Edwardsiella ictaluri Almost Completely Occupies the Gut Microbiota of Fish Suffering from Enteric Septicemia of Catfish (Esc)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Isolation, Identification, and MIC Determination of Bacteria
2.3. DNA Extraction and Purification
2.4. 16S rRNA Gene High-Throughput Sequencing
2.5. Sequencing Data Processing
2.6. Bioinformatics and Statistical Analysis
3. Results
3.1. Pathogenic Bacteria Identification and Mic Determination Results
3.2. Diversity and Structure of Microbial Communities
3.3. Taxonomic Composition of Gut Microbiota
3.4. Differential Analysis of Gut Microbiota between Healthy and Diseased Fish
3.5. Functional and Phenotypic Prediction of Gut Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bjorksten, B. The gut microbiota: A complex ecosystem. Clin. Exp. Allergy 2006, 36, 1215–1217. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.R.; Ran, C.; Ringo, E.; Zhou, Z.G. Progress in fish gastrointestinal microbiota research. Rev. Aquac. 2018, 10, 626–640. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Wang, S.; Zhang, Q.; Hao, J.; Lin, Y.; Zhang, J.; Li, A. Assessing the intestinal bacterial community of farmed Nile tilapia (Oreochromis niloticus) by high-throughput absolute abundance quantification. Aquaculture 2020, 529, 735688. [Google Scholar] [CrossRef]
- Verner-Jeffreys, D.W.; Shields, R.J.; Bricknell, I.R.; Birkbeck, T.H. Changes in the gut-associated microflora during the development of Atlantic halibut (Hippoglossus hippoglossus L.) larvae in three British hatcheries. Aquaculture 2003, 219, 21–42. [Google Scholar] [CrossRef]
- Bikel, S.; Valdez-Lara, A.; Cornejo-Granados, F.; Rico, K.; Canizales-Quinteros, S.; Soberon, X.; Del Pozo-Yauner, L.; Ochoa-Leyva, A. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: Towards a systems-level understanding of human microbiome. Comput. Struct. Biotechnol. J. 2015, 13, 390–401. [Google Scholar] [CrossRef] [Green Version]
- Ley, R.E.; Lozupone, C.A.; Hamady, M.; Knight, R.; Gordon, J.I. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 2008, 6, 776–788. [Google Scholar] [CrossRef] [Green Version]
- Schwab, C.; Cristescu, B.; Northrup, J.M.; Stenhouse, G.B.; Gaenzle, M. Diet and Environment Shape Fecal Bacterial Microbiota Composition and Enteric Pathogen Load of Grizzly Bears. PLoS ONE 2011, 6, e27905. [Google Scholar] [CrossRef] [Green Version]
- Ling, S.H.M.; Wang, X.H.; Lim, T.M.; Leung, K.Y. Green fluorescent protein-tagged Edwardsiella tarda reveals portal of entry in fish. Fems Microbiol. Lett. 2001, 194, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.J.; Yang, W.M.; Zhang, D.F.; Li, T.T.; Gong, X.N.; Li, A.H. Does the gastrointestinal tract serve as the infectious route of Aeromonas hydrophila in crucian carp (Carassius carassius)? Aquac. Res. 2015, 46, 141–154. [Google Scholar] [CrossRef]
- Ringo, E.; Mikkelsen, H.; Kaino, T.; Olsen, R.E.; Mayhew, T.M.; Myklebust, R. Endocytosis of indigenous bacteria and cell damage caused by Vibrio anguillarum in the foregut and hindgut of spotted wolffish (Anarhichas minor Olafsen) fry: An electron microscopical study. Aquac. Res. 2006, 37, 647–651. [Google Scholar] [CrossRef]
- Li, T.T.; Long, M.; Ji, C.; Shen, Z.X.; Gatesoupe, F.J.; Zhang, X.J.; Zhang, Q.Q.; Zhang, L.L.; Zhao, Y.L.; Liu, X.H.; et al. Alterations of the gut microbiome of largemouth bronze gudgeon (Coreius guichenoti) suffering from furunculosis. Sci. Rep. 2016, 6, 30606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringo, E.; Jutfelt, F.; Kanapathippillai, P.; Bakken, Y.; Sundell, K.; Glette, J.; Mayhew, T.M.; Myklebust, R.; Olsen, R.E. Damaging effect of the fish pathogen Aeromonas salmonicida ssp. Salmonicida on intestinal enterocytes of Atlantic salmon (Salmo salar L.). Cell Tissue Res. 2004, 318, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Hawke, J.P.; McWhorter, A.C.; Steigerwalt, A.G.; Brenner, D.J. Edwardsiella ictaluri Sp-Nov, the Causative Agent of Enteric Septicemia of Catfish. Int. J. Syst. Bacteriol. 1981, 31, 396–400. [Google Scholar] [CrossRef]
- Liu, J.Y.; Li, A.H.; Zhou, D.R.; Wen, Z.R.; Ye, X.P. Isolation and characterization of Edwardsiella ictaluri strains as pathogens from diseased yellow catfish Pelteobagrus fulvidraco (Richardson) cultured in China. Aquac. Res. 2010, 41, 1835–1844. [Google Scholar] [CrossRef]
- Hawke, J.P.; Kent, M.; Rogge, M.; Baumgartner, W.; Wiles, J.; Shelley, J.; Savolainen, L.C.; Wagner, R.; Murray, K.; Peterson, T.S. Edwardsiellosis caused by Edwardsiella ictaluri in Laboratory Populations of Zebrafish Danio rerio. J. Aquat. Anim. Health 2013, 25, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Soto, E.; Griffin, M.; Arauz, M.; Riofrio, A.; Martinez, A.; Eugenia Cabrejos, M. Edwardsiella ictaluri as the Causative Agent of Mortality in Cultured Nile Tilapia. J. Aquat. Anim. Health 2012, 24, 81–90. [Google Scholar] [CrossRef]
- Tekedar, H.C.; Blom, J.; Kalindamar, S.; Nho, S.; Karsi, A.; Lawrence, M.L. Comparative genomics of the fish pathogens Edwardsiella ictaluri 93-146 and Edwardsiella piscicida C07-087. Microb. Genom. 2020, 6, e000322. [Google Scholar] [CrossRef] [PubMed]
- Nhinh, D.T.; Giang, N.T.H.; Van, K.V.; Dang, L.T.; Dong, H.; Hoai, T.D. The arrival, establishment and spread of a highly virulent Edwardsiella ictaluri strain in farmed tilapia, Oreochr omis spp. Authorea, 2021; Epub ahead of print. [Google Scholar] [CrossRef]
- Ferguson, H.W.; Turnbull, J.F.; Shinn, A.; Thompson, K.; Dung, T.T.; Crumlish, M. Bacillary necrosis in farmed Pangasius hypophthalmus (Sauvage) from the Mekong Delta, Vietnam. J. Fish Dis. 2001, 24, 509–513. [Google Scholar] [CrossRef]
- Chu, Z.Z.; Guo, W.; Hu, W.H.; Mei, J. Delayed elimination of paternal mtDNA in the interspecific hybrid of Pelteobagrus fulvidraco and Pelteobagrus vachelli during early embryogenesis. Gene 2019, 704, 1–7. [Google Scholar] [CrossRef]
- Lim, S.G.; Han, H.K.; Gil, H.W.; Park, I.-S. Temperature-dependent Index of Mitotic Interval (tau0) for Chromosome Manipulation in Korean Bullhead, Pseudobagrus fulvidraco. Dev. Reprod. 2012, 16, 321–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Dan, C.; Guo, W.; Fan, Q.; Mei, J. The morphology and gonad development of Pelteobagrus fulvidraco and its interspecific hybrid huangyou no. 1 with Pelteobaggrus vachelli. Acta Hydrobiol. Sin. 2019, 43, 1231–1238. [Google Scholar]
- Mei, J.; Gui, J.F. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Sci. China-Life Sci. 2015, 58, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Roeselers, G.; Mittge, E.K.; Stephens, W.Z.; Parichy, D.M.; Cavanaugh, C.M.; Guillemin, K.; Rawls, J.F. Evidence for a core gut microbiota in the zebrafish. ISME J. 2011, 5, 1595–1608. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Methods for Antimicrobial Broth Dilution and Disk Diffusion Susceptibility Testing of Bacteria Isolated from Aquatic Animals, VET03, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, M100, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Lin, Y.; Yang, J.; Wu, Z.; Zhang, Q.; Wang, S.; Hao, J.; Ouyang, L.; Li, A. Establishment of Epidemiological Resistance Cut-Off Values of Aquatic Aeromonas to Eight Antimicrobial Agents. Microorganisms 2022, 10, 776. [Google Scholar] [CrossRef]
- Wu, Z.B.; Zhang, Q.Q.; Zhang, T.L.; Chen, J.W.; Wang, S.Y.; Hao, J.W.; Lin, Y.Y.; Li, A.H. Association of the microbiota dysbiosis in the hepatopancreas of farmed crayfish (Procambarus clarkii) with disease outbreaks. Aquaculture 2021, 536, 736492. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. A place for DNA-DNA reassociation and 16s ribosomal-RNA sequence-analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.B.; Zhang, Q.Q.; Lin, Y.Y.; Hao, J.W.; Wang, S.Y.; Zhang, J.Y.; Li, A.H. Taxonomic and Functional Characteristics of the Gill and Gastrointestinal Microbiota and Its Correlation with Intestinal Metabolites in NEW GIFT Strain of Farmed Adult Nile Tilapia (Oreochromis niloticus). Microorganisms 2021, 9, 617. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Thurber, R.L.V.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814. [Google Scholar] [CrossRef] [PubMed]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef] [Green Version]
- Ward, T.; Larson, J.; Meulemans, J.; Hillmann, B.; Lynch, J.; Sidiropoulos, D.; Spear, J.; Caporaso, G.; Blekhman, R.; Knight, R.; et al. BugBase predicts organism-level microbiome phenotypes. bioRxiv 2017, 133462. [Google Scholar] [CrossRef]
- Hawke, J.P. Bacterium associated with disease of pond cultured channel catfish, Ictalurus-punctatus. J. Fish. Res. Board Can. 1979, 36, 1508–1512. [Google Scholar] [CrossRef]
- Wang, R.; Tekedar, H.C.; Lawrence, M.L.; Chouljenko, V.N.; Kim, J.; Kim, N.; Kousoulas, K.G.; Hawke, J.P. Draft Genome Sequences of Edwardsiella ictaluri Strains LADL11-100 and LADL11-194 Isolated from Zebrafish Danio rerio. Genome Announc. 2015, 3, e01449-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubytska, L.P.; Koirala, R.; Sanchez, A.; Thune, R. Edwardsiella ictaluri T3SS Effector EseN Modulates Expression of Host Genes Involved in the Immune Response. Microorganisms 2022, 10, 1334. [Google Scholar] [CrossRef]
- Huang, H.Y.; Zhou, P.J.; Chen, P.; Xia, L.Q.; Hu, S.B.; Yi, G.F.; Lu, J.Y.; Yang, S.Q.; Xie, J.Y.; Peng, J.L.; et al. Alteration of the gut microbiome and immune factors of grass carp infected with Aeromonas veronii and screening of an antagonistic bacterial strain (Streptomyces flavotricini). Microb. Pathog. 2020, 143, 104092. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Li, H.W.; Wu, W.; Zhang, M.; Guo, J.; Deng, X.Y.; Wang, F.; Lin, L.B. The Response of Microbiota Community to Streptococcus agalactiae Infection in Zebrafish Intestine. Front. Microbiol. 2019, 10, 2848. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.T.; Zou, S.S.; Zhai, L.J.; Wang, Y.; Zhang, F.M.; An, L.G.; Yang, G.W. Pathogen invasion changes the intestinal microbiota composition and induces innate immune responses in the zebrafish intestine. Fish Shellfish Immunol. 2017, 71, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Tan, L.; Gu, S.; Xiao, Y.; Xiong, X.; Zeng, W.-a.; Feng, K.; Wei, Z.; Deng, Y. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. npj Biofilms Microbiomes 2020, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Li, X.; Zhang, M.; Jiang, H.; Wang, R.; Qian, Y.; Li, M. Ammonia stress disrupts intestinal microbial community and amino acid metabolism of juvenile yellow catfish (Pelteobagrus fulvidraco). Ecotoxicol. Environ. Saf. 2021, 227, 112932. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Gao, T.; Zheng, Y.; Wang, W.; Cheng, Y.; Wang, G. Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco). Aquaculture 2010, 303, 1–7. [Google Scholar] [CrossRef]
- Borsodi, A.K.; Szabó, A.; Krett, G.; Felföldi, T.; Specziár, A.; Boros, G. Gut content microbiota of introduced bigheaded carps (Hypophthalmichthys spp.) inhabiting the largest shallow lake in Central Europe. Microbiol Res 2017, 195, 40–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuchiya, C.; Sakata, T.; Sugita, H. Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish. Lett. Appl. Microbiol. 2008, 46, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Sugita, H.; Miyajima, C.; Deguchi, Y. The vitamin-B12-producing ability of the intestinal microflora of fresh-water fish. Aquaculture 1991, 92, 267–276. [Google Scholar] [CrossRef]
- Waltman, W.D.; Shotts, E.B.; Hsu, T.C. Biochemical Characteristics of Edwardsiella ictaluri. Appl. Environ. Microbiol. 1986, 51, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Gallo, R.L.; Nakatsuji, T. Microbial Symbiosis with the Innate Immune Defense System of the Skin. J. Investig. Dermatol. 2011, 131, 1974–1980. [Google Scholar] [CrossRef] [Green Version]
- Bergh, O. Bacteria associated with early-life stages of halibut, Hippoglossus-hippoglossus L., inhibit growth of a pathogenic vibrio sp. J. Fish Dis. 1995, 18, 31–40. [Google Scholar] [CrossRef]
- Gomez, D.; Sunyer, J.O.; Salinas, I. The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol. 2013, 35, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Jovel, J.; Patterson, J.; Wang, W.; Hotte, N.; O’Keefe, S.; Mitchel, T.; Perry, T.; Kao, D.; Mason, A.L.; Madsen, K.L.; et al. Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics. Front. Microbiol. 2016, 7, 459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stellwag, E.J.; Smith, T.D.; Luczkovich, J.J. Characterization and Ecology of Carboxymethylcellulase-Producing Anaerobic Bacterial Communities Associated with the Intestinal Tract of the Pinfish, Lagodon rhomboides. Appl. Environ. Microbiol. 1995, 61, 813–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, T.; Imaeda, H.; Takahashi, K.; Kasumi, E.; Bamba, S.; Fujiyama, Y.; Andoh, A. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn’s disease. J. Gastroenterol. Hepatol. 2013, 28, 613–619. [Google Scholar] [CrossRef] [PubMed]
- De Palma, G.; Nadal, I.; Medina, M.; Donat, E.; Ribes-Koninckx, C.; Calabuig, M.; Sanz, Y. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 2010, 10, 63. [Google Scholar] [CrossRef]
Group | Community Structure | Community Function | ||
---|---|---|---|---|
R | p | R | p | |
Whole comparison | 0.86 | 0.001 | 0.99 | 0.001 |
Healthy fish vs. Diseased fish | 0.77 | 0.015 | 1 | 0.017 |
Healthy fish vs. water | 0.70 | 0.100 | 0.58 | 0.200 |
Diseased fish vs. water | 0.99 | 0.033 | 1 | 0.031 |
Phyla | Groups | |
---|---|---|
Healthy | Diseased | |
Fusobacteriota | 54.81 ± 38.44% | 0 |
Proteobacteria | 24.18 ± 33.73% | 99.60 ± 0.18% |
Firmicutes | 17.38 ± 7.83% | 0 |
Bacteroidota | 0.71 ± 0.47% | 0.09% ± 0.04 |
Actinobacteriota | 0.63 ± 0.50% | 0 |
Cyanobacteria | 1.32 ± 0.58% | 0 |
Spirochaetota | 0.40 ± 0.60% | 0 |
Others | 1.32 ± 0.58% | 0.03 ± 0.03% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Lin, Y.; Wei, Z.; Wu, Z.; Zhang, Q.; Hao, J.; Wang, S.; Li, A. Edwardsiella ictaluri Almost Completely Occupies the Gut Microbiota of Fish Suffering from Enteric Septicemia of Catfish (Esc). Fishes 2023, 8, 30. https://doi.org/10.3390/fishes8010030
Yang J, Lin Y, Wei Z, Wu Z, Zhang Q, Hao J, Wang S, Li A. Edwardsiella ictaluri Almost Completely Occupies the Gut Microbiota of Fish Suffering from Enteric Septicemia of Catfish (Esc). Fishes. 2023; 8(1):30. https://doi.org/10.3390/fishes8010030
Chicago/Turabian StyleYang, Jicheng, Yaoyao Lin, Zhaohui Wei, Zhenbing Wu, Qianqian Zhang, Jingwen Hao, Shuyi Wang, and Aihua Li. 2023. "Edwardsiella ictaluri Almost Completely Occupies the Gut Microbiota of Fish Suffering from Enteric Septicemia of Catfish (Esc)" Fishes 8, no. 1: 30. https://doi.org/10.3390/fishes8010030
APA StyleYang, J., Lin, Y., Wei, Z., Wu, Z., Zhang, Q., Hao, J., Wang, S., & Li, A. (2023). Edwardsiella ictaluri Almost Completely Occupies the Gut Microbiota of Fish Suffering from Enteric Septicemia of Catfish (Esc). Fishes, 8(1), 30. https://doi.org/10.3390/fishes8010030