholar] [CrossRef] [Green Version]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [PubMed]
- Shi, Y.; Song, H.; Liu, J.; Lin, J.; Fang, L. Comprehensive evaluation of clinical application of balanced compound amino acid injection. Front Nutr. 2022, 9, 880256. [Google Scholar] [CrossRef]
- Crisostomo, S.; Guemene, D.; Garreau-mills, M. Prevention of incubation behavior expression in turkey hens by active immunization against prolactin. Theriogenology 1998, 50, 675–690. [Google Scholar] [CrossRef]
- Qi, Z.H.; Shi, R.J.; Yu, Z.H. Nutrient release from fish cage aquaculture and mitigation strategies in Daya Bay, southern China. Mar. Pollut. Bull. 2019, 146, 399–407. [Google Scholar] [CrossRef]
- Deng, Y.L.; Zhou, F.; Ruan, Y.J. Feed Types driven differentiation of microbial community and functionality in marine integrated multitrophic aquaculture system. Water 2020, 12, 95. [Google Scholar] [CrossRef] [Green Version]
- Ackman, R.G. Basic and functional nutrients in the muscles of fish: A review nutritional composition of fats in seafoods. Prog. Food Nutr. Sci. 1989, 13, 161–289. [Google Scholar] [PubMed]
- Wang, Y.Y.; Yu, S.L.; Ma, G.J. Comparative study of proximate composition and amino acid in farmed and wild Pseudobagrus ussuriensis muscles. Int. J. Food Sci. Technol. 2014, 49, 983–989. [Google Scholar] [CrossRef]
- Nurnadia, A.A.; Azrina, A.; Amin, I.; Mohd, Y.A.S.; Mohd, I.E.H. Mineral contents of selected marine fish and shellfish from the west coast of Peninsular Malaysia. Food Res. Int. 2013, 20, 431–437. [Google Scholar]
- Stansby, M. Chemical characteristics of fish caught in the northeast Pacific Ocean. Mar. Fish. Rev. 1976, 38, 9. [Google Scholar]
- Horn, S.S.; Sonesson, A.K.; Krasnov, A. Individual differences in EPA and DHA content of Atlantic salmon are associated with gene expression of key metabolic processes. Sci. Rep. 2019, 9, 3889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 2002, 21, 495–505. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 1991, 54, 438–463. [Google Scholar] [CrossRef]
- Zou, J.M.; Song, C.; Meng, S.L. Effects of feed on fatty acid composition in muscles and gonads of the Chinese mitten crab (Eriocheir sinensis). Oceanol. Hydrobiol. Stud. 2021, 50, 338–351. [Google Scholar] [CrossRef]
- Akpinar, N.; Akpinar, M.A.; Gorgun, S. Fatty Acid Composition and omega 3/omega 6 ratios in the muscle of wild and reared Oncorhynchus mykiss. Chem. Nat. Comp. 2015, 51, 22–25. [Google Scholar] [CrossRef]
- Turan, H. Fatty acid profile and proximate composition of the thornback ray (Raja clavata L. 1758) from the Sinop coast in the Black Sea. J. Fish. Sci. 2007, 1, 97–103. [Google Scholar] [CrossRef]
- Stancheva, M.; Merdzhanova, A.; Dobreva, D.A.; Makedonski, L. Common carp (Cyprinus caprio) and European catfish (Sillurus glanis) from the Danube river as sources of fat soluble vitamins and fatty acids. Czech J. Food Sci. 2014, 32, 16–24. [Google Scholar] [CrossRef] [Green Version]
Experimental Diets | Moisture (%) | Crude Protein (%) | Crude Lipid (%) | Ash (%) | Carbohydrate (%) | Gross Energy Values (MJ/kg) |
---|---|---|---|---|---|---|
Iced trash fish diet (XG) | 72.04 | 14.60 | 8.43 | 2.94 | 1.99 | 6.03 |
Formulated diet (FG) | 12.05 | 48.51 | 7.50 | 6.34 | 25.6 | 15.54 |
Item | Female | Male | ||||
---|---|---|---|---|---|---|
XG | FG | p-Value | XG | FG | p-Value | |
Initial weight (g) | 17.19 ± 0.72 | 16.83 ± 0.73 | 0.211 | 17.19 ± 0.72 | 16.83 ± 0.73 | 0.211 |
Final weight (g) | 89.85 ± 13.93 | 80.16 ± 13.98 | 0.359 | 71.16 ± 9.05 | 53.57 ± 11.07 | 0.115 |
Weight gain (%) | 472.7 ± 81.1 | 376.3 ± 83.0 | 0.451 | 314.0 ± 52.6 | 218.3 ± 65.8 | 0.141 |
Fullness (g/cm) | 4.89 ± 0.60 | 4.79 ± 0.24 | 0.854 | 4.13 ± 0.24 | 3.11 ± 0.98 | 0.069 |
Hepatic index (%) | 5.90 ± 0.92 | 5.54 ± 0.51 | 0.165 | 5.86 ± 0.69 | 5.54 ± 0.54 | 0.443 |
Viscera index (%) | 16.6 ± 1.6 | 16.2 ± 2.0 | 0.692 | 15.6 ± 1.7 | 13.8 ± 1.2 | 0.116 |
Item | XG | FG | p-Value |
---|---|---|---|
Moisture | 77.12 ± 0.10 | 77.13 ± 0.15 | 0.883 |
Crude protein | 20.42 ± 0.08 | 21.38 ± 0.16 | 0.001 |
Crude lipid | 1.48 ± 0.08 | 0.67 ± 0.06 | <0.001 |
Ash | 1.52 ± 0.03 | 1.67 ± 0.06 | 0.015 |
Amino Acid Items | XG | FG | p-Value |
---|---|---|---|
Threonine | 4.69 ± 0.01 | 4.67 ± 0.05 | 0.522 |
Lysine | 9.55 ± 0.05 | 9.24 ± 0.03 | 0.001 |
Isoleucine | 4.34 ± 0.09 | 4.26 ± 0.03 | 0.230 |
Leucine | 7.85 ± 0.17 | 7.80 ± 0.16 | 0.747 |
Phenylalanine | 4.15 ± 0.03 | 4.14 ± 0.04 | 0.690 |
Valine | 4.90 ± 0.05 | 4.91 ± 0.02 | 0.779 |
Methionine | 3.21 ± 0.07 | 3.19 ± 0.03 | 0.624 |
Histidine | 2.21 ± 0.01 | 2.20 ± 0.01 | 0.975 |
Arginine | 7.45 ± 0.07 | 7.48 ± 0.07 | 0.616 |
EAA | 48.35 ± 0.39 | 47.90 ± 0.41 | 0.239 |
Aspartic acid * | 10.21 ± 0.07 | 10.07 ± 0.14 | 0.201 |
Alanine * | 6.91 ± 0.31 | 6.89 ± 0.15 | 0.937 |
Glutamic acid * | 15.44 ± 0.17 | 15.06 ± 0.16 | 0.051 |
Glycine * | 6.82 ± 0.23 | 7.58 ± 0.50 | 0.075 |
Serine | 4.31 ± 0.03 | 4.33 ± 0.01 | 0.545 |
Cysteine | 0.31 ± 0.01 | 0.31 ± 0.01 | 0.731 |
Proline | 4.37 ± 0.14 | 4.68 ± 0.02 | 0.019 |
Tyrosine | 3.27 ± 0.10 | 3.18 ± 0.07 | 0.308 |
NEAA | 51.64 ± 0.37 | 52.10 ± 0.41 | 0.223 |
SAA | 39.37 ± 0.32 | 39.60 ± 0.35 | 0.450 |
Amino Acid | The FAO/WHO Score Model (mg/g pro) | AAS | The Egg Score Model (mg/g pro) | CS | ||||
---|---|---|---|---|---|---|---|---|
XG | FG | p-Value | XG | FG | p-Value | |||
Isoleucine | 40 | 0.92 ± 0.03 | 0.89 ± 0.01 | 0.244 | 54 | 0.68 ± 0.02 | 0.66 ± 0.01 | 0.244 |
Leucine | 70 | 0.95 ± 0.02 | 0.92 ± 0.01 | 0.130 | 86 | 0.77 ± 0.01 | 0.75 ± 0.01 | 0.130 |
Lysine | 55 | 1.46 ± 0.01 | 1.40 ± 0.01 | 0.045 | 70 | 1.15 ± 0.01 | 1.10 ± 0.01 | 0.045 |
Threonine | 40 | 0.98 ± 0.01 | 0.97 ± 0.02 | 0.405 | 47 | 0.83 ± 0.01 | 0.83 ± 0.01 | 0.407 |
Valine | 50 | 0.83 ± 0.01 | 0.82 ± 0.01 | 0.663 | 66 | 0.63 ± 0.01 | 0.62 ± 0.01 | 0.665 |
Methionine–cysteine | 35 | 0.85 ± 0.02 | 0.83 ± 0.02 | 0.192 | 57 | 0.52 ± 0.00 | 0.51 ± 0.01 | 0.191 |
Phenylalanine–tyrosine | 60 | 1.05 ± 0.01 | 1.02 ± 0.02 | 0.259 | 93 | 0.68 ± 0.01 | 0.66 ± 0.01 | 0.258 |
Nutrients | Fatty Acids | XG | FG | p-Value |
---|---|---|---|---|
Saturated fatty acid (SFA) | C14:0, Myristic acid | 3.39 ± 0.04 | 2.72 ± 0.01 | 0.002 |
C15:0, Pentadecanoic acid | 0.81 ± 0.02 | 0.71 ± 0.01 | 0.019 | |
C16:0, Palmitic acid | 23.07 ± 0.65 | 19.48 ± 0.01 | 0.016 | |
C17:0, Heptadecanoic acid | 0.62 ± 0.01 | 0.57 ± 0.01 | 0.029 | |
C18:0, Stearic acid | 5.91 ± 0.09 | 5.01 ± 0.02 | 0.005 | |
C20:0, Arachidic acid | — | 0.23 ± 0.01 | <0.001 | |
ΣSFA | 33.82 ± 0.65 | 28.73 ± 0.02 | 0.008 | |
Monounsaturated fatty acid (MUFA) | C16:1, Palmitoleic acid | 8.53 ± 0.27 | 7.78 ± 0.01 | 0.058 |
C18:1, Oleic Acid | 28.00 ± 0.24 | 30.59 ± 0.01 | 0.004 | |
C20:1, Eicosenoic acid | 1.37 ± 0.08 | 1.77 ± 0.01 | 0.021 | |
ΣMUFA | 37.90 ± 0.06 | 40.14 ± 0.01 | <0.001 | |
Polyunsaturated fatty acid (PUFA) | C18:2, Linoleic acid | 14.79 ± 0.12 | 15.29 ± 0.01 | 0.028 |
C18:3, Linolenic acid | 2.09 ± 0.03 | 1.94 ± 0.02 | 0.018 | |
C20:2, Eicosadienoic acid | 0.64 ± 0.04 | 0.85 ± 0.01 | 0.019 | |
C20:3, Eicosatrienoic acid | 1.02 ± 0.05 | 1.31 ± 0.01 | 0.015 | |
C20:4, Eicosatetraynoic acid | 2.85 ± 0.09 | 3.44 ± 0.01 | 0.013 | |
C20:5, Eicosapentaenoic acid EPA | 0.81 ± 0.02 | 0.80 ± 0.01 | 0.333 | |
C22:6, Docosahexaenoic acid DHA | 6.07 ± 0.24 | 7.49 ± 0.03 | 0.014 | |
ΣPUFA | 28.28 ± 0.59 | 31.13 ± 0.02 | 0.021 | |
ΣUFA | 66.18 ± 0.65 | 71.27 ± 0.03 | 0.008 | |
EPA + DHA | 6.88 ± 0.26 | 8.29 ± 0.03 | 0.017 | |
ω − 3 | 10.00 ± 0.34 | 11.54 ± 0.01 | 0.023 | |
ω − 6 | 17.65 ± 0.22 | 18.74 ± 0.01 | 0.019 | |
ω − 3/ω − 6 | 0.57 ± 0.01 | 0.61 ± 0.01 | 0.028 | |
ΣPUFA/ΣSFA | 0.84 ± 0.03 | 1.08 ± 0.01 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Lai, M.; Tian, T.; Wu, M.; Liu, Y.; Liang, P.; Huang, L.; Qin, Z.; Ye, X.; Xiao, W.; et al. Comparison of Growth Performance and Muscle Nutrition Levels of Juvenile Siniperca scherzeri Fed on an Iced Trash Fish Diet and a Formulated Diet. Fishes 2023, 8, 393. https://doi.org/10.3390/fishes8080393
Wang M, Lai M, Tian T, Wu M, Liu Y, Liang P, Huang L, Qin Z, Ye X, Xiao W, et al. Comparison of Growth Performance and Muscle Nutrition Levels of Juvenile Siniperca scherzeri Fed on an Iced Trash Fish Diet and a Formulated Diet. Fishes. 2023; 8(8):393. https://doi.org/10.3390/fishes8080393
Chicago/Turabian StyleWang, Maoyuan, Mingyong Lai, Tian Tian, Meiying Wu, Yinhua Liu, Ping Liang, Liuting Huang, Zhiqing Qin, Xiaojun Ye, Wei Xiao, and et al. 2023. "Comparison of Growth Performance and Muscle Nutrition Levels of Juvenile Siniperca scherzeri Fed on an Iced Trash Fish Diet and a Formulated Diet" Fishes 8, no. 8: 393. https://doi.org/10.3390/fishes8080393
APA StyleWang, M., Lai, M., Tian, T., Wu, M., Liu, Y., Liang, P., Huang, L., Qin, Z., Ye, X., Xiao, W., & Huang, H. (2023). Comparison of Growth Performance and Muscle Nutrition Levels of Juvenile Siniperca scherzeri Fed on an Iced Trash Fish Diet and a Formulated Diet. Fishes, 8(8), 393. https://doi.org/10.3390/fishes8080393