Parentage Analysis Reveals Unequal Family Sizes during Hatchery Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Laboratory Techniques
2.3. Sex Identification
2.4. Parentage Analysis
2.5. Genetic Diversity Comparison between Hatchery- and Wild-Produced Offspring
3. Results
3.1. Sex Identification
3.2. Hatchery-Produced Offspring
3.3. Wild-Produced Larvae
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, M.J. Selection in captivity during supportive breeding may reduce fitness in the wild. Conserv. Biol. 2002, 16, 815–825. [Google Scholar] [CrossRef]
- Crossman, J.A.; Scribner, K.T.; Yen, D.T.; Davis, C.A.; Forsythe, P.S.; Baker, E.A. Gamete and larval collection methods and hatchery rearing environments affect levels of genetic diversity in early life stages of lake sturgeon (Acipenser fulvescens). Aquaculture 2011, 310, 312–324. [Google Scholar] [CrossRef]
- Flagg, T.A.; Nash, C.F. A Conceptual Framework for Conservation Hatchery Strategies for Pacific Salmonids; NOAA Technical Memorandum NMFS-NWFSC-38; U.S. Department of Commerce, National Oceanic and Atmospheric Administration: Washington, DC, USA, 1999; 54p.
- Fiumera, A.C.; Porter, B.A.; Looney, G.; Asmussen, M.A.; Avise, J.C. Maximizing offspring production while maintaining genetic diversity in supplemental breeding programs of highly fecund managed species. Conserv. Biol. 2004, 18, 94–101. [Google Scholar] [CrossRef]
- Engström, G.; McMillan, I.; McKay, L.; Quinton, M. Comparison of mating systems in a fish population: A simulation study. J. Anim. Breed. Genet. 1996, 113, 559–566. [Google Scholar] [CrossRef]
- Dupont-Nivet, M.; Vandeputte, M.; Haffray, P.; Chevassus, B. Effect of different mating designs on inbreeding, genetic variance and response to selection when applying individual selection in fish breeding programs. Aquaculture 2006, 252, 161–170. [Google Scholar] [CrossRef]
- Busack, C.; Knudsen, C.M. Using factorial mating designs to increase the effective number of breeders in fish hatcheries. Aquaculture 2007, 273, 24–32. [Google Scholar] [CrossRef]
- Ryman, N.; Laikre, L. Effects of supportive breeding on the genetically effective population size. Conserv. Biol. 1991, 5, 325–329. [Google Scholar] [CrossRef]
- Moyer, G.R.; Blouin, M.S.; Banks, M.A. The influence of family-correlated survival on Nb/N for progeny from integrated multi-and single-generation hatchery stocks of coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 2007, 64, 1258–1265. [Google Scholar] [CrossRef]
- Holtgren, J.M.; Ogren, S.A.; Paquet, A.J.; Fajfer, S. Design of a portable streamside rearing facility for lake sturgeon. N. Am. J. Aquacult. 2007, 69, 317–323. [Google Scholar] [CrossRef]
- Campton, D.E. Genetic effects of hatchery fish on wild populations of Pacific salmon and steelhead: What do we really know? Am. Fish. Soc. Symp. 1995, 15, 337–353. [Google Scholar]
- Currens, K.P.; Busack, C.A. A framework for assessing genetic vulnerability. Fisheries 1995, 20, 24–31. [Google Scholar] [CrossRef]
- Welsh, A.B.; Elliott, R.F.; Scribner, K.T.; Quinlan, H.R.; Baker, E.A.; Eggold, B.T.; Holtgren, J.M.; Krueger, C.C.; May, B. Genetic guidelines for the stocking of lake sturgeon (Acipenser fulvescens) in the Great Lakes basin. In Great Lakes Fishery Commission Miscellaneous Publication 2010-01; Great Lakes Fishery Commission: Ann Arbor, MI, USA, 2010; 62p. [Google Scholar]
- May, B.; Krueger, C.C.; Kincaid, H.L. Genetic variation at microsatellite loci in sturgeon: Primer sequence homology in Acipenser and Scaphirhynchus. Can. J. Fish. Aquat. Sci. 1997, 54, 1542–1547. [Google Scholar] [CrossRef]
- King, T.L.; Lubinski, B.A.; Spidle, A.P. Microsatellite DNA variation in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplification in the Acipenseridae. Conserv. Genet. 2001, 2, 103–119. [Google Scholar] [CrossRef]
- McQuown, E.C.; Gall, G.A.E.; May, B. Characterization and inheritance of six microsatellite loci in lake sturgeon. T. Am. Fish. Soc. 2002, 131, 299–307. [Google Scholar] [CrossRef]
- Welsh, A.; Blumberg, M.; May, B. Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon. A. medirostris. Mol. Ecol. Notes 2003, 3, 47–55. [Google Scholar] [CrossRef]
- Estep, K.; VanDeHey, J.; Raabe, J.; Schmalz, P.; Wilfond, D.; Piszczeck, P.; Borkholder, B. Genetic origins and diversity of lake sturgeon in the St. Louis River estuary. J. Great Lakes Res. 2020, 46, 1028–1035. [Google Scholar] [CrossRef]
- Kuhl, H.; Guiguen, Y.; Höhne, C.; Kreuz, E.; Du, K.; Klopp, C.; Lopez-Roques, C.; Yebra-Pimentel, E.S.; Ciorpac, M.; Gessner, J.; et al. A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Philos. T. R. Soc. B 2021, 376, 20200089. [Google Scholar] [CrossRef]
- Scribner, K.T.; Kanefsky, J. Molecular sexing of lake sturgeon. J. Great Lakes Res. 2021, 47, 934–936. [Google Scholar] [CrossRef]
- Marshall, T.C.; Slate, J.; Kruuk, L.E.B.; Pemberton, J.M. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 1998, 7, 639–655. [Google Scholar] [CrossRef]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Santure, A. Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 2009, 181, 1579–1594. [Google Scholar] [CrossRef] [PubMed]
- Jones, O.R.; Wang, J. COLONY: A program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 2010, 10, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Goudet, J. FSTAT (ver. 2.9.4), a Program to Estimate and Test Population Genetics Parameters. 2003. Available online: http://https://www2.unil.ch/popgen/softwares/fstat.htm (accessed on 21 February 2023).
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. 2005, 1, 47–50. [Google Scholar] [CrossRef]
- Serbezov, D.; Bernatchez, L.; Olsen, E.M.; Vøllestad, L.A. Mating patterns and determinants of individual reproductive success in brown trout (Salmo trutta) revealed by parentage analysis of an entire stream living population. Mol. Ecol. 2010, 19, 3193–3205. [Google Scholar] [CrossRef]
- Thompson, N.F.; Clemens, B.J.; Ketchum, L.L.; Simpson, P.C.; Reagan, R.E.; Blouin, M.S. Family influence on length at release and size-biased survival post release in hatchery-reared steelhead: A mechanism to explain how genetic adaptation to captivity occurs. Aquaculture 2018, 491, 135–146. [Google Scholar] [CrossRef]
- Blouin, M.S.; Wrey, M.C.; Bollmann, S.R.; Skaar, J.C.; Twibell, R.G.; Fuentes, C. X Offspring of first-generation hatchery steelhead trout (Oncorhynchus mykiss) grow faster in the hatchery than offspring of wild fish, but survive worse in the wild: Possible mechanisms for inadvertent domestication and fitness loss in hatchery salmon. PLoS ONE 2018, 16, e0257407. [Google Scholar] [CrossRef]
- Thompson, N.F.; Blouin, M.S. The effects of high rearing density on the potential for domestication selection in hatchery culture of steelhead (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 2015, 72, 1829–1834. [Google Scholar] [CrossRef]
- Evans, M.L.; Neff, B.D.; Heath, D.D. Behavioural and genetic analyses of mate choice and reproductive success in two Chinook salmon populations. Can. J. Fish. Aquat. Sci. 2013, 70, 263–270. [Google Scholar] [CrossRef]
- Whitcomb, A.C.; Banks, M.A.; O’Malley, K.G. Influence of immune-relevant genes on mate choice and reproductive success in wild-spawning hatchery-reared and wild-born coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 2014, 71, 1000–1009. [Google Scholar] [CrossRef]
- Fleming, I.A. Pattern and variability in the breeding system of Atlantic salmon (Salmo salar), with comparisons to other salmonids. Can. J. Fish. Aquat. Sci. 1998, 55, 59–76. [Google Scholar] [CrossRef]
- Ford, M.J.; Murdoch, A.R.; Hughes, M.S.; Seamons, T.R.; LaHood, E.S. Broodstock history strongly influences natural spawning success in hatchery steelhead (Oncorhynchus mykiss). PLoS ONE 2016, 11, e0164801. [Google Scholar] [CrossRef] [PubMed]
- Thorstensen, M.; Bates, P.; Lepla, K.; Schreier, A. To breed or not to breed? Maintaining genetic diversity in white sturgeon supplementation programs. Conserv. Genet. 2019, 20, 997–1007. [Google Scholar] [CrossRef]
- Bruch, R.M.; Binkowski, F.P. Spawning behavior of lake sturgeon (Acipenser fulvescens). J. Appl. Ichthyol. 2002, 18, 570–579. [Google Scholar] [CrossRef]
- Allendorf, F.W.; Funk, W.C.; Aitken, S.N.; Byrne, M.; Luikart, G. Conservation and the Genomics of Populations, 3rd ed.; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Lande, R. Genetics and demography in biological conservation. Science 1988, 241, 1455–1460. [Google Scholar] [CrossRef] [PubMed]
- Hay-Chmielewski, E.M.; Whelan, G.E. Lake sturgeon rehabilitation strategy. Mich. Dep. Nat. Resour. Fish. Div. Spec. Rep. 1997, 18, 1–51. [Google Scholar]
- Hayes, D.B.; Caroffino, D.C. Michigan’s lake sturgeon rehabilitation strategy. Mich. Dep. Nat. Resour. Fish. Div. Spec. Rep. 2012, 62, 1–26. [Google Scholar]
Year | Family Group | Male | X2 | p-Value | ||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||
2017 | 2 | 33 | 5 | 31 | 31 | N/A | 21.44 | 8.53 × 10−5 |
2017 | 3 | 21 | 36 | 2 | 19 | N/A | 29.79 | 1.52 × 10−6 |
2017 | 4 | 35 | 33 | 2 | 19 | N/A | 31.40 | 6.99 × 10−7 |
2017 | 5 | 35 | 38 | 18 | 8 | N/A | 24.52 | 1.95 × 10−5 |
2017 | 6 | 23 | 24 | 5 | 10 | N/A | 13.63 | 0.001 |
2017 | 7 | 12 | 8 | 51 | 26 | N/A | 46.71 | 4.00 × 10−10 |
2017 | 8 | 6 | 30 | 36 | 27 | N/A | 20.64 | 0.0001 |
2017 | 9 | 44 | 10 | 24 | 22 | N/A | 23.84 | 2.70 × 10−5 |
2017 | 10 | 22 | 19 | 7 | 50 | N/A | 40.53 | 8.22 × 10−9 |
2018 | 1 | 34 | 7 | 3 | 28 | 11 | 50.05 | 4.70 × 10−9 |
N | Nb | Allelic Richness | Observed Heterozygosity | |
---|---|---|---|---|
Hatchery–2017 | 862 | 38 (34–42) | 4.33 | 0.548 |
Hatchery–2018 | 84 | 3 (2–12) | 3.25 | 0.543 |
Wild-produced | 675 | 127 (110–147) | 4.75 | 0.538 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akers, M.; Quinlan, H.; Johnson, A.; Baker, E.; Welsh, A. Parentage Analysis Reveals Unequal Family Sizes during Hatchery Production. Fishes 2023, 8, 140. https://doi.org/10.3390/fishes8030140
Akers M, Quinlan H, Johnson A, Baker E, Welsh A. Parentage Analysis Reveals Unequal Family Sizes during Hatchery Production. Fishes. 2023; 8(3):140. https://doi.org/10.3390/fishes8030140
Chicago/Turabian StyleAkers, Mary, Henry Quinlan, Andrew Johnson, Edward Baker, and Amy Welsh. 2023. "Parentage Analysis Reveals Unequal Family Sizes during Hatchery Production" Fishes 8, no. 3: 140. https://doi.org/10.3390/fishes8030140
APA StyleAkers, M., Quinlan, H., Johnson, A., Baker, E., & Welsh, A. (2023). Parentage Analysis Reveals Unequal Family Sizes during Hatchery Production. Fishes, 8(3), 140. https://doi.org/10.3390/fishes8030140