Review on the Antiviral Organic Agents against Fish Rhabdoviruses
Abstract
:1. Introduction
2. Antiviral Organic Agents against Fish Rhabdoviruses
2.1. Anti-Fish Rhabdovirus Mixtures Extracted from Different Organisms
2.2. Antiviral Proteins
Virus Strain. | Design of Trial | Antiviral Agent | Antiviral Effects | References |
---|---|---|---|---|
IHNV | In vitro | Fish interferon | IFN-induced cytokines | [30] |
SVCV | In vitro | Black carp TBK1 | Involve in the antiviral innate immune response | [31] |
VHSV | In vitro | Rainbow trout IFIT5 | Implicate in the antiviral immune response of RBCs | [32] |
VHSV | In vitro | Rainbow trout NKEF | Involve in the antiviral immune response of RBCs | [33] |
VHSV | In vitro | Rockfish viperin | Enervate virus transcription and replication | [34] |
VHSV/HIRRV | In vitro | Japanese flounder Mx | Block the transcription of viral subgenomic mRNAs | [36] |
VHSV | In vitro | Gilthead seabream Mx isoforms | Inhibit virus replication but no synergistic effects | [37] |
SVCV | In vitro, in vivo | Carp CMPK2 | IFN-stimulated gene against SVCV infection | [38] |
SCRV | In vitro | Spotted scat hepcidin | Reduce cytopathic effect | [39] |
SVCV | In vitro | Turbot NK-Lysin Peptide | Inhibit viral particles binding, the fusion of virus and cell membranes | [40] |
SVCV | In vivo | Zebrafish CRP1-7 | Block autophagy through interactions with cell membrane cholesterol | [41] |
SVCV | In vitro | Zebrafish GPBAR1 | Activate RLR signaling pathway and induce the production of ISGs | [42] |
VHSV | In vitro | Human neutrophil peptide 1 (HNP1) | Interfere with G protein-dependent fusion/ up-regulate genes related to the IFN response | [43] |
IHNV | In vitro, in vivo | Bovine caseins | Reduce the infective titer | [44] |
VHSV | In vitro | Melittin loaded-immunoliposomes | Direct inactivation of the virus/ inhibit virus infectivity | [45] |
VHSV | In vitro | Commercially available protease-Neutrase® | Reduce the virus titer | [46] |
2.3. Antiviral Nucleic Acids
Virus Strain | Design of Trial | Antiviral Agent | Antiviral Effects | References |
---|---|---|---|---|
HIRRV | In vitro | RNA aptamers | Decrease of cytopathic effect | [47] |
VHSV | In vitro, in vivo | RNA aptamers | Decrease of cytopathic effect and growth | [48] |
SCRV | In vitro | siRNAs to N gene | Inhibit N gene expression | [49] |
SVCV | In vitro | siRNAs to N/P genes | Inhibit N/P gene expression | [50] |
SVCV | In vitro | siRNAs to L gene | Inhibit L gene expression | [51] |
2.4. Antiviral Lipids and Polysaccharides
Virus Strain | Design of Trial | Antiviral Agent | Antiviral Effects | References |
---|---|---|---|---|
SVCV | In vivo | Palmitic acid | Inhibit autophagic flux | [52] |
VHSV | In vitro, in vivo | α-Lipoic acid | Promote upregulation of antiviral genes and suppress oxidative stress | [53] |
SVCV | In vitro, in vivo | Zebrafish 25-hydroxycholesterol | Reduce mortality after virus challenge/inhibit viral replication | [54] |
IHNV | In vitro | Crude polysaccharide derived from seaweed | Involve in preventing viral attachment and release | [55] |
SVCV | In vitro, in vivo | Lactobacillus rhamnosus GCC-3 exopolysaccharides | Upregulate the expression of genes related to IFN antiviral immunity | [56] |
2.5. Coumarin Derivatives
2.6. Arctigenin Derivatives
2.7. Other Antiviral Ingredients
Virus Strain | Design of Trial | Antiviral Agent | Antiviral Effects | References |
---|---|---|---|---|
VHSV | In vitro | Ribavirin | Decrease viral transcription | [76] |
IHNV | In vitro | Ribavirin | Inhibit apoptosis/damage to the viral particle of IHNV | [77] |
VHSV | In vitro | Mycophenolic acid | Reduce virus titer/inhibit viral protein synthesis | [78] |
VHSV | In vitro | Dexamethasone | Inhibit HSP90α expression | [79] |
SVCV | In vitro, in vivo | Anisomycin (Ani) | Inhibit viral gene expression | [80] |
MSRV | In vitro, in vivo | 8-hydroxyquinoline | Reduce the cytopathic effect/decrease viral nucleoprotein expression | [81] |
VHSV | In vitro | Curcumin | Suppress viral entry via the rearrangement of the F-actin/G-actin ratio via downregulating HSC71 | [83] |
IHNV/VHSV | In vitro | Flavonoids isolated from Rhus verniciflua | Not associated with direct virucidal effects | [84] |
IHNV | In vitro, in vivo | Rhodanine derivative (LJ001) | Inhibit virus–cell membrane fusion during viral entry | [85] |
SVCV | In vitro, in vivo | Phenylpropanoid derivative (E2) | Decline the apoptosis/block the post-entry transport process of the virus | [86] |
VHSV | In vitro | N, N’-disubstituted 2,5-piperazinediones | Impair virus assembly/release | [87] |
IHNV | In vitro, in vivo | Ursolic acid from Prunella vulgaris L. | Decrease the viral titer/inhibits viral gene expression | [88] |
SVCV | In vitro | Bavachi | Block cell apoptosis/inhibit viral gene expression | [89] |
SVCV | In vitro, in vivo | β-glucan | Activate IFN signal pathway and innate immune response | [90] |
SVCV | In vitro, in vivo | Dihydroartemisinin (DHA) | Affect early-stage viral replication/ stimulate the host innate immune | [92] |
SVCV | In vitro, in vivo | (S, S)-(+)-tetrandrine (TET) | Interfere with SVCV entry/stimulate the host innate immune response | [92] |
3. Perspectives and Outlook
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gómez, B.; Munekata, P.E.; Zhu, Z.; Barba, F.J.; Toldrá, F.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Challenges and opportunities regarding the use of alternative protein sources: Aquaculture and insects. Adv. Food Nutr. Res. 2019, 89, 259–295. [Google Scholar] [CrossRef] [PubMed]
- Colgrave, M.L.; Dominik, S.; Tobin, A.B.; Stockmann, R.; Simon, C.; Howitt, C.A.; Belobrajdic, D.P.; Paull, C.; Vanhercke, T. Perspectives on Future Protein Production. J. Agric. Food Chem. 2021, 69, 15076–15083. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Sheikh Abdullah, S.R.; Hasan, H.A.; Othman, A.R.; Ismail, N. Aquaculture industry: Supply and demand, best practices, effluent and its current issues and treatment technology. J. Environ. Manag. 2021, 287, 112271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Gui, J.-F. Virus genomes and virus-host interactions in aquaculture animals. Sci. China Life Sci. 2015, 58, 156–169. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Ding, N.-Z.; He, C.-Q. Novirhabdoviruses versus fish innate immunity: A review. Virus Res. 2021, 304, 198525. [Google Scholar] [CrossRef]
- Perchun, A.V.; Pavlov, D.K.; Melnikov, V.P.; Antonychev, A.A.; Zinyakov, N.G.; Korennoy, F.I.; Moroz, N.V.; Chvala, I.A.; Metlin, A.E. Genetic characteristics of spring viraemia of carp virus strains Kirov/08 and Orenburg/14. Arch. Virol. 2022, 167, 681–685. [Google Scholar] [CrossRef]
- Sandlund, N.; Johansen, R.; Fiksdal, I.U.; Einen, A.C.B.; Modahl, I.; Gjerset, B.; Bergh, Ø. Susceptibility and Pathology in Juvenile Atlantic Cod Gadus morhua to a Marine Viral Haemorrhagic Septicaemia Virus Isolated from Diseased Rainbow Trout Oncorhynchus mykiss. Animals 2021, 11, 3523. [Google Scholar] [CrossRef]
- Kim, S.-S.; Kim, K.-I.; Yoo, H.-K.; Han, Y.-S.; Jegal, M.-E.; Byun, S.-G.; Lim, H.-J.; Park, J.-S.; Kim, Y.-J. Differential virulence of infectious hematopoietic necrosis virus (IHNV) isolated from salmonid fish in Gangwon Province, Korea. Fish Shellfish. Immunol. 2021, 119, 490–498. [Google Scholar] [CrossRef]
- Li, C.; Shi, L.; Gao, Y.; Lu, Y.; Ye, J.; Liu, X. HSC70 Inhibits Spring Viremia of Carp Virus Replication by Inducing MARCH8-Mediated Lysosomal Degradation of G Protein. Front. Immunol. 2021, 12, 724403. [Google Scholar] [CrossRef]
- Seong, M.S.; Jang, E.A.; Kim, J.; Kim, W.-J.; Cheong, J. A single amino acid variation of NV protein of viral hemorrhagic septicemia virus increases protein stability and decreases immune gene expression. Fish Shellfish. Immunol. 2021, 116, 84–90. [Google Scholar] [CrossRef]
- Liu, J.; Pham, P.H.; Wootton, S.K.; Bols, N.C.; Lumsden, J.S. VHSV IVb infection and autophagy modulation in the rainbow trout gill epithelial cell line RTgill-W1. J. Fish Dis. 2020, 43, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Ming, Y.; Li, C.; Niu, Y.; Lin, Q.; Liu, L.; Liang, H.; Huang, Z.; Li, N. Siniperca chuatsi rhabdovirus (SCRV) induces autophagy via PI3K/Akt-mTOR pathway in CPB cells. Fish Shellfish. Immunol. 2020, 102, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Batts, W.N.; Landolt, M.L.; Winton, J.R. Inactivation of Infectious Hematopoietic Necrosis Virus by Low Levels of Iodine. Appl. Environ. Microbiol. 1991, 57, 1379–1385. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.-Y.; Lei, X.-Y.; Zhang, Q.-Y. The antiviral defense mechanisms in mandarin fish induced by DNA vaccination against a rhabdovirus. Vet. Microbiol. 2012, 157, 264–275. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, C.; Li, Y.; Zhang, P.; Chen, G.; Wang, G.; Zhu, B. Immersion immunization of common carp with bacterial ghost-based DNA vaccine inducing prophylactic protective immunity against spring viraemia of carp virus. J. Fish Dis. 2021, 44, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhang, C.; Li, Y.; Chen, G.; Wang, G.; Zhu, B. Optimization of immunization procedure for SWCNTs-based subunit vaccine with mannose modification against spring viraemia of carp virus in common carp. J. Fish Dis. 2021, 44, 1925–1936. [Google Scholar] [CrossRef]
- Duan, H.; Zhao, Z.; Jin, Y.; Wang, Z.; Deng, J.; He, J.; Zhu, B. PEG-modified subunit vaccine encoding dominant epitope to enhance immune response against spring viraemia of carp virus. J. Fish Dis. 2021, 44, 1587–1594. [Google Scholar] [CrossRef]
- Long, A.; Richard, J.; Hawley, L.; LaPatra, S.E.; Garver, K.A. Transmission potential of infectious hematopoietic necrosis virus in APEX-IHN®-vaccinated Atlantic salmon. Dis. Aquat. Org. 2017, 122, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Tadese, D.A.; Song, C.; Sun, C.; Liu, B.; Zhou, Q.; Xu, P.; Ge, X.; Liu, M.; Xu, X.; Tamiru, M.; et al. The role of currently used medicinal plants in aquaculture and their action mechanisms: A review. Rev. Aquac. 2022, 14, 816–847. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Y.; Zhu, R.; Wu, Y.; Liu, X.; Wang, X. Red elemental selenium (Se0) improves the immunoactivities of EPC cells, crucian carp and zebrafish against spring viraemia of carp virus. J. Fish Biol. 2021, 98, 208–218. [Google Scholar] [CrossRef]
- Kamei, Y.; Aoki, M. A chlorophyll c2 analogue from the marine brown alga Eisenia bicyclis inactivates the infectious hematopoietic necrosis virus, a fish rhabdovirus. Arch. Virol. 2007, 152, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Fabregas, J.; Garcίa, D.; Fernandez-Alonso, M.; Rocha, A.; Gómez-Puertas, P.; Escribano, J.; Otero, A.; Coll, J. In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antivir. Res. 1999, 44, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Kim, S.R.; Oh, M.-J.; Jung, S.-J.; Kang, S.Y. In Vitro antiviral activity of red alga, Polysiphonia morrowii extract and its bromophenols against fish pathogenic infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus. J. Microbiol. 2011, 49, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-R.; Munang’Andu, H.M.; Yeo, I.-K.; Kim, S.-H. Bacillus subtilis Inhibits Viral Hemorrhagic Septicemia Virus Infection in Olive Flounder (Paralichthys Olivaceus) Intestinal Epithelial Cells. Viruses 2020, 13, 28. [Google Scholar] [CrossRef]
- Yang, H.-K.; Jung, M.-H.; Avunje, S.; Nikapitiya, C.; Kang, S.Y.; Ryu, Y.B.; Lee, W.S.; Jung, S.-J. Efficacy of algal Ecklonia cava extract against viral hemorrhagic septicemia virus (VHSV). Fish Shellfish. Immunol. 2018, 72, 273–281. [Google Scholar] [CrossRef]
- Park, Y.J.; Moon, C.; Kang, J.-H.; Choi, T.-J. Antiviral effects of extracts from Celosia cristata and Raphanus sativus roots against viral hemorrhagic septicemia virus. Arch. Virol. 2017, 162, 1711–1716. [Google Scholar] [CrossRef]
- Micol, V.; Caturla, N.; Perez-Fons, L.; Mas, V.; Perez, L.; Estepa, A. The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antivir. Res. 2005, 66, 129–136. [Google Scholar] [CrossRef]
- Sivasankar, P.; Anix Vivek Santhiya, A.; Kanaga, V. A review on plants and herbal extracts against viral diseases in aquaculture. J. Med. Plants Stud. 2015, 3, 75–79. [Google Scholar]
- Levy, D.E. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev. 2001, 12, 143–156. [Google Scholar] [CrossRef]
- Saint-Jean, S.R.; Pérez-Prieto, S.I. Interferon mediated antiviral activity against salmonid fish viruses in BF-2 and other cell lines. Vet. Immunol. Immunopathol. 2006, 110, 1–10. [Google Scholar] [CrossRef]
- Yan, C.; Xiao, J.; Li, J.; Chen, H.; Liu, J.; Wang, C.; Feng, C.; Feng, H. TBK1 of black carp plays an important role in host innate immune response against SVCV and GCRV. Fish Shellfish. Immunol. 2017, 69, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Chico, V.; Salvador-Mira, M.E.; Nombela, I.; Puente, S.; Ciordia, S.; Mena, M.C.; Perez, L.; Coll, J.; Guzman, F.; Encinar, J.A.; et al. IFIT5 Participates in the Antiviral Mechanisms of Rainbow Trout Red Blood Cells. Front. Immunol. 2019, 10, 613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chico, V.; Salvador-Mira, M.E.; Nombela, I.; Puente-Marin, S.; Perez, L.; Mercado, L.; Ortega-Villaizan, M.D.M. Antiviral Function of NKEF against VHSV in Rainbow Trout. Biology 2021, 10, 1045. [Google Scholar] [CrossRef] [PubMed]
- Shanaka, K.; Tharuka, M.N.; Priyathilaka, T.T.; Lee, J. Molecular characterization and expression analysis of rockfish (Sebastes schlegelii) viperin, and its ability to enervate RNA virus transcription and replication in vitro. Fish Shellfish. Immunol. 2019, 92, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Verhelst, J.; Hulpiau, P.; Saelens, X. Mx Proteins: Antiviral Gatekeepers That Restrain the Uninvited. Microbiol. Mol. Biol. Rev. 2013, 77, 551–566. [Google Scholar] [CrossRef] [Green Version]
- Caipang, C.M.A.; Hirono, I.; Aoki, T. In vitro inhibition of fish rhabdoviruses by Japanese flounder, Paralichthys olivaceus Mx. Virology 2003, 317, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Trujillo, M.; García-Rosado, E.; Alonso, M.; Álvarez, M.; Béjar, J. Synergistic effects in the antiviral activity of the three Mx proteins from gilthead seabream (Sparus aurata). Vet. Immunol. Immunopathol. 2015, 168, 83–90. [Google Scholar] [CrossRef]
- Liu, W.; Chen, B.; Li, C.; Yao, J.; Liu, J.; Kuang, M.; Wang, F.; Wang, Y.; Elkady, G.; Lu, Y.; et al. Identification of fish CMPK2 as an interferon stimulated gene against SVCV infection. Fish Shellfish. Immunol. 2019, 92, 125–132. [Google Scholar] [CrossRef]
- Gui, L.; Zhang, P.; Zhang, Q.; Zhang, J. Two hepcidins from spotted scat (Scatophagus argus) possess antibacterial and antiviral functions in vitro. Fish Shellfish. Immunol. 2016, 50, 191–199. [Google Scholar] [CrossRef]
- Falco, A.; Medina-Gali, R.M.; Poveda, J.A.; Bello-Perez, M.; Novoa, B.; Encinar, J.A. Antiviral Activity of a Turbot (Scophthalmus maximus) NK-Lysin Peptide by Inhibition of Low-pH Virus-Induced Membrane Fusion. Mar. Drugs 2019, 17, 87. [Google Scholar] [CrossRef] [Green Version]
- Bello-Perez, M.; Pereiro, P.; Coll, J.; Novoa, B.; Perez, L.; Falco, A. Zebrafish C-reactive protein isoforms inhibit SVCV replication by blocking autophagy through interactions with cell membrane cholesterol. Sci. Rep. 2020, 10, 566. [Google Scholar] [CrossRef] [PubMed]
- Xiong, F.; Cao, L.; Wu, X.M.; Chang, M.X. The function of zebrafish gpbar1 in antiviral response and lipid metabolism. Dev. Comp. Immunol. 2021, 116, 103955. [Google Scholar] [CrossRef] [PubMed]
- Falco, A.; Mas, V.; Tafalla, C.; Perez, L.; Coll, J.; Estepa, A. Dual antiviral activity of human alpha-defensin-1 against viral haemorrhagic septicaemia rhabdovirus (VHSV): Inactivation of virus particles and induction of a type I interferon-related response. Antivir. Res. 2007, 76, 111–123. [Google Scholar] [CrossRef]
- Saint-Jean, S.R.; Heras, A.D.L.; Carrillo, W.; Recio, I.; Ortiz-Delgado, J.B.; Ramos, M.; Gomez-Ruiz, J.A.; Sarasquete, C.; Pérez-Prieto, S.I. Antiviral activity of casein and αs2casein hydrolysates against the infectious haematopoietic necrosis virus, a rhabdovirus from salmonid fish. J. Fish Dis. 2013, 36, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Falco, A.; Barrajón-Catalán, E.; Menéndez-Gutiérrez, M.P.; Coll, J.; Micol, V.; Estepa, A. Melittin-loaded immunoliposomes against viral surface proteins, a new approach to antiviral therapy. Antivir. Res. 2013, 97, 218–221. [Google Scholar] [CrossRef]
- Amtmann, A.; Ahmed, I.; Zahner-Rimmel, P.; Mletzko, A.; Jordan, L.K.; Oberle, M.; Wedekind, H.; Christian, J.; Bergmann, S.M.; Becker, A.M. Virucidal effects of various agents-including protease-against koi herpesvirus and viral haemorrhagic septicaemia virus. J. Fish Dis. 2020, 43, 185–195. [Google Scholar] [CrossRef]
- Hwang, S.D.; Midorikawa, N.; Punnarak, P.; Kikuchi, Y.; Kondo, H.; Hirono, I.; Aoki, T. Inhibition of hirame rhabdovirus growth by RNA aptamers. J. Fish Dis. 2012, 35, 927–934. [Google Scholar] [CrossRef]
- Punnarak, P.; Santos, M.D.; Hwang, S.D.; Kondo, H.; Hirono, I.; Kikuchi, Y.; Aoki, T. RNA Aptamers Inhibit the Growth of the Fish Pathogen Viral Hemorrhagic Septicemia Virus (VHSV). Mar. Biotechnol. 2012, 14, 752–761. [Google Scholar] [CrossRef]
- Zhou, G.-Z.; Zhu, R.; Gui, J.-F.; Zhang, Q.-Y. Inhibition of Siniperca chuatsi Rhabdovirus by RNA Interference in a Fish Cell Line. Fish Pathol. 2012, 47, 30–32. [Google Scholar] [CrossRef] [Green Version]
- Gotesman, M.; Soliman, H.; Besch, R.; El-Matbouli, M. Inhibition of spring viraemia of carp virus replication in an E pithelioma papulosum cyprini cell line by RNA i. J. Fish Dis. 2015, 38, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Fouad, A.M.; Soliman, H.; Abdallah, E.S.; Ibrahim, S.; El-Matbouli, M.; Elkamel, A.A. In-vitro inhibition of spring viremia of carp virus replication by RNA interference targeting the RNA-dependent RNA polymerase gene. J. Virol. Methods 2019, 263, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Librán-Pérez, M.; Pereiro, P.; Figueras, A.; Novoa, B. Antiviral activity of palmitic acid via autophagic flux inhibition in zebrafish (Danio rerio). Fish Shellfish. Immunol. 2019, 95, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, X.; Yu, F.; Li, F.; Li, W.; Yi, M.; Jia, K. α-Lipoic Acid Exerts Its Antiviral Effect against Viral Hemorrhagic Septicemia Virus (VHSV) by Promoting Upregulation of Antiviral Genes and Suppressing VHSV-Induced Oxidative Stress. Virol. Sin. 2021, 36, 1520–1531. [Google Scholar] [CrossRef] [PubMed]
- Pereiro, P.; Forn-Cuní, G.; Dios, S.; Coll, J.; Figueras, A.; Novoa, B. Interferon-independent antiviral activity of 25-hydroxycholesterol in a teleost fish. Antivir. Res. 2017, 145, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Xu, L.; Zhao, J.; Shao, Y.; Lin, Y.; Li, L.; Liu, Q.; Lu, T.; Zhang, Q. Antiviral Activity of Crude Polysaccharide Derived from Seaweed against IHNV and IPNV In Vitro. Viruses 2022, 14, 2080. [Google Scholar] [CrossRef]
- Xie, M.; Li, Y.; Olsen, R.E.; Ringø, E.; Yang, Y.; Zhang, Z.; Ran, C.; Zhou, Z. Dietary supplementation of exopolysaccharides from Lactobacillus rhamnosus GCC-3 improved the resistance of zebrafish against spring viremia of carp virus infection. Front. Immunol. 2022, 13, 968348. [Google Scholar] [CrossRef]
- Bhattarai, N.; Kumbhar, A.A.; Pokharel, Y.R.; Yadav, P.N. Anticancer Potential of Coumarin and its Derivatives. Mini-Reviews Med. Chem. 2021, 21, 2996–3029. [Google Scholar] [CrossRef]
- Liu, L.; Hu, Y.; Shen, Y.-F.; Wang, G.-X.; Zhu, B. Evaluation on antiviral activity of coumarin derivatives against spring viraemia of carp virus in epithelioma papulosum cyprini cells. Antivir. Res. 2017, 144, 173–185. [Google Scholar] [CrossRef]
- Liu, L.; Shen, Y.-F.; Hu, Y.; Lu, J.-F. Antiviral effect of 7-(4-benzimidazole-butoxy)-coumarin on rhabdoviral clearance via Nrf2 activation regulated by PKCα/β phosphorylation. Fish Shellfish. Immunol. 2018, 83, 386–396. [Google Scholar] [CrossRef]
- Shen, Y.-F.; Liu, L.; Feng, C.-Z.; Hu, Y.; Chen, C.; Wang, G.-X.; Zhu, B. Synthesis and antiviral activity of a new coumarin derivative against spring viraemia of carp virus. Fish Shellfish. Immunol. 2018, 81, 57–66. [Google Scholar] [CrossRef]
- Hu, Y.; Shan, L.; Qiu, T.; Liu, L.; Chen, J. Synthesis and biological evaluation of novel coumarin derivatives in rhabdoviral clearance. Eur. J. Med. Chem. 2021, 223, 113739. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Song, D.-W.; Liu, G.-L.; Shan, L.-P.; Qiu, T.-X.; Chen, J. Hydroxycoumarin efficiently inhibits spring viraemia of carp virus infection in vitro and in vivo. Zool. Res. 2020, 41, 395–409. [Google Scholar] [CrossRef]
- Liu, G.-L.; Liu, L.; Shan, L.-P. Evaluation on the antiviral effect of a hydroxycoumarin against infectious hematopoietic necrosis virus infection in vitro and in vivo. Fish Shellfish. Immunol. 2020, 102, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hu, Y.; Lu, J.; Wang, G. An imidazole coumarin derivative enhances the antiviral response to spring viremia of carp virus infection in zebrafish. Virus Res. 2019, 263, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-C.; Liu, L.; Shen, Y.-F.; Hu, Y.; Ling, F.; Wang, G.-X.; Zhu, B. A new coumarin derivative plays a role in rhabdoviral clearance by interfering glycoprotein function during the early stage of viral infection. Cell. Signal. 2018, 51, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Qiu, T.-X.; Song, D.-W.; Shan, L.-P.; Chen, J. Inhibition of a novel coumarin on an aquatic rhabdovirus by targeting the early stage of viral infection demonstrates potential application in aquaculture. Antivir. Res. 2020, 174, 104672. [Google Scholar] [CrossRef]
- Liu, L.; Shan, L.-P.; Xue, M.-Y.; Lu, J.-F.; Hu, Y.; Liu, G.-L.; Chen, J. Potential application of antiviral coumarin in aquaculture against IHNV infection by reducing viral adhesion to the epithelial cell surface. Antivir. Res. 2021, 195, 105192. [Google Scholar] [CrossRef]
- Liu, G.; Wang, C.; Wang, H.; Zhu, L.; Zhang, H.; Wang, Y.; Pei, C.; Liu, L. Antiviral efficiency of a coumarin derivative on spring viremia of carp virus in vivo. Virus Res. 2019, 268, 11–17. [Google Scholar] [CrossRef]
- He, Y.; Fan, Q.; Cai, T.; Huang, W.; Xie, X.; Wen, Y.; Shi, Z. Molecular mechanisms of the action of Arctigenin in cancer. Biomed. Pharmacother. 2018, 108, 403–407. [Google Scholar] [CrossRef]
- Cai, E.; Song, X.; Han, M.; Yang, L.; Zhao, Y.; Li, W.; Han, J.; Tu, S. Experimental study of the anti-tumour activity and pharmacokinetics of arctigenin and its valine ester derivative. Sci. Rep. 2018, 8, 3307. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-C.; Hu, Y.; Liu, L.; Shen, Y.-F.; Wang, G.-X.; Zhu, B. Synthesis and in vitro activities evaluation of arctigenin derivatives against spring viraemia of carp virus. Fish Shellfish. Immunol. 2018, 82, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, L.; Li, B.; Shen, Y.; Wang, G.-X.; Zhu, B. Synthesis of arctigenin derivatives against infectious hematopoietic necrosis virus. Eur. J. Med. Chem. 2019, 163, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, W.-C.; Shen, Y.-F.; Zhu, B.; Wang, G.-X. Synthesis and antiviral activity of a new arctigenin derivative against IHNV in vitro and in vivo. Fish Shellfish. Immunol. 2019, 92, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.-C.; Li, B.-Y.; Shen, Y.-F.; Wang, T.; Wang, G.-X. In vitro and in vivo inhibition of a novel arctigenin derivative on aquatic rhabdovirus. Virus Res. 2022, 316, 198798. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-F.; Liu, Y.-H.; Li, B.-Y.; Liu, T.-Q.; Wang, G.-X. Evaluation on antiviral activity of a novel arctigenin derivative against multiple rhabdoviruses in aquaculture. Virus Res. 2020, 285, 198019. [Google Scholar] [CrossRef] [PubMed]
- Marroquí, L.; Estepa, A.; Perez, L. Assessment of the inhibitory effect of ribavirin on the rainbow trout rhabdovirus VHSV by real-time reverse-transcription PCR. Vet. Microbiol. 2007, 122, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Shen, Y.; Li, B.; Wang, G.-X.; Zhu, B. Evaluation on the antiviral activity of ribavirin against infectious hematopoietic necrosis virus in epithelioma papulosum cyprini cells. Virus Res. 2019, 263, 73–79. [Google Scholar] [CrossRef]
- Marroquí, L.; Estepa, A.; Perez, L. Inhibitory effect of mycophenolic acid on the replication of infectious pancreatic necrosis virus and viral hemorrhagic septicemia virus. Antivir. Res. 2008, 80, 332–338. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, S.J.; Choi, S.H.; Kang, Y.J.; Kim, K.H. Dexamethasone treatment decreases replication of viral hemorrhagic septicemia virus in Epithelioma papulosum cyprini cells. Arch. Virol. 2017, 162, 1387–1392. [Google Scholar] [CrossRef]
- Shen, Y.-F.; Hu, Y.; Zhu, B.; Wang, G.-X. Antiviral activity of anisomycin against spring viraemia of carp virus in epithelioma papulosum cyprini cells and zebrafish. Virus Res. 2019, 268, 38–44. [Google Scholar] [CrossRef]
- Li, B.; Yang, F.; Zhang, Z.; Shen, Y.; Wang, T.; Zhao, L.; Qin, J.; Ling, F.; Wang, G. Quinoline, with the active site of 8-hydroxyl, efficiently inhibits Micropterus salmoides rhabdovirus (MSRV) infection in vitro and in vivo. J. Fish Dis. 2022, 45, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Zitterl-Eglseer, K.; Marschik, T. Antiviral Medicinal Plants of Veterinary Importance: A Literature Review. Planta Medica 2020, 86, 1058–1072. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.-H.; Vaidya, B.; Cho, S.-Y.; Park, M.-A.; Kaewintajuk, K.; Kim, S.R.; Oh, M.-J.; Choi, J.-S.; Kwon, J.; Kim, D. Identification of regulators of the early stage of viral hemorrhagic septicemia virus infection during curcumin treatment. Fish Shellfish. Immunol. 2015, 45, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Y.; Kang, J.-Y.; Oh, M.-J. Antiviral activities of flavonoids isolated from the bark of Rhus verniciflua stokes against fish pathogenic viruses In Vitro. J. Microbiol. 2012, 50, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Balmer, B.F.; Powers, R.L.; Zhang, T.-H.; Lee, J.; Vigant, F.; Lee, B.; Jung, M.E.; Purcell, M.K.; Snekvik, K.; Aguilar, H.C. Inhibition of an Aquatic Rhabdovirus Demonstrates Promise of a Broad-Spectrum Antiviral for Use in Aquaculture. J. Virol. 2017, 91, e02181-16. [Google Scholar] [CrossRef] [Green Version]
- Song, D.-W.; Liu, G.-L.; Xue, M.-Y.; Qiu, T.-X.; Wang, H.; Shan, L.-P.; Liu, L.; Chen, J. In vitro and in vivo evaluation of antiviral activity of a phenylpropanoid derivative against spring viraemia of carp virus. Virus Res. 2021, 291, 198221. [Google Scholar] [CrossRef]
- Mas, V.; Falco, A.; Brocal, I.; Perez, L.; Coll, J.; Estepa, A. Identification of selective inhibitors of VHSV from biased combinatorial libraries of N,N′-disubstituted 2,5-piperazinediones. Antivir. Res. 2006, 72, 107–115. [Google Scholar] [CrossRef]
- Li, B.-Y.; Hu, Y.; Li, J.; Shi, K.; Shen, Y.-F.; Zhu, B.; Wang, G.-X. Ursolic acid from Prunella vulgaris L. efficiently inhibits IHNV infection in vitro and in vivo. Virus Res. 2019, 273, 197741. [Google Scholar] [CrossRef]
- Cheng, C.; Yu-Feng, S.; Yang, H.; Lei, L.; Wei-Chao, C.; Gao-Xue, W.; Bin, Z. Highly efficient inhibition of spring viraemia of carp virus replication in vitro mediated by bavachin, a major constituent of psoralea corlifonia Lynn. Virus Res. 2018, 255, 24–35. [Google Scholar] [CrossRef]
- Medina-Gali, R.M.; Ortega-Villaizan, M.D.M.; Mercado, L.; Novoa, B.; Coll, J.; Perez, L. Beta-glucan enhances the response to SVCV infection in zebrafish. Dev. Comp. Immunol. 2018, 84, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Huang, L.; Han, S.; Hu, D.; Xu, Y.; Liu, M.; Yu, Q.; Huang, S.; Wei, D.; Li, P. Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses 2022, 14, 1281. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Qiu, T.-X.; Hu, Y.; Liu, L.; Chen, J. Antiviral effects of natural small molecules on aquatic rhabdovirus by interfering with early viral replication. Zool. Res. 2022, 43, 966–976. [Google Scholar] [CrossRef] [PubMed]
Virus Strain | Design of Trial | Antiviral Agent | Antiviral Effects | References |
---|---|---|---|---|
IHNV | In vitro | Extract from marine brown alga, Eisenia bicyclis | Direct inactivation of the viral particles | [21] |
VHSV | In vitro | Extracts from Marine microalgae | Inhibit virus replication | [22] |
IHNV | In vitro | Extract from red alga, Polysiphonia morrowii | Reduce virus-induced cytopathic effect | [23] |
VHSV | In vitro, in vivo | Extract from Bacillus subtilis | Inhibit virus infection/reduce cytopathic effect (CPE) | [24] |
VHSV | In vitro, in vivo | Extract from algal Ecklonia cava | Enhance antiviral immune response | [25] |
VHSV | In vitro, in vivo | Extracts from Celosia cristata and Raphanus sativus roots | Reduce virus titer/ induce gene expression involved in the innate immune response | [26] |
VHSV | In vitro | Olive leaf extract | Inhibit cell-to-cell membrane fusion and decrease virus titers and viral protein accumulation | [27] |
IHNV | In vitro | Extracts from Cassia alata and Phyllanthus acidus | Reduce the plaques and inhibit virus absorption | [28] |
Virus Strain | Design of Trial | Antiviral Agent | Antiviral Effects | References |
---|---|---|---|---|
SVCV | In vitro | imidazole coumarins (B4 and C2) | Decline cell apoptosis/enhance anti-oxidative gene expression | [58] |
SVCV | In vitro, in vivo | 7-(4-benzimidazole-butoxy)-coumarin (BBC) | Decline cell apoptosis and recover caspases activity/up-regulate both antiviral responses and cellular IFN response | [59] [60] |
IHNV | In vitro, in vivo | Coumarin derivative A9 | Block IHNV-induced apoptosis/repress IHNV gene expression | [61] |
SVCV | In vitro, in vivo | 7-(6-benzimidazole) coumarin (C10) | Reduce apoptosis/maintain antioxidant-oxidant balance | [62] |
IHNV | In vitro, in vivo | 7-[6-(2-methylimidazole) hexyloxy] coumarin (D5) | Decrease apoptosis/maintain antioxidant-oxidant balance | [63] |
SVCV | In vivo | 7-[6-(2-methylimidazole) hexyloxy] coumarin (D5) | Repress viral glycoprotein gene expression/elicit innate immune response | [64] |
SVCV | In vitro | 7-[6-(2-methylimidazole) hexyloxy] coumarin (D5) | Disrupt viral binding or translocation to cytosol/suppress autophagy | [65] |
SVCV | In vitro, in vivo | Coumarin derivative (C3007) | Decrease SVCV gene expression/ induce antiviral immune | [66] |
IHNV | In vitro, in vivo | 7-(6-benzimidazole) coumarin (C10) | Inhibit IHNV adhesion/decrease viral loads | [67] |
SVCV | In vitro, in vivo | 7-(4-(4-methyl-imidazole))-coumarin (C2) | Decrease mortality/viral titers/horizontal transmission | [68] |
Virus Strain | Design of Trial | Antiviral Agent | Antiviral Effects | References |
---|---|---|---|---|
SVCV | In vitro | Arctigenin derivatives | Inhibit SVCV-induced apoptosis and reactive oxygen species | [71] |
IHNV | In vitro | 2Q and 6 A | Inhibit apoptosis/affect the early replication of IHNV | [72] |
IHNV | In vitro, in vivo | Arctigenin derivative 15 | Inhibit cell apoptosis/elicit anti-inflammation response | [73] |
SVCV | In vitro, in vivo | 4-(8-(2-ethylimidazole)octyloxy)-arctigenin (EOA) | Decrease the cytopathic effect/inhibit SVCV glycoprotein expression | [74] |
IHNV/SVCV/MSRV | In vitro | 4-(2-methylimidazole) octanoxy-arctigenin (MON) | Inhibit cell apoptosis/reduce the release of viral particles | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.-S.; Ma, S.-W.; Li, J.; Zhang, Q.; Zhou, G.-Z. Review on the Antiviral Organic Agents against Fish Rhabdoviruses. Fishes 2023, 8, 57. https://doi.org/10.3390/fishes8010057
Sun S-S, Ma S-W, Li J, Zhang Q, Zhou G-Z. Review on the Antiviral Organic Agents against Fish Rhabdoviruses. Fishes. 2023; 8(1):57. https://doi.org/10.3390/fishes8010057
Chicago/Turabian StyleSun, Shuang-Shuang, Shi-Wei Ma, Jun Li, Qin Zhang, and Guang-Zhou Zhou. 2023. "Review on the Antiviral Organic Agents against Fish Rhabdoviruses" Fishes 8, no. 1: 57. https://doi.org/10.3390/fishes8010057
APA StyleSun, S. -S., Ma, S. -W., Li, J., Zhang, Q., & Zhou, G. -Z. (2023). Review on the Antiviral Organic Agents against Fish Rhabdoviruses. Fishes, 8(1), 57. https://doi.org/10.3390/fishes8010057