Causes and Consequences of Cognitive Variation in Fishes
Author Contributions
Funding
Conflicts of Interest
References
- Wootton, R.J. Ecology of Teleost Fishes, 2nd ed.; Springer: Dordrecht, The Netherlands, 1999; 386p. [Google Scholar]
- Bshary, R.R.; Wickler, W.; Fricke, H. Fish cognition: A primate’s eye view. Anim. Cogn. 2002, 5, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bshary, R.; Triki, Z. Fish ecology and cognition: Insights from studies on wild and wild-caught teleost fishes. Curr. Opin. Behav. Sci. 2022, 46, 101174. [Google Scholar] [CrossRef]
- Salena, M.G.; Turko, A.J.; Singh, A.; Pathak, A.; Hughes, E.; Brown, C. Understanding fish cognition: A review and appraisal of current practices. Anim. Cogn. 2021, 24, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Thornton, A.; Isden, J.; Madden, J.R. Toward wild psychometrics: Linking individual cognitive differences to fitness. Behav. Ecol. 2014, 25, 1299–1301. [Google Scholar] [CrossRef]
- Ashton, B.J.; Thornton, A.; Ridley, A.R. An intraspecific appraisal of the social intelligence hypothesis. Philos. Trans. R. Soc. B 2018, 373, 20170288. [Google Scholar] [CrossRef]
- Ashton, B.J.; Ridley, A.R.; Edwards, E.K.; Thornton, A. Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature 2018, 554, 364–367. [Google Scholar] [CrossRef]
- Fischer, S.; Bessert-Nettelbeck, M.; Kotrschal, A.; Taborsky, B. Rearing-group size determines social competence and brain structure in a cooperatively breeding cichlid. Am. Nat. 2015, 186, 123–140. [Google Scholar] [CrossRef]
- Kulahci, I.G.; Ghazanfar, A.A.; Rubenstein, D.I. Knowledgeable lemurs become more central in social networks. Curr. Biol. 2018, 28, 1306–1310. [Google Scholar] [CrossRef]
- Croston, R.; Kozlovsky, D.Y.; Branch, C.L.; Parchman, T.L.; Bridge, E.S.; Pravosudov, V.V. Individual variation in spatial memory performance in wild mountain chickadees from different elevations. Anim. Behav. 2016, 111, 225–234. [Google Scholar] [CrossRef]
- Kotrschal, A.; Kolm, N. Predation pressure shapes brain anatomy in the wild. Evol. Ecol. 2017, 31, 619–633. [Google Scholar] [CrossRef]
- Ashton, B.J.; Braga Goncalves, I.; Noble, D.W.A.; Whiting, M.J. Is cognitive performance under selection? Unpublished Data.
- Escaravage, V.; Prins, T.C.; Nijdam, C.; Smaal, A.C.; Peeter, J.C.H. Response of phytoplankton communities to nitrogen input reduction in mesocosm experiments. Mar. Ecol. Prog. Ser. 1999, 179, 187–199. [Google Scholar] [CrossRef]
- Wängberg, S.-Å.; Garde, K.; Gustavson, K.; Selmer, J.-S. Effects of UVB radiation on marine phytoplankton communities. J. Phytoplankt. Res. 1999, 21, 147–166. [Google Scholar] [CrossRef]
- Crossland, N.O.; La Point, T.W. The design of mesocosm experiments. Environ. Toxicol. Chem. 1992, 11, 1–4. [Google Scholar] [CrossRef]
- Fischer, P.; Öhl, U. Effects of water-level fluctuations on the littoral benthic fish community in lakes: A mesocosm experiment. Behav. Ecol. 2005, 16, 741–746. [Google Scholar] [CrossRef]
- Wacker, S.; Mobley, K.; Forsgren, E.; Myhre, L.C.; De Jong, K.; Amundsen, T. Operational sex ratio but not density affects sexual selection in a fish. Evolution 2013, 67, 1937–1949. [Google Scholar] [CrossRef]
- Gatto, E.; Santaca, M.; Verza, I.; Dadda, M.; Bisazza, A. Automated operant conditioning devices for fish. Do they work? Animals 2021, 11, 1397. [Google Scholar] [CrossRef]
- Ajuwon, V.; Cruz, B.F.; Carriço, P.; Champalimaud Research Scientific Hardware Platform; Kacelnik, A.; Monteiro, T. GoFish: A low-cost, open-source platform for closed-loop behavioural experiments on fish. Behav. Res. Methods 2023. [Google Scholar] [CrossRef]
- Guilbeault, N.C.; Guerguiev, J.; Martin, M.; Tate, I.; Thiele, T.R. BonZeb: Open-source, modular software tools for high-resolution zebrafish tracking and analysis. Sci. Rep. 2021, 11, 8148. [Google Scholar] [CrossRef]
- Varela, S.A.M.; Teles, M.C.; Oliveira, R.F. The correlated evolution of social competence and social cognition. Funct. Ecol. 2020, 34, 332–343. [Google Scholar] [CrossRef]
- Aellen, M.; Burkart, J.M.; Bshary, R. No evidence for general intelligence in a fish. Ethology 2022, 128, 424–436. [Google Scholar] [CrossRef]
- La Loggia, O.; Rüfenacht, A.; Taborsky, B. Fish can infer relations between colour cues in a non-social learning task. Biol. Lett. 2022, 18, 20220321. [Google Scholar] [CrossRef] [PubMed]
- Grosenick, L.; Clement, T.S.; Fernald, R.D. Fish can infer social rank by observation alone. Nature 2007, 445, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Hotta, T.; Takeyama, T.; Heg, D.; Awata, S.; Jordan, L.A.; Kohda, M. The use of multiple sources of social information in contest behavior: Testing the social cognitive abilities of a cichlid fish. Front. Ecol. Evol. 2015, 3, 85. [Google Scholar] [CrossRef]
- Jungwirth, A.; Walker, J.; Taborsky, M. Prospecting precedes dispersal and increases survival chances in cooperatively breeding cichlids. Anim. Behav. 2015, 106, 107–114. [Google Scholar] [CrossRef]
- Reyes-Contreras, M.; Taborsky, B. Stress axis programming generates long-term effects on cognitive abilities in a cooperative breeder. Proc. R. Soc. Lond. Ser. B 2022, 289, 20220117. [Google Scholar] [CrossRef]
- Reyes-Contreras, M.; Glauser, G.; Rennison, D.J.; Taborsky, B. Early-life manipulation of cortisol and its receptor alters stress axis programming and social competence. Philos. Trans. R. Soc. B-Biol. Sci. 2019, 374, 20180119. [Google Scholar] [CrossRef]
- Kohda, M.; Hotta, T.; Takeyama, T.; Awata, S.; Tanaka, H.; Asai, J.; Jordan, A.L. If a fish can pass the mark test, what are the implications for consciousness and self- awareness testing in animals? PLoS Biol. 2019, 17, e3000021. [Google Scholar] [CrossRef]
- Kohda, M.; Sogawa, S.; Jordan, A.L.; Kubo, N.; Awata, S.; Satoh, S.; Kobayashi, T.; Fujita, A.; Bshary, R. Further evidence for the capacity of mirror self-recognition in cleaner fish and the significance of ecologically relevant marks. PLoS Biol. 2022, 20, e3001529. [Google Scholar] [CrossRef]
- Kohda, M.; Bshary, R.; Kubo, N.; Awata, S.; Sowersby, W.; Kawasaka, K.; Kobayashi, T.; Sogawa, S. Cleaner fish recognize self in a mirror via self-face recognition like humans. Proc. Natl. Acad. Sci. USA 2023, 120, e2208420120. [Google Scholar] [CrossRef]
- De Waal, F.B.M. Fish, mirrors, and a gradualist perspective on self-awareness. PLoS Biol. 2019, 17, e3000112. [Google Scholar] [CrossRef]
- Chojnacka, D.; Isler, K.; Barski, J.J.; Bshary, R. Relative brain and brain part sizes provide only limited evidence that Machiavellian behaviour in cleaner wrasse is cognitively demanding. PLoS ONE 2020, 10, e0135373. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braga Goncalves, I.; Ashton, B.J.; Fischer, S. Causes and Consequences of Cognitive Variation in Fishes. Fishes 2023, 8, 277. https://doi.org/10.3390/fishes8060277
Braga Goncalves I, Ashton BJ, Fischer S. Causes and Consequences of Cognitive Variation in Fishes. Fishes. 2023; 8(6):277. https://doi.org/10.3390/fishes8060277
Chicago/Turabian StyleBraga Goncalves, Ines, Benjamin J. Ashton, and Stefan Fischer. 2023. "Causes and Consequences of Cognitive Variation in Fishes" Fishes 8, no. 6: 277. https://doi.org/10.3390/fishes8060277
APA StyleBraga Goncalves, I., Ashton, B. J., & Fischer, S. (2023). Causes and Consequences of Cognitive Variation in Fishes. Fishes, 8(6), 277. https://doi.org/10.3390/fishes8060277