Long-Term Change of a Fish-Based Index of Biotic Integrity for a Semi-Enclosed Bay in the Beibu Gulf
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Samples
2.2. F-IBI Estimation
3. Results
3.1. Dominant Species
3.2. F-IBI Scores
3.3. Trends in the Metrics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Huang, Z.Q.; Li, H.Q.; Zhang, L.; Lie, Y.K. Analysis of General Developing Situation of Marine Fishing Production and Fishery Management in Guangdong. J. Anhui Agric. Sci. 2018, 46, 62–65. [Google Scholar]
- Pan, P.; Li, C.H.; Luo, J.C.; Hu, Y.Y. Research on the variation of the fishing effortment in Beibu Gulf between the People’s Republic of China and the Socialist Repubulic of Vietnam. Chin. Fish. Econ. 2016, 34, 4–9. [Google Scholar]
- Yuan, W.W. Dynamics and succession of demersal resources in Beibu Gulf. J. Fish. Sci. Chin. 1995, 2, 57–65. [Google Scholar]
- Wang, X.H.; Qiu, Y.S.; Du, F.Y.; Lin, Z.J.; Sun, D.R.; Huang, S.L. Spatio-temporal variability of fish diversity and dominant species in the Beibu Gulf. J. Fish. Sci. Chin. 2011, 18, 427–436. [Google Scholar] [CrossRef]
- Karr, J.R. Assessment of biotic integrity using fish communities. Fisheries 1981, 6, 21–27. [Google Scholar] [CrossRef]
- Wang, L.; Lyons, J.; Kanehl, P.; Gatti, R. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 1997, 22, 6–12. [Google Scholar] [CrossRef]
- Rafferty, S.D.; Lybrook, J.; Kaczmarek, K.M.; Lethaby, M.; Wellington, R.; Pyron, M. Assessing changes in the Presque Isle Bay watershed fish community using a modified index of biotic integrity: Before and after the elimination of combine sewer overflows. Environ. Monit. Assess. 2013, 185, 10459–10471. [Google Scholar] [CrossRef]
- Oberdorff, T.; Porcher, J.P. An index of biotic integrity to assess biological impacts of salmonid farm effluents on receiving waters. Aquaculture 1994, 119, 219–235. [Google Scholar] [CrossRef]
- Joy, M.K.; Death, R.G. Application of the index of biotic integrity methodology to New Zealand freshwater fish communities. Environ. Manag. 2004, 34, 415–428. [Google Scholar] [CrossRef]
- Kesminas, V.; Virbickas, T. Application of an adapted index of biotic integrity to rivers of Lithuania. Hydrobiologia 2000, 422–423, 257–270. [Google Scholar] [CrossRef]
- Toham, A.K.; Teugels, G.G. First data on an index of biotic integrity (IBI) based on fish assemblages for the assessment of the impact of deforestation in a tropical West African river system. Hydrobiologia 1999, 397, 29–38. [Google Scholar] [CrossRef]
- Hued, A.C.; Bistoni, M.d.l.Á. Development and validation of a biotic index for evaluation of environmental quality in the central region of Argentina. Hydrobiologia 2005, 543, 279–298. [Google Scholar] [CrossRef]
- Costa, P.F.; Schulz, U.H. The fish community as an indicator of biotic integrity of the streams in the Sinos River basin, Brazil. Braz. J. Biol. 2010, 70, 1195–1205. [Google Scholar] [CrossRef]
- Esteves, K.E.; Alexandre, C.V. Development of an index of biotic integrity based on fish communities to assess the effects of rural and urban land use on a stream in southeastern Brazil. Braz. J. Biol. 2011, 96, 296–317. [Google Scholar]
- Lyons, J.; Gutiérrez-Hernández, A.; Díaz-Pardo, E.; Soto-Galera, E.; Medina-Nava, M.; Pineda-López, R. Development of a preliminary index of biotic integrity (IBI) based on fish assemblages to assess ecosystem condition in the lakes of central Mexico. Hydrobiologia. 2000, 418, 57–72. [Google Scholar] [CrossRef]
- Lin, P.C.; Liu, F.; Gao, X.; Liu, H.Z. Development of a fish index of biotic integrity (F-IBI) and its application to the Chishui River. Freshwater Fish. 2014, 44, 81–86, 92. [Google Scholar]
- Zhang, R.; Xu, B.D.; Xue, Y.; Zhang, C.L.; Ren, Y.P.; Chen, W.L. Evaluation of the biotic integrity of fish communitys in the yellow river estuary and its adjacent waters. J. Fish. Sci. Chin. 2017, 24, 946–952. [Google Scholar]
- Shi, L.; Zhu, H.; Ye, S.W.; Wang, P.Z.; Liu, J.S.; Liu, X.G.; Li, Z.J. Fish assemblage and biotic integrity assessment in Shihoudian Lake. Chin. J. Ecol. 2020, 39, 2646–2656. [Google Scholar]
- Zhang, X.; Zhou, G.D.; Wang, L. Construction of index of biotic integrity and health evaluation of fish in Taihu Lake. Chin. J. Fish. 2020, 33, 25–32. [Google Scholar]
- Lin, Q.; Yuan, W.; Shan, X.J.; Li, Z.Y.; Wang, J. Evaluation on Biological Integrity of Fish in Laizhou Bay. J. Hydroecology 2020, 42, 101–106. [Google Scholar]
- Moncayo-Estrada, R.; Lyons, J.; Escalera-Gallardo, C.; Lind, O.T. Long-term change in the biotic integrity of a shallow tropical lake: A decadal analysis of the Lake Chapala fish community. Lake Reserv. Manag. 2012, 28, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Sparre, P.; Venema, S.C. Introduction to tropical fish stock assessment. In Part I. Manual; FAO: Rome, Italy, 1998. [Google Scholar]
- Chen, Z.Z.; Qiu, Y.S.; Jia, X.P.; Huang, Z.R.; Wang, Y.Z. Structure and function of Beibu Gulf ecosystem based on Ecopath model. J. Fish. Sci. Chin. 2008, 15, 460–468. [Google Scholar]
- Chen, Z.Z.; Qiu, Y.S.; Xu, S.N. Changes in trophic flows and ecosystem properties of the Beibu Gulf ecosystem before and after the collapse of fish stocks. Ocean Coast. Manag. 2011, 54, 601–611. [Google Scholar] [CrossRef]
- Angermeier, P.L.; Schlosser, I.J. Assessing biotic integrity of the fish community in a small Illinois stream. N. Am. J. Fish. Manag. 1987, 7, 331–338. [Google Scholar] [CrossRef]
- Aparicio, E.; Carmona-Catot, G.; Moyle, P.B.; Garc-Berthou, E. Development and evaluation of a fish-based index to assess biological integrity of Mediterranean streams. Aquat. Conserv. 2011, 21, 324–337. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Lin, Z.J.; Qiu, Y.S. Evaluation of sustainability of fisheries resources for South China Sea based on the AHP. J. Nat. Resour. 2010, 25, 249–257. [Google Scholar]
- Su, L.; Chen, Z.Z.; Zhang, K.; Xu, Y.W.; Qiu, Y.S. Establishment of quality status evaluation system of fisheryresources in Beibu Gulf based on bottom trawl survey data. J. Guangdong Ocean U. 2021, 41, 10–16. [Google Scholar]
- Zheng, T.; Tang, Y. Analysis of current status of Chinese marine fishing fleet of South China Sea area. J. Shanghai Ocean. Univ. 2016, 25, 620–627. [Google Scholar]
- Sun, D.R.; Lin, Z.J. Variations of major commercial fish stocks and strategies for fishery management in Beibu Gulf. J. Trop. Oceanogr. 2004, 23, 62–68. [Google Scholar]
- Zou, J.W.; Huang, J.X.; Wang, Q.Z. Assessment on achievements of summer fishing moratorium in coastal fishing grounds in northern Beibu Gulf, 2015. Fish. Inf. Strateg. 2016, 31, 132–138. [Google Scholar]
- Wu, C.H.; Zhang, Y.X.; Liu, W.; Zhao, H.L.; Chen, M. Assessment of the impact of summer fishing moratorium in the offshore fishing grounds of Hainan Island based on landing survey. J. Fish. Res. 2021, 43, 200–206. [Google Scholar]
- Yan, L.P.; Liu, Z.L.; Jin, Y.; Cheng, J.H. Effects of prolonging the trawl net summer fishing moratorium period in the East China Sea on the conservation of fishery resources. J. Fish. Sci. Chin. 2019, 26, 118–123. [Google Scholar] [CrossRef]
- Su, Y.J.; Chen, G.B.; Zhou, Y.B.; Ma, S.W.; Wu, Q.E. Assessment of impact of summer fishing moratorium in South China Sea during 2015−2017. South China Fish. Sci. 2019, 15, 20–28. [Google Scholar]
- Mclean, D.L.; Harvey, E.S.; Meeuwig, J.J. Declines in the abundance of coral trout (Plectropomus leopardus) in areas closed to fishing at the Houtman Abrolhos Islands, Western Australia. J. Exp. Mar. Biol. Ecol. 2011, 406, 71–78. [Google Scholar] [CrossRef]
- Bavinck, M.; Klerk, L.D.; Dijk, D.V.; Rothuizen, J.V.; Blok, A.N.; Bokhorst, J.R. Time–zoning for the safe–guarding of capture fisheries: A closed season in Tamil Nadu, India. Mar. Policy 2008, 32, 369–378. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, Z.Z.; Wang, Y.Z.; Sun, D.R.; Qiu, Y.S. Population structure of Priacanthus macracanthus in the Beibu Gulf, and parameters for its growth, mortality and maturity. J. Trop. Oceanogr. 2016, 35, 20–28. [Google Scholar]
- Zhang, K.; Cai, Y.C.; Liao, B.C.; Jiang, Y.E.; Sun, M.S.; Su, L.; Chen, Z.Z. Population dynamics of threadfin porgy Evynnis cardinalis, an endangered species on IUCN red list in the Beibu Gulf, South China Sea. J. Fish. Biol. 2020, 97, 479–489. [Google Scholar] [CrossRef]
- Geng, P.; Zhang, K.; Chen, Z.Z.; Xu, Y.W.; Sun, M.S. Interannual change in biological traits and exploitation rate of Decapterus maruadsi in Beibu Gulf. South China Fish. Sci. 2018, 14, 1–9. [Google Scholar]
- Chen, Z.Z.; Kong, X.L.; Xu, S.N.; Qiu, Y.S.; Huang, Z.R. Dynamic changes of population parameters of Nemipterus bathybius in the Beibu Gulf. J. Fish. China. 2012, 36, 584–591. [Google Scholar] [CrossRef]
- Wang, M.D.; Wang, X.H.; Sun, D.R.; Wang, Y.Z.; Chen, X.J.; Du, F.Y.; Qiu, Y.S. Assessment of Pennahia macrocephalus stock in Beibu Gulf by length Bayesian biomass estimation method. South China Fish. Sci. 2021, 17, 20–27. [Google Scholar]
- Zhang, K.; Li, J.J.; Hou, G.; Huang, Z.R.; Shi, D.F.; Chen, Z.Z.; Qiu, Y.S. Length-based assessment of fish stocks in a data-poor, jointly exploited (China and Vietnam) fishing ground, northern South China Sea. Front. Mar. Sci. 2021, 8, 718052. [Google Scholar] [CrossRef]
- Qiao, Y.L.; Chen, Z.Z.; Lin, Z.J. Changes of community structure of fishery species during spring and autumn in Beibu Gulf. J. Fish. Sci. Chin. 2008, 15, 816–821. [Google Scholar]
- Wang, X.H.; Qiu, Y.S.; Du, F.Y.; Lin, Z.J.; Sun, D.R.; Huang, S.L. Dynamics of demersal fish species diversity and biomass of dominant species in autumn in the Beibu Gulf, northwestern South China Sea. Acta Ecol. Sin. 2012, 32, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Pauly, D.; Christensen, V.; Dalagaard, J.; Froese, R.; Torres, F.C. Fishing down marine food webs. Science 1998, 279, 860–863. [Google Scholar] [CrossRef]
- Pauly, D.; Palomares, M.A.; Froese, R.; Sa-a, P.; Vakily, M.; Preikshot, D.; Wallace, S. Fishing down Canadian aquatic food webs. Can. J. Fish. Aquat. Sci. 2001, 58, 51–62. [Google Scholar] [CrossRef]
- Arancibia, H.; Neira, S. Long-term changes in the mean trophic level of central Chile fishery landings. Sci. Mar. 2005, 69, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Tang, Q.; Jin, X. Decadal-scale variations of trophic levels at high trophic levels in the Yellow Sea and the Bohai Sea ecosystem. J. Mar. Syst. 2007, 67, 304–311. [Google Scholar] [CrossRef]
- Baeta, F.; Costa, M.J.; Cabral, H. Changes in the trophic level of Portuguese landings and fish market price variation in the last decades. Fish. Res. 2009, 97, 216–222. [Google Scholar] [CrossRef]
- Wang, X.H.; Qiu, Y.S.; Du, F.Y.; Liu, W.D.; Sun, D.R.; Chen, X.; Yuan, W.W.; Chen, Y. Roles of fishing and climate change in long-term fish species succession and population dynamics in the outer Beibu Gulf, South China Sea. Acta. Oceanol. Sin. 2019, 38, 1–8. [Google Scholar] [CrossRef]
- Yang, H. Marine fishery resources management and policy adjustment in China since 1949. Chin. Rur. Econ. 2018, 9, 14–28. [Google Scholar]
- Qin, L.F. Research on the development of Vietnamese marine fishery. Chin. Fish. Econ. 2016, 34, 4–12. [Google Scholar]
- Ren, H.; Yang, T.; Zhang, Z.K. Evolution of marine fish catches in Vietnam and its implication to China. J. Southeast Asian St. 2016, 6, 20–30. [Google Scholar]
Year | 1962 | 1998–1999 | 2006 | 2014–2015 | 2016–2017 |
---|---|---|---|---|---|
Vessel used | Xianfeng | R/V Beidou | Beiyu60011 | Beiyu60011 | Beiyu60011 |
Headrope length (m) | 31 | 42.8 | 37.7 | 37.7 | 37.7 |
Cod end mesh (mm) | 40 | 20 | 39 | 39 | 39 |
Towing speed (knot) | 2.5–3.0 | 2.5–3.5 | 3.0–4.0 | 3.0–4.0 | 3.0–4.0 |
Sampling duration (min) | 60 or 120 | 60 | 60 | 60 | 60 |
Station × frequency | 25 × 4 | 43 × 4 | 38 × 4 | 38 × 4 | 38 × 4 |
Sample date | Feb., May., Aug., and Nov., 1962 | Jan., Aug., and Nov., 1998; Apr., 1999 | Jan., Apr., Jul., and Oct., 2006 | Jul. and Oct., 2014; Jan. and Apr., 2015 | Jul. and Oct., 2016; Jan. and Apr., 2017 |
Category | Metrics | Expected Response to Interference |
---|---|---|
Species richness | M1. Total number of species | decrease |
Trophic level | M2. Percentage of density of nektonic diet species | decrease |
M3. Percentage of density of planktivorous and detritus diet species | increase | |
Fish abundance and compositions | M4. Total annual averaged density of fishes | decrease |
M5. Percentage of density of pelagic species | increase | |
M6. Percentage of density of dominant species | increase | |
Traditional demersal commercial species | M7. Summed density of 12 traditional demersal commercial species | decrease |
M8. Percentage of 12 traditional demersal commercial species | decrease |
Species | The Proportion of Total Catch Density of Fish % | ||||
---|---|---|---|---|---|
1962 | 1998–1999 | 2006 | 2014–2015 | 2016–2017 | |
Lutjanus sanguineus | 14.45 | ||||
Trachiocephalus myops | 5.90 | ||||
Nemipterus virgatus | 5.05 | 1.40 | |||
Upeneus moluccensis | 4.93 | ||||
Therapon theraps | 4.87 | 1.90 | 1.50 | 1.31 | |
Gerres acinaces | 3.56 | ||||
Argyrosomus macrocephalus | 3.50 | 3.08 | |||
Pomadasy hasta | 2.39 | ||||
Priacanthus macracanthus | 2.13 | ||||
Gymnocranius griseus | 1.94 | ||||
Upeneus sulphureus | 1.86 | 2.36 | |||
Caranx malabaricus | 1.86 | ||||
Nemipterus bathybius | 1.44 | ||||
Carcharhinus menisorrah | 1.35 | ||||
Abalistes stellatus | 1.21 | ||||
Decapterus maruadsi | 1.07 | 3.98 | 5.37 | 4.56 | |
Arius thalassinus | 1.05 | ||||
Evynnis cardinalis | 1.05 | 6.23 | 5.08 | 14.24 | 7.74 |
Siganus oramin | 10.81 | ||||
Leiognathus bindus | 8.43 | 4.97 | 1.46 | 1.96 | |
Stolephorus heterlolba | 6.21 | ||||
Trichiurus brevis | 6.10 | ||||
Acropoma japonicum | 5.89 | 25.16 | 16.90 | 17.00 | |
Stolephorus commersonii | 4.70 | ||||
Lutjanus johni | 4.44 | ||||
Saurida tumbil | 4.29 | 1.27 | 2.60 | 2.57 | |
Stolephorus zollingeri | 4.28 | ||||
Saurida undosquamis | 2.58 | ||||
Leiognathus berbis | 2.32 | ||||
Caranx kalla | 1.45 | 4.12 | 1.71 | 2.91 | |
Trichiurus lepturus | 1.40 | 4.31 | 2.00 | 1.04 | |
Leiognathus lineolatus | 1.25 | ||||
Gastrophysus spadiceus | 1.13 | 1.41 | |||
Trachurus japonicus | 13.23 | 12.65 | 16.76 | ||
Pennahia macrocephalus | 3.74 | 3.29 | 1.03 | ||
Leiognathus ruconius | 3.04 | ||||
Apogon carinatus | 1.47 | ||||
Johnius belangerii | 1.12 | 1.29 | 1.42 | ||
Apogonichthys ellioti | 4.75 | 3.67 | |||
Psenopsis anomala | 4.23 | 10.29 | |||
Gnathophis nystromi | 1.62 | 2.45 | |||
muraenesox cinereus | 1.45 | 1.31 | |||
Hippoglossoides dubius | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, L.; Xu, Y.; Qiu, Y.; Sun, M.; Zhang, K.; Chen, Z. Long-Term Change of a Fish-Based Index of Biotic Integrity for a Semi-Enclosed Bay in the Beibu Gulf. Fishes 2022, 7, 124. https://doi.org/10.3390/fishes7030124
Su L, Xu Y, Qiu Y, Sun M, Zhang K, Chen Z. Long-Term Change of a Fish-Based Index of Biotic Integrity for a Semi-Enclosed Bay in the Beibu Gulf. Fishes. 2022; 7(3):124. https://doi.org/10.3390/fishes7030124
Chicago/Turabian StyleSu, Li, Youwei Xu, Yongsong Qiu, Mingshuai Sun, Kui Zhang, and Zuozhi Chen. 2022. "Long-Term Change of a Fish-Based Index of Biotic Integrity for a Semi-Enclosed Bay in the Beibu Gulf" Fishes 7, no. 3: 124. https://doi.org/10.3390/fishes7030124
APA StyleSu, L., Xu, Y., Qiu, Y., Sun, M., Zhang, K., & Chen, Z. (2022). Long-Term Change of a Fish-Based Index of Biotic Integrity for a Semi-Enclosed Bay in the Beibu Gulf. Fishes, 7(3), 124. https://doi.org/10.3390/fishes7030124