An Automatic Recognition Method for Fish Species and Length Using an Underwater Stereo Vision System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Facility
2.2. Dataset and Annotations
2.3. Design of Improved Keypoints R-CNN Network
2.3.1. ResNeXt with CBAM
2.3.2. Improved PANet
2.3.3. Training Procedures
2.4. Stereo Matching and Fish Length Measurement
2.5. Performance Evaluation Metrics
3. Results
3.1. Model Performance Evaluation
3.2. Fish Species Recognition Experiments
3.3. Fish Length Measurement Experiments
3.3.1. Stereo Matching
3.3.2. Fish Length Measurements
4. Discussion
4.1. Precision of Fish Species Recognition
4.2. Precision of Fish Body Length Estimation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taheri-Garavand, A.; Fatahi, S.; Banan, A.; Makino, Y. Real-Time Nondestructive Monitoring of Common Carp Fish Freshness Using Robust Vision-Based Intelligent Modeling Approaches. Comput. Electron. Agric. 2019, 159, 16–27. [Google Scholar] [CrossRef]
- Usydus, Z.; Szlinder-Richert, J. Functional Properties of Fish and Fish Products: A Review. Int. J. Food Prop. 2012, 15, 823–846. [Google Scholar] [CrossRef]
- Banan, A.; Nasiri, A.; Taheri-Garavand, A. Deep Learning-Based Appearance Features Extraction for Automated Carp Species Identification. Aquac. Eng. 2020, 89, 102053. [Google Scholar] [CrossRef]
- An, D.; Hao, J.; Wei, Y.; Wang, Y.; Yu, X. Application of Computer Vision in Fish Intelligent Feeding System—A Review. Aquac. Res. 2021, 52, 423–437. [Google Scholar] [CrossRef]
- Hao, M.; Yu, H.; Li, D. The Measurement of Fish Size by Machine Vision—A Review. In Computer and Computing Technologies in Agriculture IX; Li, D., Li, Z., Eds.; Springer: Cham, Switzerland, 2016; Volume 479, pp. 15–32. ISBN 978-3-319-48353-5. [Google Scholar]
- Domasevich, M.A.; Hasegawa, H.; Yamazaki, T. Quality Evaluation of Kohaku Koi (Cyprinus Rubrofuscus) Using Image Analysis. Fishes 2022, 7, 158. [Google Scholar] [CrossRef]
- Iqbal, U.; Li, D.; Akhter, M. Intelligent Diagnosis of Fish Behavior Using Deep Learning Method. Fishes 2022, 7, 201. [Google Scholar] [CrossRef]
- Labuguen, R.T.; Volante, E.J.P.; Causo, A.; Bayot, R.; Peren, G.; Macaraig, R.M.; Libatique, N.J.C.; Tangonan, G.L. Automated Fish Fry Counting and Schooling Behavior Analysis Using Computer Vision. In Proceedings of the 2012 IEEE 8th International Colloquium on Signal Processing and its Applications, Malacca, Malaysia, 23–15 March 2012; pp. 255–260. [Google Scholar]
- Zhang, S.; Yang, X.; Wang, Y.; Zhao, Z.; Liu, J.; Liu, Y.; Sun, C.; Zhou, C. Automatic Fish Population Counting by Machine Vision and a Hybrid Deep Neural Network Model. Animals 2020, 10, 364. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, D.; Duan, Q.; Han, Y.; Chen, G.; Si, X. Fish Species Classification by Color, Texture and Multi-Class Support Vector Machine Using Computer Vision. Comput. Electron. Agric. 2012, 88, 133–140. [Google Scholar] [CrossRef]
- Rosen, S.; Jörgensen, T.; Hammersland-White, D.; Holst, J.C. DeepVision: A Stereo Camera System Provides Highly Accurate Counts and Lengths of Fish Passing inside a Trawl. Can. J. Fish Aquat. Sci. 2013, 70, 1456–1467. [Google Scholar] [CrossRef]
- Li, D.; Su, H.; Jiang, K.; Liu, D.; Duan, X. Fish Face Identification Based on Rotated Object Detection: Dataset and Exploration. Fishes 2022, 7, 219. [Google Scholar] [CrossRef]
- Fan, L.; Liu, Y. Automate Fry Counting Using Computer Vision and Multi-Class Least Squares Support Vector Machine. Aquaculture 2013, 380, 91–98. [Google Scholar] [CrossRef]
- He, H.-J.; Wu, D.; Sun, D.-W. Nondestructive Spectroscopic and Imaging Techniques for Quality Evaluation and Assessment of Fish and Fish Products. Crit. Rev. Food Sci. Nutr. 2015, 55, 864–886. [Google Scholar] [CrossRef] [PubMed]
- Harvey, E.; Cappo, M.; Shortis, M.; Robson, S.; Buchanan, J.; Speare, P. The Accuracy and Precision of Underwater Measurements of Length and Maximum Body Depth of Southern Bluefin Tuna (Thunnus Maccoyii) with a Stereo–Video Camera System. Fish. Res. 2003, 63, 315–326. [Google Scholar] [CrossRef]
- Hsieh, C.-L.; Chang, H.-Y.; Chen, F.-H.; Liou, J.-H.; Chang, S.-K.; Lin, T.-T. A Simple and Effective Digital Imaging Approach for Tuna Fish Length Measurement Compatible with Fishing Operations. Comput. Electron. Agric. 2011, 75, 44–51. [Google Scholar] [CrossRef]
- Shafait, F.; Harvey, E.S.; Shortis, M.R.; Mian, A.; Ravanbakhsh, M.; Seager, J.W.; Culverhouse, P.F.; Cline, D.E.; Edgington, D.R. Towards Automating Underwater Measurement of Fish Length: A Comparison of Semi-Automatic and Manual Stereo–Video Measurements. ICES J. Mar. Sci. 2017, 74, 1690–1701. [Google Scholar] [CrossRef] [Green Version]
- White, D.J.; Svellingen, C.; Strachan, N.J.C. Automated Measurement of Species and Length of Fish by Computer Vision. Fish. Res. 2006, 80, 203–210. [Google Scholar] [CrossRef]
- Alsmadi, M.K.; Omar, K.B.; Noah, S.A.; Almarashdeh, I. Fish Recognition Based on Robust Features Extraction from Size and Shape Measurements Using Neural Network. J. Comput. Sci. 2010, 6, 1088. [Google Scholar] [CrossRef] [Green Version]
- Cai, K.; Miao, X.; Wang, W.; Pang, H.; Liu, Y.; Song, J. A Modified YOLOv3 Model for Fish Detection Based on MobileNetv1 as Backbone. Aquac. Eng. 2020, 91, 102117. [Google Scholar] [CrossRef]
- Kakehi, S.; Sekiuchi, T.; Ito, H.; Ueno, S.; Takeuchi, Y.; Suzuki, K.; Togawa, M. Identification and Counting of Pacific Oyster Crassostrea Gigas Larvae by Object Detection Using Deep Learning. Aquac. Eng. 2021, 95, 102197. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, G.; Hu, H.; Wei, P.; Duan, Z.; Qian, Y. An Improved YOLOv3 Algorithm to Detect Molting in Swimming Crabs against a Complex Background. Aquac. Eng. 2020, 91, 102115. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Hsieh, C.-L.; Kuo, Y.-F. Automatic Measurement of the Body Length of Harvested Fish Using Convolutional Neural Networks. Biosyst. Eng. 2020, 189, 36–47. [Google Scholar] [CrossRef]
- Yu, C.; Fan, X.; Hu, Z.; Xia, X.; Zhao, Y.; Li, R.; Bai, Y. Segmentation and Measurement Scheme for Fish Morphological Features Based on Mask R-CNN. Inf. Process. Agric. 2020, 7, 523–534. [Google Scholar] [CrossRef]
- Huang, K.; Li, Y.; Suo, F.; Xiang, J. Stereo Vison and Mask-RCNN Segmentation Based 3D Points Cloud Matching for Fish Dimension Measurement. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 6345–6350. [Google Scholar]
- Qiu, C.; Zhang, S.; Wang, C.; Yu, Z.; Zheng, H.; Zheng, B. Improving Transfer Learning and Squeeze-and-Excitation Networks for Small-Scale Fine-Grained Fish Image Classification. IEEE Access 2018, 6, 78503–78512. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.; Duan, Q. Transfer Learning and SE-ResNet152 Networks-Based for Small-Scale Unbalanced Fish Species Identification. Comput. Electron. Agric. 2021, 180, 105878. [Google Scholar] [CrossRef]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Halder, K.K.; Paul, M.; Tahtali, M.; Anavatti, S.G.; Murshed, M. Correction of Geometrically Distorted Underwater Images Using Shift Map Analysis. JOSA A 2017, 34, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Łuczyński, T.; Pfingsthorn, M.; Birk, A. The Pinax-Model for Accurate and Efficient Refraction Correction of Underwater Cameras in Flat-Pane Housings. Ocean. Eng. 2017, 133, 9–22. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X.; Tu, D.; Jin, P. On-Site Calibration of Underwater Stereo Vision Based on Light Field. Opt. Lasers Eng. 2019, 121, 252–260. [Google Scholar] [CrossRef]
- Muñoz-Benavent, P.; Andreu-García, G.; Valiente-González, J.M.; Atienza-Vanacloig, V.; Puig-Pons, V.; Espinosa, V. Enhanced Fish Bending Model for Automatic Tuna Sizing Using Computer Vision. Comput. Electron. Agric. 2018, 150, 52–61. [Google Scholar] [CrossRef]
Species | Body Length Range /mm | Number of Images | ||
---|---|---|---|---|
Training Set | Validation Set | Test Set | ||
Grass carp | 347~399 | 1200 | 300 | 150 |
Snakehead | 149~399 | 1200 | 300 | 150 |
Crucian carp | 145~227 | 1200 | 300 | 150 |
Perch | 167~253 | 1200 | 300 | 150 |
Catfish | 166~431 | 1200 | 300 | 150 |
The mix | / | 1200 | 300 | 150 |
Total | / | 7200 | 1800 | 900 |
Layer Name | Operation | Numbers of Execution | Kernel | Stride | Output Size |
---|---|---|---|---|---|
Layer 1 | Conv 2d | 1 | 7 × 7 | 2 | 96 × 96 × 64 |
Max pooling | 1 | 3 × 3 | 2 | ||
Layer 2 | Conv block | 3 | 1 × 1 | 2/1 | 48 × 48 × 128 |
3 × 3, group = 32 | 1 | ||||
1 × 1 | 1 | ||||
Layer 3 | Conv block | 4 | 1 × 1 | 2/1 | 24 × 24 × 256 |
3 × 3, group = 32 | 1 | ||||
1 × 1 | 1 | ||||
Layer 4 | Conv block | 6 | 1 × 1 | 2/1 | 12 × 12 × 512 |
3 × 3, group = 32 | 1 | ||||
1 × 1 | 1 | ||||
Layer 5 | Conv block | 3 | 1 × 1 | 2/1 | 6 × 6 × 1024 |
3 × 3, group = 32 | 1 | ||||
1 × 1 | 1 |
Configuration | Parameter |
---|---|
CPU | Intel(R) Xeon(R) CPU 2.30 GHz |
GPU | NVIDIA Tesla P100 16 G |
IDE | PyCharm |
Operating System | Windows 10 |
Computing Toolkit | CUDA 11.1 with CUDNN 8.2 |
Initial Learning Rate | Bounding Box | Key Points | ||
---|---|---|---|---|
mAP | mAR | mAP | mAR | |
0.01 | 0.861 | 0.805 | 0.993 | 0.999 |
0.005 | 0.873 | 0.807 | 0.990 | 0.998 |
0.001 | 0.777 | 0.735 | 0.967 | 0.996 |
Decay Factor | Bounding Box | Key Points | ||
---|---|---|---|---|
mAP | mAR | mAP | mAR | |
0.66 | 0.790 | 0.742 | 0.984 | 0.999 |
0.5 | 0.873 | 0.807 | 0.990 | 0.998 |
0.33 | 0.837 | 0.781 | 0.984 | 0.998 |
Model Size | Bounding Box | Key Points | |||
---|---|---|---|---|---|
mAP | mAR | mAP | mAR | ||
ResNet + FPN | 26.799 M | 0.835 | 0.778 | 0.967 | 0.989 |
ResNet + BIC-PANet | 28.243 M | 0.833 | 0.782 | 0.981 | 0.999 |
ResNeXt + FPN | 27.611 M | 0.858 | 0.798 | 0.991 | 0.999 |
ResNeXt + BIC-PANet | 29.054 M | 0.873 | 0.807 | 0.990 | 0.998 |
Species | Precision/% | Recall/% | F1-Score/% |
---|---|---|---|
Grass carp | 95.29 | 95.79 | 95.54 |
Snakehead | 97.12 | 96.43 | 96.77 |
Crucian carp | 94.02 | 93.51 | 93.77 |
Perch | 94.48 | 93.20 | 93.84 |
Catfish | 95.17 | 96.50 | 95.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Tan, H.; Tong, M.; Zhou, D.; Li, Y.; Zhu, M. An Automatic Recognition Method for Fish Species and Length Using an Underwater Stereo Vision System. Fishes 2022, 7, 326. https://doi.org/10.3390/fishes7060326
Deng Y, Tan H, Tong M, Zhou D, Li Y, Zhu M. An Automatic Recognition Method for Fish Species and Length Using an Underwater Stereo Vision System. Fishes. 2022; 7(6):326. https://doi.org/10.3390/fishes7060326
Chicago/Turabian StyleDeng, Yuxuan, Hequn Tan, Minghang Tong, Dianzhuo Zhou, Yuxiang Li, and Ming Zhu. 2022. "An Automatic Recognition Method for Fish Species and Length Using an Underwater Stereo Vision System" Fishes 7, no. 6: 326. https://doi.org/10.3390/fishes7060326
APA StyleDeng, Y., Tan, H., Tong, M., Zhou, D., Li, Y., & Zhu, M. (2022). An Automatic Recognition Method for Fish Species and Length Using an Underwater Stereo Vision System. Fishes, 7(6), 326. https://doi.org/10.3390/fishes7060326