Expression of Ion Transporters and Na+/K+-ATPase and H+-ATPase Activities in the Gills and Kidney of Silver Catfish (Rhamdia quelen) Exposed to Different pHs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Handling Conditions
2.2. Experimental Conditions
2.3. Sample Collection and Analysis
2.4. Expression of Genes Related to Ion and Ammonia Transport
2.5. Determination of NKA and H+-ATPase Activities
2.6. Phylogenetic Trees
2.7. Statistical Analysis
3. Results
3.1. Phylogenetic Comparisons of the Sequences
3.2. Gene Expression
3.3. NKA and H+-ATPase Activities
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Acronyms
atp1a1 | sodium/potassium-transporting ATPase subunit alpha-1 |
Atp1a1 | Sodium/potassium-transporting ATPase |
atp2b2 | Plasma membrane Ca2+ transporting ATPase 2 (previously known as pmca2) |
Atp2b2 | Plasma membrane Ca2+ transporting ATPase 2 |
atp6v1aa | ATPase H+ transporting V1 domain |
Atp6v1aa | V-type proton ATPase V1 |
atp6v0a1b | ATPase H+ transporting V0 subunit a1b |
Atp6v0a1b | V-type proton ATPase subunit a1 isoform b |
atp6v0a2a | ATPase H+ transporting V0 subunit a2a |
Atp6v0a2a | V-type proton ATPase subunit a2 isoform a |
atp6v0a2b | ATPase H+ transporting V0 subunit a2b |
Atp6v0a2b | V-type proton ATPase subunit a2 isoform b |
atp6v0ca | ATPase H+ transporting V0 subunit c |
Atp6v0ca | V-type proton ATPase proteolipid subunit |
rhbg | Rh family B glycoprotein |
Rhbg | Ammonium transporter Rh type B |
rhcg1 | Rh family C glycoprotein 1 |
Rhcg1 | Ammonium transporter Rh type C-like 1 |
rhcg2 | Rh family type C glycoprotein 2 |
Rhcg2 | Ammonium transporter Rh type C 2 |
slc4a4b | solute carrier family 4 member 4b (previously known as nbc) |
Slc4a4b | solute carrier family 4 member 4b (Na-HCO3 cotransporter) |
slc8a | solute carrier family 8 (previously known as ncx) |
Slc8a | solute carrier family 8 (Na/Ca exchanger) |
slc9a2 | solute carrier family 9 member 2 (previously known as nhe2) |
Slc9a2 | solute carrier family 9 member 2 (sodium/hydrogen exchanger) |
slc9a3 | solute carrier family 9 member 3 |
Slc9a3 | Sodium/hydrogen exchanger (Previously known as Nhe3b) |
slc12a2 | solute carrier family 12 member 2 (previously known as nkcc1) |
Slc12a2 | Solute carrier family 12 member 2 (previously known as Na-K-Cl cotransporter 1) |
slc12a4 | solute carrier family 12 member 4 |
Slc12a4 | Solute carrier family 12 member 4 (Potassium/chloride transporter) |
slc12a6 | solute carrier family 12 member 6 |
Slc12a6 | Solute carrier family 12 member 6 (Potassium/chloride transporter) (previously known as Electroneutral potassium-chloride cotransporter 3, or K-Cl cotransporter 3, Kcc3) |
slc12a7a | solute carrier family 12 member 7a |
Slc12a7a | Solute carrier family 12 member 7a (Potassium/chloride transporter) (previously known as Electroneutral potassium-chloride cotransporter 4, K-Cl cotransporter 4, Kcc4) |
slc12a7b | solute carrier family 12 member 7b |
Slc12a7b | Solute carrier family 12 member 7b (Potassium/chloride transporter) (previously known as Electroneutral potassium-chloride cotransporter 4, K-Cl cotransporter 4, Kcc4) |
slc12a10 | solute carrier family 12 member 10 |
Slc12a10 | Solute carrier family 12 member 10 (previously known as Ncc) |
References
- Dymowska, A.K.; Hwang, P.P.; Goss, G.G. Structure and function of ionocytes in the freshwater fish gill. Respir. Physiol. Neurobiol. 2012, 184, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Hwang, P.P.; Lin, L.Y. Gill ion transport, acid-base regulation and nitrogen excretion. In The Physiology of Fishes, 4th ed.; Evans, D.H., Claiborne, J.B., Currie, S., Eds.; CRC: Boca Raton, FL, USA, 2014; pp. 205–233. [Google Scholar]
- Zimmer, A.M.; Perry, S.F. Physiology and aquaculture: A review of ion and acid-base regulation by the gills of fishes. Fish Fish. 2022, 23, 874–898. [Google Scholar] [CrossRef]
- Robertson, L.M.; Wood, C.M. Measuring gill paracellular permeability with polyethylene glycol-4000 in freely swimming trout: Proof of principle. J. Exp. Biol. 2014, 217, 1425–1429. [Google Scholar] [PubMed]
- Chasiostis, H.; Kolorov, D.; Bui, P.; Kelly, S.P. Tight junctions, tight junction proteins and paracellular permeability across the gill epithelium of fishes: A review. Respir. Physiol. Neurobiol. 2012, 184, 282–292. [Google Scholar]
- Hwang, P.P.; Lee, T.H. New insights into fish ion regulation and mitocondrion-rich cells. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 148, 479–497. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.H.; Piermarini, P.M.; Choe, K.P. The multifuncional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 2005, 85, 97–177. [Google Scholar] [CrossRef] [PubMed]
- Hwang, P.P.; Lee, T.H.; Lin, L.Y. Ion regulation in fish gills: Recent progresses in the cellular and molecular mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, 28–47. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, J.; Ndugwa, M.; Caneos, W.; Boeck, G. Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. Aquat. Toxicol. 2019, 212, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Atli, G.; Canli, M. Essential metal (Cu, Zn) exposures the activity of ATPases in gill, kidney and muscle of tilapia Oreochromis niloticus. Ecotoxicology 2011, 20, 1861–1869. [Google Scholar] [CrossRef] [PubMed]
- Breves, J.P.; Starling, J.A.; Popovski, C.M.; Doud, J.M.; Tipsmark, C.K. Salinity-dependent expression of ncc2 in opercular epithelium and gill of mummichog (Fundulus heteroclitus). J. Comp. Physiol. B 2020, 190, 219–230. [Google Scholar] [CrossRef]
- Takvam, M.; Wood, C.M.; Kryvi, H.; Nilsen, T.O. Ion transporters and osmorregulation in the kidney of teleost fishes as a function of salinity. Front. Physiol. 2021, 12, 664588. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.H. Freshwater fish gill ion transport: August Krogh to morpholinos and microprobes. Acta Physiol. 2011, 202, 349–359. [Google Scholar] [CrossRef]
- Nebel, C.L.; Boulo, V.; Bodinier, C.; Charmantier, G. The Na+/K+/2Cl− cotransporter in the sea bass Dicentrarchus labrax during ontogeny: Involvement in osmoregulation. J. Exp. Biol. 2006, 209, 4908–4922. [Google Scholar] [CrossRef] [PubMed]
- Parra, J.E.G.; Baldisserotto, B. Effect of water pH and hardness on survival and growth of freshwater teleosts. In Fish Osmoregulation; Baldisserotto, B., Mancera, J.M., Kapoor, B.G., Eds.; Science Publishers: Boca Raton, FL, USA, 2007; pp. 135–150. [Google Scholar]
- Baldisserotto, B. Water pH and hardness affect growth of freshwater teleosts. Braz. J. Anim. Sci. 2011, 40, 138–144. [Google Scholar]
- Wilkie, M.P.; Wood, C.M. The adaptations of fish to extremely alkaline environments. Comp. Biochem. Physiol. Part B 1996, 113, 665–673. [Google Scholar] [CrossRef]
- Bolner, K.C.S.; Baldisserotto, B. Water pH and urinary excretion in silver catfish Rhamdia quelen. J. Fish Biol. 2007, 70, 50–64. [Google Scholar] [CrossRef]
- Baldisserotto, B.; Copatti, C.E.; Gomes, L.C.; Chagas, E.C.; Brinn, R.P.; Roubach, R. Net ion fluxes in the facultative air-breather Hoplosternum littorale (tamoata) and the obligate air-breather Arapaima gigas (pirarucu) exposed to different Amazonian waters. Fish. Physiol. Biochem. 2008, 34, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Baldisserotto, B.; Copatti, C.E.; Gomes, L.C.; Chagas, E.; Brinn, R.P.; Roubach, R. Calcium fluxes in Hoplosternum littorale (tamoata) exposed to different types of Amazonian waters. Neotrop. Ichthyol. 2009, 7, 465–470. [Google Scholar] [CrossRef]
- Freda, J.; McDonald, D.G. Physiological correlates of interspecific variation in acid tolerance in fish. J. Exp. Biol. 1998, 136, 243–258. [Google Scholar] [CrossRef]
- Gonzalez, R.J. Ion regulation in ion poor waters of low pH. In Physiology and Biochemistry of the Fishes of the Amazon; Val, A.L., Almeida-Val, V.M.F., Randall, D.J., Eds.; INPA: Manaus, Brazil, 1996; pp. 111–121. [Google Scholar]
- Wood, C.M. Toxic responses of the gill. In Target Organ Toxicity in Marine and Freshwater Teleosts: Organs; Schlenk, D., Benson, W.H., Eds.; Taylor & Francis: New York, NY, USA, 2001; Volume 1, pp. 33–37. [Google Scholar]
- Heath, A.G. Water Pollution and Fish Physiology, 2nd ed.; Lewis Publishers: Boca Raton, FL, USA, 1995. [Google Scholar]
- Xu, J.; Li, J.T.; Jiang, Y.L.; Peng, W.Z.; Yao, Z.L.; Chen, B.H. Genomic basis of adaptive evolution: The survival of Amur Ide (Leuciscus waleckii) in an extremely alkaline environment. Mol. Biol. Evol. 2017, 34, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.M.; Zhao, X.F.; Liew, H.J.; Sun, B.; Wang, S.Y.; Luo, L.; Zhang, L.M.; Liang, L.Q. Effects of bicarbonate stress on serum ions and gill transporters in alkali and freshwater forms of Amur Ide (Leuciscus waleckii). Front. Physiol. 2021, 12, 676096. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.A.; Wood, C.M. Seven things fish know about ammonia and we don’t. Respir. Physiol. Neurobiol. 2012, 184, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.A.; Rodela, T.M.; Richards, J.G. The effects of strain and ploidy on the physiological response of rainbow trout (Oncorhynchus mykiss) to pH 9.5 exposure. Comp. Biochem. Physiol. Part B 2015, 183, 22–29. [Google Scholar] [CrossRef]
- Yesaki, T.; Iwama, G.K. Survival, acid-base regulation, ion regulation and ammonia excretion in rainbow trout in highly alkaline hard water. Physiol. Biochem. Zool. 1992, 65, 763–787. [Google Scholar] [CrossRef]
- Gomes, L.C.; Golombieski, J.I.; Gomes, A.R.C.; Baldisserotto, B. Biologia do jundiá Rhamdia quelen (TELEOSTEI, PIMELODIDAE). Ciência Rural. 2000, 10, 179–185. [Google Scholar] [CrossRef]
- Zaions, M.I.; Baldisserotto, B. Na+ and K+ body levels and survival of juveniles of Rhamdia quelen (Siluriformes, Pimelodidae) exposed to acute changes of water pH. Ciência Rural. 2000, 30, 1041–1045. [Google Scholar] [CrossRef]
- Lemos, C.H.P.; Ribeiro, C.V.M.; Oliveira, C.P.B.; Couto, R.D.; Copatti, C.E. Effects of interaction between pH and stocking density on the growth, haematological and biochemical response of Nile tilapia juveniles. Aquaculture 2018, 495, 62–67. [Google Scholar] [CrossRef]
- Lemos, C.H.P.; Chung, S.; Ribeiro, C.V.M.; Copatti, C.E. Growth and biochemical variables in Amazon catfish (Pseudoplatystoma reticulatum ♀ x Leiarius marmoratus ♂) under different water pH. An. Braz. Acad. Sci. 2018, 90, 3573–3581. [Google Scholar] [CrossRef]
- Copatti, C.E.; Baldisserotto, B.; Souza, C.F.; Monserrat, J.M.; Garcia, L.O. Water pH and hardness alter ATPase and oxidative stress in the gills and kidney of Pacu (Piaractus mesopotamicus). Neotrop. Ichthyol. 2019, 17, e190032. [Google Scholar] [CrossRef]
- Copatti, C.E.; Garcia, L.O.; Cunha, M.A.; Baldisserotto, B.; Kochhann, D. Interaction of water hardness and pH on growth of silver catfish, Rhamdia quelen, juveniles. J. World. Aquac. Soc. 2011, 42, 580–585. [Google Scholar] [CrossRef]
- Cunha, M.A.; Zeppenfeld, C.C.; Garcia, L.O.; Loro, V.L.; Fonseca, M.B.; Emanuelli, T.; Veeck, A.P.L.; Copatti, C.E.; Baldisserotto, B. Anesthesia of silver catfish with eugenol: Time of induction, cortisol response and sensory analysis of fillet. Ciência Rural. 2010, 40, 2107–2114. [Google Scholar] [CrossRef]
- Souza, C.F.; Descovi, S.; Baldissera, M.D.; Bertolin, K.; Bianchini, A.; Mourão, R.H.V.; Schmidt, D.; Heinzmann, B.M.; Antoniazzi, A.; Baldisserotto, B.; et al. Involvement of HPI-axis in anesthesia with Lippia alba essential oil citral and linalool chemotypes: Gene expression in the secondary responses in silver catfish. Fish Physiol. Biochem. 2019, 45, 155–166. [Google Scholar] [CrossRef]
- Baldisserotto, B.; Martos-Sitcha, J.A.; Menezes, C.C.; Toni, C.; Prati, R.L.; Garcia, L.O.; Salbego, J.; Mancera, J.M.; Martínez-Rodríguez, G. The effects of ammonia and water hardness on the hormonal, osmoregulatory and metabolic responses of the freshwater silver catfish Rhamdia quelen. Aquat. Toxicol. 2014, 152, 341–352. [Google Scholar] [CrossRef]
- Hiroi, J.; McCormick, S.D.; Ohtani-Kaneko, R.; Kaneko, T. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase Na+/K+/2Cl− cotransporter and CFTR anion channel. J. Exp. Biol. 2005, 208, 2023–2036. [Google Scholar] [CrossRef]
- Inokuchi, M.; Hiroi, J.; Watanabe, S.; Hwang, P.P.; Kaneko, T. Morphological and functional classification of ion-absorbing mitochondria-rich cells in the gills of Mozambique tilapia. J. Exp. Biol. 2009, 212, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Lee, K.M.; Inokuchi, M.; Kaneko, T. Acute responses of gill mitochondria-rich cells in Mozambique tilapia Oreochromis mossambicus following transfer from normal freshwater to deionized freshwater. Fish. Sci. 2010, 76, 101–109. [Google Scholar] [CrossRef]
- Zikos, A.; Seale, A.P.; Lerner, D.T.; Grau, E.G.; Korsmeyer, K.E. Effects of salinity on metabolic rate and branchial expression of genes involved in ion transport and metabolism in Mozambique tilapia (Oreochromis mossambicus). Comp. Biochem. Physiol. A 2014, 178, 121–131. [Google Scholar] [CrossRef]
- Pavlosky, K.K.; Yamaguchi, Y.; Lerner, D.T.; Seale, A.P. The effects of transfer from steady-state to tidally-changing salinities on plasma and branchial osmoregulatory variables in adult Mozambique tilapia. Comp. Biochem. Physiol. A 2019, 227, 134–145. [Google Scholar] [CrossRef]
- Breves, J.P.; Nelson, N.N.; Koltenyuk, V.; Petro-Sakuma, C.K.; Celino-Brady, F.T.; Sele, A.P. Enhanced expression of ncc1 and clc2c in the kidney and urinary bladder accompanies freshwater acclimation in Mozambique tilapia. Comp. Biochem. Physiol. A 2021, 260, 111021. [Google Scholar] [CrossRef]
- Shih, T.H.; Horng, J.L.; Liu, S.T.; Hwanh, P.P.; Lin, L.Y. Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, 84–93. [Google Scholar] [CrossRef]
- Guh, Y.J.; Lin, C.H.; Hwang, P.P. Osmoregulation in zebrafish: Ion transport mechanisms and functional regulation. EXCLI J. 2015, 4, 627–659. [Google Scholar]
- Ivanis, G.; Esbaugh, A.J.; Perry, S.F. Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid–base regulation in freshwater rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 2008, 211, 2467–2477. [Google Scholar] [CrossRef]
- Scott, G.R.; Richards, J.G.; Forbush, B.; Isenring, P.; Schulte, P.M. Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am. J. Physiol. 2004, 287, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T. Analysis relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, 2002–2007. [Google Scholar] [CrossRef]
- Vandesompele, J.; Preter, K.; Pattyn, F.; Poppe, B.; Roy, N.V.; Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, 34.1–34.11. [Google Scholar] [CrossRef]
- Ruiz-Jarabo, I.; González-Wevar, C.A.; Oyarzún, R.; Fuentes, J.; Poulin, E.; Bertrán, C. Isolation driven divergence in osmoregulation in Galaxias maculatus (Jenyns, 1848) (Actinopterygii: Osmeriformes). PLoS ONE 2016, 11, e0154766. [Google Scholar] [CrossRef]
- Furukawa, F.; Watanabe, S.; Kakumura, K.; Hiroi, J.; Kaneko, T. Gene expression and cellular localization of ROMKs in the gills and kidney of Mozambique tilapia acclimated to fresh water with high potassium concentration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, 1303–1312. [Google Scholar] [CrossRef]
- Goss, G.G.; Wood, C.M. Na+ and C1 uptake kinetics, diffusive effluxes, and acidic equivalent fluxes across the gills of rainbow trout: I. Responses to environmental hyperoxia. J. Exp. Biol. 1990, 152, 521–547. [Google Scholar] [CrossRef]
- Goss, G.G.; Wood, C.M. Na+ and Cl− uptake kinetics, diffusive effluxes, and acidic equivalent fluxes across the gills of rainbow trout: II. Responses to bicarbonate infusion. J. Exp. Biol. 1990, 152, 549–571. [Google Scholar] [CrossRef]
- Morgan, J.D.; Iwama, G.K. Effects of salinity on growth metabolism and ion regulation in juvenille rainbow and steelhead trout (Oncorhychus mykiss) and fall Chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 2011, 48, 2083–2094. [Google Scholar] [CrossRef]
- Imsland, A.; Gunnarsson, S.; Foss, A.; Stefansson, S.O. Gill Na+/K+-ATPase activity, plasma chloride and osmolality in juvenile turbot (Scophthalmus maximus) reared at different temperatures and salinities. Aquaculture 2003, 218, 671–683. [Google Scholar] [CrossRef]
- Wood, C.M.; Milligan, C.L.; Walsh, P.J. Renal responses of trout to chronic respiratory and metabolic acidosis and metabolic alkalosis. Am. J. Physiol.-Reg. Integr. Comp. Physiol. 1999, 277, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Bolner, K.C.S.; Copatti, C.E.; Rosso, F.L.; Loro, V.L.; Baldisserotto, B. Water pH and metabolic parameters in silver catfish (Rhamdia quelen). Biochem. Syst. Ecol. 2014, 56, 202–208. [Google Scholar] [CrossRef]
- Wright, P.A.; Wood, C.M.; Wilson, J.M. Rh versus pH: The role of Rhesus glycoproteins in renal ammonia excretion during metabolic acidosis in a freshwater teleost fish. J. Exp. Biol. 2014, 16, 2855–2865. [Google Scholar]
- Perry, S.F.; Furimsky, M.; Bayaa, M.; Georgalis, T.; Shahsavarani, A.; Nickerson, J.G.; Moon, T.W. Integrated responses of Na+/HCO3) cotransporters and V-type H+-ATPases in the fish gill and kidney during respiratory acidosis. Biochim. Biophys. Acta 2003, 1618, 175–184. [Google Scholar] [CrossRef]
- Perry, S.F.; Shahsavarani, A.; Georgalis, T.; Bayaa, M.; Furimsky, M.; Thomas, S.L. Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: Their role in ionic and acid-base regulation. J. Exp. Zool. A 2003, 300, 53–62. [Google Scholar] [CrossRef]
- Shir-Mohammadi, K.; Perry, S.F. Expression of ion transport genes in ionocytes isolated from larval zebrafish (Danio rerio) exposed to acidic or Na+-deficient water. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 319, 412–4277. [Google Scholar] [CrossRef]
- Katoh, F.; Hyodo, S.; Kaneko, T. Vacuolar-type proton pump in the basolateral plasma membrane energizes ion uptake in branchial mitochondria-rich cells of killifish Fundulus heteroclitus, adapted to a low ion environment. J. Exp. Biol. 2003, 206, 793–803. [Google Scholar] [CrossRef]
- Blondeau-Bidet, E.; Hiroi, J.; Lorin-Nebel, C. Ion uptake pathways in European sea bass Dicentrarchus labrax. Gene 2019, 692, 126–137. [Google Scholar] [CrossRef]
- Hirata, T.; Kaneko, T.; Ono, T.; Nakazato, T.; Furukawa, N.; Hasegawa, S.; Wakabayashi, S.; Shigekawa, M.; Chang, M.H.; Romero, M.F. Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am. J. Physiol. 2003, 284, 1199–1212. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.J.; Chou, M.Y.; Kaneko, T.; Hwang, P.P. Gene expression of Na+/H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am. J. Physiol. Cell. Physiol. 2007, 293, C1814–C1823. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.C.; Horng, J.L.; Liu, S.T.; Hwang, P.P.; Wen, Z.H.; Lin, C.S.; Lin, L.Y. Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am. J. Physiol. Cell. Physiol. 2010, 298, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.Y.; Mekuchi, M.; Teranishi, K.; Kaneko, T. Expression of ion transporters in gill mitochondrion-rich cells in Japanese eel acclimated to a wide range of environmental salinity. Comp. Biochem. Physiol. Part A 2013, 166, 323–332. [Google Scholar]
- Edwards, S.L.; Wall, B.P.; Shetlar-Morrison, A.; Sligh, S.; Weakley, J.C.; Claiborne, J.B. The effect of environmental hypercapnia and salinity on the expression of NHE-like isoforms in the gills of a euryhaline fish (Fundulus heteroclitus). J. Exp. Zool. A 2010, 303, 464–475. [Google Scholar] [CrossRef]
- Zimmer, A.M.; Nawata, C.M.; Wood, C.M. Physiological and molecular analysis of the interactive effects of feeding and high environmental ammonia on branchial ammonia excretion and Na+ uptake in freshwater rainbow trout. J. Comp. Physiol. B 2010, 180, 1191–1204. [Google Scholar] [CrossRef]
- Zimmer, A.M.; Wilson, J.M.; Wright, P.A.; Hiroi, J.; Wood, C.M. Different mechanisms of Na+ uptake and ammonia excretion by the gill and yolk sac epithelium of early life stage rainbow trout. J. Exp. Biol. 2017, 220, 775–786. [Google Scholar] [CrossRef]
- Nawata, C.M.; Hung, C.C.Y.; Tsui, T.K.N.; Wilson, J.M.; Wright, P.A.; Wood, C.M. Ammonia excretion in rainbow trout (Oncorhynchus mykiss): Evidence for Rh glycoprotein and H+-ATPase involvement. Physiol. Genom. 2007, 31, 463–474. [Google Scholar] [CrossRef]
- Wright, P.A.; Wood, C.M. A new paradigm for ammonia excretion in aquatic animals: Role of Rhesus (Rh) glycoproteins. J. Exp. Biol. 2009, 212, 2303–2312. [Google Scholar] [CrossRef]
- Furukawa, F.; Watanabe, S.; Kimura, S.; Kaneko, T. Potassium excretion through ROMK potassium channel expressed in gill mitochondrion-rich cells of Mozambique tilapia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, 568–576. [Google Scholar] [CrossRef]
- Marshall, W.S.; Ossum, C.G.; Hoffmann, E.K. Hypotonic shock mediation by p38 MAPK, JNK, PKC, FAK, OSR1 and SPAK in osmosensing chloride secreting cells of killifish opercular epithelium. J. Exp. Biol. 2005, 208, 1063–1077. [Google Scholar] [CrossRef]
- Martos-Sitcha, J.A.; Campinho, M.A.; Mancera, J.M.; Martínez-Rodriguez, G.; Fuentes, J. Vasotocin and isotocin regulate aquaporin 1 function in the sea bream. J. Exp. Biol. 2015, 218, 684–693. [Google Scholar] [CrossRef]
- Marshall, W.S. Na+, Cl−, Ca2+, and Zn2+ transport by fish gills: Retrospective review and prospective synthesis. J. Exp. Zool. 2002, 293, 264–283. [Google Scholar] [CrossRef]
- Cutler, C.P.; Cramb, G. Two isoforms of the Na+/K+/2Cl− cotransporter are expressed in the European eel (Anguilla anguilla). Biochim. Biophys. Acta 2002, 1566, 92–103. [Google Scholar] [CrossRef]
- Baldisserotto, B.; Mimura, O.M. Ion transport across the isolated intestinal mucosa of Anguilla anguilla (Pisces). Comp. Biochem. Phys. A 1994, 108, 297–302. [Google Scholar] [CrossRef]
- Martos-Sitcha, J.A.; Wunderink, Y.S.; Gozdowska, M.; Kulczykowska, E.; Mancera, J.M.; Martínez-Rodríguez, G. Vasotocinergic and isotocinergic systems in the gilthead sea bream (Sparus aurata): An osmoregulatory story. Comp. Biochem. Physiol. Part A 2013, 166, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.M.; Robertson, L.M.; Johannsson, O.E.; Val, A.L. Mechanisms of Na+ uptake, ammonia excretion, and their potential linkage in native Rio Negro tetras (Paracheirodon axelrodi, Hemigrammus rhodostomus, and Moenkhausia diktyota). J. Comp. Physiol. B 2014, 184, 877–890. [Google Scholar] [CrossRef]
- Golombieski, J.I.; Koakoski, G.; Becker, A.J.; Almeida, A.P.G.; Toni, C.; Finamor, I.A.; Pavanato, M.A.; Almeida, T.M.; Baldisserotto, B. Nitrogenous and phosphorus excretions in juvenile silver catfish (Rhamdia quelen) exposed to different water hardness, humic acid, and pH levels. Fish Physiol. Biochem. 2013, 39, 837–849. [Google Scholar] [CrossRef]
- Kumai, Y.; Perry, S.F. Ammonia excretion via Rhcg1 facilitates Na+ uptake in larval zebrafish, Danio rerio, in acidic water. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, 1517–1528. [Google Scholar] [CrossRef] [PubMed]
Primer | Nucleotide Sequence (5′ → 3′) | Amplicon | Gills | Kidney | Accession Number | ||
---|---|---|---|---|---|---|---|
Size (bp) | E (%) | R2 | E (%) | R2 | |||
actbF | CCACCTTCAACTCCATCATGAA | 100 | 100.0 | 0.995 | 107.6 | 0.983 | KC195970.1 |
actbR | GCAATGCCAGGGTACATGGT | ||||||
atp1a1F | ACCTGTGCTTTGTTGGACTCA | 137 | 93.9 | 0.995 | 110.0 | 0.987 | KT005453.1 |
atp1a1R | AATGGCTTTAGCTGTGATTGGA | ||||||
atp6v0a1bF | TTTCCCATTTCGTTCTTTCG | 117 | 96.0 | 0.980 | 108.9 | 0.985 | MZ041102 |
atp6v0a1bR | GTCCACGGGTAGTGAGAGGA | ||||||
atp6v0a2bF | TGCAAATCATAGCGAAGTGG | 129 | 110.0 | 0.990 | 98.4 | 0.988 | MZ041103 |
atp6v0a2bR | CCAATCAGCTTCCAGACTCA | ||||||
atp6v0a2aF | GCAGGTGTTTCTTCTGGTCA | 132 | 110.0 | 0.987 | 90.5 | 0.980 | MZ041104 |
atp6v0a2aR | CGCCGAACTCTTTCATAACC | ||||||
eef1aF | GCTTCCTTGCTCAGGTCATC | 127 | 102.2 | 0.998 | 100.1 | 0.991 | MH107165 |
eef1aR | CGGTCGATCTTCTCCTTGAG | ||||||
slc12a6F | CTCTCTCTTTCCCGCCAAC | 140 | 100.5 | 0.996 | 106.3 | 0.996 | MZ041107 |
slc12a6R | TACGCATCCCGCACTTAC | ||||||
slc12a7aF | TCATATTACATGATTTCCAGGGC | 178 | 90.3 | 0.999 | 100.3 | 0.992 | MZ041108 |
slc12a7aR | CCCGCATGTTATTCAGTTG | ||||||
slc12a7bF | TCGTATTACATGATCTCTAGGTC | 205 | 105.3 | 0.989 | 99.6 | 0.983 | MZ041109 |
slc12a7bR | CTCGCATGTTGTTCAGCAT | ||||||
slc9a3F | ACCAACCAACCAGGAGTGT | 142 | 109.2 | 0.999 | 98.4 | 0.984 | MZ041110 |
slc9a3R | GAAGCATTGTGTCAGGTAGAGA | ||||||
slc12a2F | AATCAAAGCAACAGCAAGGA | 237 | 108.6 | 0.986 | 105.6 | 0.991 | MZ041111 |
slc12a2R | CAGCAACACCCACATAGACG | ||||||
rhbgF | CAGCCGTAGCAAGTGATGC | 129 | 95.6 | 0.994 | 96.4 | 0.996 | MZ041101 |
hbgR | CCATTCCAAGAGTGACAGCA | ||||||
slc12a4F | TTCCTTCTCAAACAGCACAA | 150 | 100 | 0.980 | 110.0 | 0.987 | MZ041106 |
sc12a4R | TTCCACCACCTCCACCTCT |
pH | Dissolved Oxygen (mg L−1) | Temperature (°C) | Total Ammonia (mg L−1) | Na+ (mg L−1) | Cl− (mg L−1) | Hardness (mg CaCO3 L−1) |
---|---|---|---|---|---|---|
5.5 | 6.0 | 22.6 | 0.125 ± 0.01 | 5.3 ± 0.02 | 4.0 ± 0.1 | 22 ± 1.4 |
7.7 | 6.0 | 22.6 | 0.134 ± 0.03 | 5.9 ± 0.01 | 4.0 ± 0.1 | 22 ± 1.4 |
9.0 | 6.0 | 22.6 | 0.120 ± 0.005 | 7.8 ±0.02 | 4.0 ± 0.1 | 22 ± 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marx, M.T.S.; Souza, C.d.F.; Almeida, A.P.G.; Descovi, S.N.; Bianchini, A.E.; Martos-Sitcha, J.A.; Martínez-Rodríguez, G.; Antoniazzi, A.Q.; Baldisserotto, B. Expression of Ion Transporters and Na+/K+-ATPase and H+-ATPase Activities in the Gills and Kidney of Silver Catfish (Rhamdia quelen) Exposed to Different pHs. Fishes 2022, 7, 261. https://doi.org/10.3390/fishes7050261
Marx MTS, Souza CdF, Almeida APG, Descovi SN, Bianchini AE, Martos-Sitcha JA, Martínez-Rodríguez G, Antoniazzi AQ, Baldisserotto B. Expression of Ion Transporters and Na+/K+-ATPase and H+-ATPase Activities in the Gills and Kidney of Silver Catfish (Rhamdia quelen) Exposed to Different pHs. Fishes. 2022; 7(5):261. https://doi.org/10.3390/fishes7050261
Chicago/Turabian StyleMarx, Morgana Tais Streck, Carine de Freitas Souza, Ana Paula Gottlieb Almeida, Sharine Nunes Descovi, Adriane Erbice Bianchini, Juan Antonio Martos-Sitcha, Gonzalo Martínez-Rodríguez, Alfredo Quites Antoniazzi, and Bernardo Baldisserotto. 2022. "Expression of Ion Transporters and Na+/K+-ATPase and H+-ATPase Activities in the Gills and Kidney of Silver Catfish (Rhamdia quelen) Exposed to Different pHs" Fishes 7, no. 5: 261. https://doi.org/10.3390/fishes7050261
APA StyleMarx, M. T. S., Souza, C. d. F., Almeida, A. P. G., Descovi, S. N., Bianchini, A. E., Martos-Sitcha, J. A., Martínez-Rodríguez, G., Antoniazzi, A. Q., & Baldisserotto, B. (2022). Expression of Ion Transporters and Na+/K+-ATPase and H+-ATPase Activities in the Gills and Kidney of Silver Catfish (Rhamdia quelen) Exposed to Different pHs. Fishes, 7(5), 261. https://doi.org/10.3390/fishes7050261