Effects of Social Hierarchy Establishment on Stress Response and Cell Phagocytosis in Gilt-Head Sea Bream (Sparus aurata)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Conditions and Behaviour Observation
2.3. Blood Sampling and Peritoneal Cell Preparation
2.4. Plasmatic Biochemical Parameters
2.5. Phagocytosis Assay
2.6. Statistical Analyses
3. Results
3.1. Determination of Social Hierarchy
3.2. Stress Biochemical Profile Related to Social Position
3.3. Phagocytic Activity Related to Social Position
3.4. Principal Component Analysis of Plasmatic Biochemical and Cellular Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Cerqueira, M.; Millot, S.; Felix, A.; Silva, T.; Oliveira, G.A.; Oliveira, C.C.V.; Rey, S.; MacKenzie, S.; Oliveira, R. Cognitive appraisal in fish: Stressor predictability modulates the physiological and neurobehavioural stress response in sea bass. Proc. R. Soc. B Biol. Sci. 2020, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, M.R. One Species with Two Biologies: Atlantic Salmon (Salmo salar) in the Wild and in Aquaculture; IATP: Washington, DC, USA, 1998. [Google Scholar]
- Braithwaite, V.A.; Huntingford, F.A. Fish and welfare: Do fish have the capacity for pain perception and suffering? Anim. Welf. 2004, 13, S87–S92. [Google Scholar]
- Huntingford, F.A. Implications of domestication and rearing conditions for the behaviour of cultivated fishes. J. Fish Biol. 2004, 65, 122–142. [Google Scholar] [CrossRef]
- DeVries, A.C.; Craft, T.K.S.; Glasper, E.R.; Neigh, G.N.; Alexander, J.K. 2006 Curt P. Richter award winner: Social influences on stress responses and health. Psychoneuroendocrinology 2007, 32, 587–603. [Google Scholar] [CrossRef] [PubMed]
- Jerez-Cepa, I.; Ruiz-Jarabo, I. Physiology: An important tool to assess the welfare of aquatic animals. Biology 2021, 10, 61. [Google Scholar] [CrossRef]
- Maguire, S.M.; DeAngelis, R.; Dijkstra, P.D.; Jordan, A.; Hofmann, H.A. Social network dynamics predict hormone levels and behavior in a highly social cichlid fish. Horm. Behav. 2021, 132, 104994. [Google Scholar] [CrossRef]
- Fatsini, E.; Rey, S.; Ibarra-Zatarain, Z.; Mackenzie, S.; Duncan, N.J. Dominance behaviour in a non-aggressive flatfish, Senegalese sole (Solea senegalensis) and brain mRNA abundance of selected transcripts. PLoS ONE 2017, 12, e0184283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnhagen, C.; Borcherding, J. Risk-taking behaviour in foraging perch: Does predation pressure influence age-specific boldness? Anim. Behav. 2008, 75, 509–517. [Google Scholar] [CrossRef]
- Korzan, W.J.; Höglund, E.; Watt, M.J.; Forster, G.L.; Øverli, Ø.; Lukkes, J.L.; Summers, C.H. Memory of opponents is more potent than visual sign stimuli after social hierarchy has been established. Behav. Brain Res. 2007, 183, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Carbonara, P.; Dioguardi, M.; Cammarata, M.; Zupa, W.; Vazzana, M.; Spedicato, M.T.; Lembo, G. Basic knowledge of social hierarchies and physiological profile of reared sea bass Dicentrarchus labrax (L.). PLoS ONE 2019, 14, e0208688. [Google Scholar] [CrossRef] [PubMed]
- Kittilsen, S.; Ellis, T.; Schjolden, J.; Braastad, B.O.; Øverli, Ø. Determining stress-responsiveness in family groups of Atlantic salmon (Salmo salar) using non-invasive measures. Aquaculture 2009, 298, 146–152. [Google Scholar] [CrossRef]
- Mommsen, T.P.; Vijayan, M.M.; Moon, T.W. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fish. 1999, 9, 211–268. [Google Scholar] [CrossRef]
- Tracey, S.R.; Hartmann, K.; Leef, M.; McAllister, J. Capture-induced physiological stress and postrelease mortality for southern bluefin tuna (Thunnus maccoyii) from a recreational fishery. Can. J. Fish. Aquat. Sci. 2016, 73, 1547–1556. [Google Scholar] [CrossRef] [Green Version]
- Alfonso, S.; Gesto, M.; Sadoul, B. Temperature increase and its effects on fish stress physiology in the context of global warming. J. Fish Biol. 2021, 98, 1496–1508. [Google Scholar] [CrossRef]
- Ellis, T.; Yildiz, H.Y.; López-Olmeda, J.; Spedicato, M.T.; Tort, L.; Øverli, Ø.; Martins, C.I.M. Cortisol and finfish welfare. Fish Physiol. Biochem. 2012, 38, 163–188. [Google Scholar] [CrossRef] [PubMed]
- Øverli, Ø.; Pottinger, T.G.; Carrick, T.R.; Øverli, E.; Winberg, S. Brain monoaminergic activity in rainbow trout selected for high and low stress responsiveness. Brain Behav. Evol. 2001, 57, 214–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, J.; Bird, D.J. Modulation of the fish immune system by hormones. Vet. Immunol. Immunopathol. 2000, 77, 163–176. [Google Scholar] [CrossRef]
- Schreck, C.B.; Contreras-Sanchez, W.; Fitzpatrick, M.S. Effects of stress on fish reproduction, gamete quality, and progeny. Aquaculture 2001, 197, 3–24. [Google Scholar] [CrossRef]
- Gilmour, K.M.; DiBattista, J.D.; Thomas, J.B. Physiological causes and consequences of social status in salmonid fish. Integr. Comp. Biol. 2005, 45, 263–273. [Google Scholar] [CrossRef]
- Bessa, E.; Sadoul, B.; Mckenzie, D.J.; Geffroy, B. Group size, temperature and body size modulate the effects of social hierarchy on basal cortisol levels in fishes. Horm. Behav. 2021, 136, 105077. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.F.; Conceição, L.E.C.; Millot, S.; Rey, S.; Bégout, M.L.; Damsgård, B.; Kristiansen, T.; Höglund, E.; Øverli, Ø.; Martins, C.I.M. Coping styles in farmed fish: Consequences for aquaculture. Rev. Aquac. 2017, 9, 23–41. [Google Scholar] [CrossRef] [Green Version]
- Castanheira, M.F.; Herrera, M.; Costas, B.; Conceição, L.E.C.; Martins, C.I.M. Linking cortisol responsiveness and aggressive behaviour in gilthead seabream Sparus aurata: Indication of divergent coping styles. Appl. Anim. Behav. Sci. 2013, 143, 75–81. [Google Scholar] [CrossRef]
- Herrera, M.; Castanheira, M.F.; Conceição, L.E.C.; Martins, C.I. Linking risk taking and the behavioral and metabolic responses to confinement stress in gilthead seabream Sparus aurata. Appl. Anim. Behav. Sci. 2014, 155, 101–108. [Google Scholar] [CrossRef]
- Edeline, E.; Haugen, T.O.; Weltzien, F.A.; Claessen, D.; Winfield, I.J.; Stenseth, N.C.; Asbjørn Vøllestad, L. Body downsizing caused by non-consumptive social stress severely depresses population growth rate. Proc. R. Soc. B Biol. Sci. 2010, 277, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Backström, T.; Winberg, S. Serotonin coordinates responses to social stress—What we can learn from fish. Front. Neurosci. 2017, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Fernandes-de-Castilho, M.; Pottinger, T.G.; Volpato, G.L. Chronic social stress in rainbow trout: Does it promote physiological habituation? Gen. Comp. Endocrinol. 2008, 155, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntingford, F.; Adams, C. Behavioural syndromes in farmed fish: Implications for production and welfare. Behaviour 2005, 142, 1207–1221. [Google Scholar] [CrossRef]
- Conte, F.S. Stress and the welfare of cultured fish. Appl. Anim. Behav. Sci. 2004, 86, 205–223. [Google Scholar] [CrossRef]
- Frimodt, C. Multilingual Illustrated Guide to the World’s Commercial Coldwater Fish; Fishing News Books Ltd.: Oxford, UK, 1995; ISBN 0852382138. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Yearbook of the United Nations 1998; FAO: Rome, Italy, 1998; pp. 1377–1379. [Google Scholar] [CrossRef] [Green Version]
- Goldan, O.; Popper, D.; Karplus, I. Food competition in small groups of juvenile gilthead sea bream (Sparus aurata). Isr. J. Aquac. -Bamidgeh 2003, 55, 94–106. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Nazzaro-Alvarez, J.; Jardí-Pons, A.; Reig, L.; Carella, F.; Carrassón, M.; Roque, A. Linking stocking densities and feeding strategies with social and individual stress responses on gilthead seabream (Sparus aurata). Physiol. Behav. 2020, 213, 112723. [Google Scholar] [CrossRef] [PubMed]
- Cammarata, M.; Vazzana, M.; Accardi, D.; Parrinello, N. Seabream (Sparus aurata) long-term dominant-subordinate interplay affects phagocytosis by peritoneal cavity cells. Brain Behav. Immun. 2012, 26, 580–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero, D.; Lalumera, G.; Izquierdo, M.S.; Caballero, M.J.; Saroglia, M.; Tort, L. Establishment of dominance relationships in gilthead sea bream Sparus aurata juveniles during feeding: Effects on feeding behaviour, feed utilization and fish health. J. Fish Biol. 2009, 74, 790–805. [Google Scholar] [CrossRef] [PubMed]
- Vazzana, M.; Cammarata, M.; Cooper, E.L.; Parrinello, N. Confinement stress in sea bass (Dicentrarchus labrax) depresses peritoneal leukocyte cytotoxicity. Aquaculture 2002, 210, 231–243. [Google Scholar] [CrossRef]
- Vizzini, A.; Vazzana, M.; Cammarata, M.; Parrinello, N. Peritoneal cavity phagocytes from the teleost sea bass express a glucocorticoid receptor (cloned and sequenced) involved in genomic modulation of the in vitro chemiluminescence response to zymosan. Gen. Comp. Endocrinol. 2007, 150, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Olivier, G.; Moore, A.R.; Fildes, J. Toxicity of Aeromonas salmonicida cells to atlantic salmon Salmo salar peritoneal macrophages. Dev. Comp. Immunol. 1992, 16, 49–61. [Google Scholar] [CrossRef]
- Suzuki, K. Morphological and phagocytic characteristics of peritoneal exudate cells in tilapia, Oreochromis niloticus (Trewavas), and carp, Cyprinus carpio L. J. Fish Biol. 1986, 29, 349–364. [Google Scholar]
- Cammarata, M.; Vazzana, M.; Cervello, M.; Arizza, V.; Parrinello, N. Spontaneous cytotoxic activity of eosinophilic granule cells separated from the normal peritoneal cavity of Dicentrarchus labrax. Fish Shellfish Immunol. 2000, 10, 143–154. [Google Scholar] [CrossRef]
- Vazzana, M.; Parrinello, D.; Cammarata, M. Chemiluminescence response of β-glucan stimulated leukocytes isolated from different tissues and peritoneal cavity of Dicentrarchus labrax. Fish Shellfish Immunol. 2003, 14, 423–434. [Google Scholar] [CrossRef]
- Gesto, M. Chapter 9—Characterization of the neuroendocrine stress status as part of the multiparametric assessment of welfare in fish. In Cellular and Molecular Approaches in Fish Biology; Academic Press: London, UK, 2022; pp. 285–308. ISBN 978-0-12-822273-7. [Google Scholar]
- Culbert, B.M.; Gilmour, K.M. Rapid recovery of the cortisol response following social subordination in rainbow trout. Physiol. Behav. 2016, 164, 306–313. [Google Scholar] [CrossRef]
- Gunnes, K.; Refstie, T. Cold-branding and fin-clipping for marking of salmonids. Aquaculture 1980, 19, 295–299. [Google Scholar] [CrossRef]
- Hammer, S.A.; Lee Blankenship, H. Cost comparison of marks, tags, and mark-with-tag combinations used in salmonid research. North Am. J. Aquac. 2001, 63, 171–178. [Google Scholar] [CrossRef]
- Thompson, J.M.; Hirethota, P.S.; Eggold, B.T. A comparison of elastomer marks and fin clips as marking techniques for Walleye. North Am. J. Fish. Manag. 2005, 25, 308–315. [Google Scholar] [CrossRef]
- Friard, O.; Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 2016, 7, 1325–1330. [Google Scholar] [CrossRef]
- McCarthy, I.D.; Gair, D.J.; Houlihan, D.F. Feeding rank and dominance in Tilapia rendalli under defensible and indefensible patterns of food distribution. J. Fish Biol. 1999, 55, 854–867. [Google Scholar] [CrossRef]
- Sleet, D.A. Paul Martin and Patrick Bateson: Measuring behavior: An introductory guide. Cambridge University Press, Cambridge, England, 1993, Second Edition, 222 pages, ISBN 0521 446147 (paperback). Behav. Sci. 1995, 40, 77–80. [Google Scholar] [CrossRef]
- Øverli, Ø.; Kotzian, S.; Winberg, S. Effects of cortisol on aggression and locomotor activity in rainbow trout. Horm. Behav. 2002, 42, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Baerends, G.P.; Baerends-van Roon, J.M. An introduction to the Study of the Ethology of the Cichlid Fishes; Brill Publishers: Leiden, The Netherlands, 1950; 242p. [Google Scholar]
- Oliveira, R.F.; Almada, V.C.; Canario, A.V.M. Social modulation of sex steroid concentrations in the urine of male cichlid fish Oreochromis mossambicus. Horm. Behav. 1996, 30, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Espelid, S.; Løkken, G.B.; Steiro, K.; Bøgwald, J. Effects of cortisol and stress on the immune system in Atlantic Salmon (Salmo salar L.). Fish Shellfish Immunol. 1996, 6, 95–110. [Google Scholar] [CrossRef]
- R Software R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Dray, S.; Dufour, A.B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Raîche, G.; Walls, T.A.; Magis, D.; Riopel, M.; Blais, J.G. Non-graphical solutions for Cattell’s scree test. Methodology 2013, 9, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Hand, D.M.; Brignon, W.R.; Olson, D.E.; Rivera, J. Comparing Two Methods Used to Mark Juvenile Chinook Salmon: Automated and Manual Marking. North Am. J. Aquac. 2010, 72, 10–17. [Google Scholar] [CrossRef]
- Sloman, K.A.; Metcalfe, N.B.; Taylor, A.C.; Gilmour, K.M. Plasma cortisol concentrations before and after social stress in rainbow trout and brown trout. Physiol. Biochem. Zool. 2001, 74, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Pottinger, T.G.; Carrick, T.R. Stress responsiveness affects dominant-subordinate relationships in rainbow trout. Horm. Behav. 2001, 40, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, D.C.; Sakai, R.R.; McEwen, B.; Weiss, S.M.; Blanchard, R.J. Subordination stress: Behavioral, brain, and neuroendocrine correlates. Behav. Brain Res. 1993, 58, 113–121. [Google Scholar] [CrossRef]
- Øverli, Ø.; Harris, C.A.; Winberg, S. Short-erm effects of fights for social dominance and the establishment of dominant-subordinate relationships on brain monoamines and cortisol in rainbow trout. Brain Behav. Evol. 1999, 54, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Abbott, J.C.; Dunsbrack, R.L.; Orr, C.D. The interaction of size and experience in dominance relationships of juvenile steelhead trout (Salmo gairdneri). Behaviour 1985, 92, 241–253. [Google Scholar]
- Winberg, S.; Lepage, O. Elevation of brain 5-HT activity, POMC expression, and plasma cortisol in socially subordinate rainbow trout. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 274, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Gregory, T.R.; Wood, C.M. The effects of chronic plasma cortisol elevation on the feeding behaviour, growth, competitive ability, and swimming performance of juvenile rainbow trout. Physiol. Biochem. Zool. 1999, 72, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; Genovese, L.; Maricchiolo, G.; Modica, A. Haematological, biochemical and immunological parameters as stress indicators in Dicentrarchus labrax and Sparus aurata farmed in off-shore cages. Aquac. Int. 2005, 13, 67–73. [Google Scholar] [CrossRef]
- Montero, D.; Marrero, M.; Izquierdo, M.S.; Robaina, L.; Vergara, J.M.; Tort, L. Effect of vitamin E and C dietary supplementation on some immune parameters of gilthead seabream (Sparus aurata) juveniles subjected to crowding stress. Aquaculture 1999, 171, 269–278. [Google Scholar] [CrossRef]
- Peters, G.; Delventhal, H.; Klinger, H. Physiological and morphological effects of social stress on the eel, Anguilla anguilla L. In Fish Diseases; Springer: Berlin/Heidelberg, Germany, 1980; pp. 225–227. [Google Scholar]
- Dinkel, K.; Ogle, W.O.; Sapolsky, R.M. Glucocorticoids and central nervous system inflammation. J. NeuroVirol. 2002, 8, 513–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Øverli, Ø.; Korzan, W.J.; Larson, E.T.; Winberg, S.; Lepage, O.; Pottinger, T.G.; Renner, K.J.; Summers, C.H. Behavioral and neuroendocrine correlates of displaced aggression in trout. Horm. Behav. 2004, 45, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Vazzana, M.; Vizzini, A.; Salerno, G.; Di Bella, M.L.; Celi, M.; Parrinello, N. Expression of a glucocorticoid receptor (DlGR1) in several tissues of the teleost fish Dicentrarchus labrax. Tissue Cell 2008, 40, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Barton, B.A.; Zitzow, R.E. Physiological responses of juvenile walleyes to handling stress with recovery in saline water. Progress. Fish-Cult. 1995, 57, 267–276. [Google Scholar] [CrossRef]
- Cech, J.J.; Bartholow, S.D.; Young, P.S.; Hopkins, T.E. Striped Bass Exercise and Handling Stress in Freshwater: Physiological Responses to Recovery Environment. Trans. Am. Fish. Soc. 1996, 125, 308–320. [Google Scholar] [CrossRef]
- Caruso, D.; Lazard, J. Subordination stress in Nile tilapia and its effect on plasma lysozyme activity. J. Fish Biol. 1999, 55, 451–454. [Google Scholar] [CrossRef]
- Gesquiere, L.R.; Learn, N.H.; Simao, M.C.M.; Onyango, P.O.; Alberts, S.C.; Altmann, J. Life at the top: Rank and stress in wild male baboons. Science 2011, 333, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Sloman, K.A. Social and Reproductive Behaviors| Dominance Behaviors; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 1, ISBN 9780080923239. [Google Scholar]
- Carbonara, P.; Alfonso, S.; Zupa, W.; Manfrin, A.; Fiocchi, E.; Pretto, T.; Spedicato, M.T.; Lembo, G. Behavioral and physiological responses to stocking density in sea bream (Sparus aurata): Do coping styles matter? Physiol. Behav. 2019, 212, 112698. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, S.; Zupa, W.; Manfrin, A.; Fiocchi, E.; Spedicato, M.T.; Lembo, G.; Carbonara, P. Stress coping styles: Is the basal level of stress physiological indicators linked to behaviour of sea bream? Appl. Anim. Behav. Sci. 2020, 231, 105085. [Google Scholar] [CrossRef]
- Gesto, M.; Zupa, W.; Alfonso, S.; Spedicato, M.T.; Lembo, G.; Carbonara, P. Using acoustic telemetry to assess behavioral responses to acute hypoxia and ammonia exposure in farmed rainbow trout of different competitive ability. Appl. Anim. Behav. Sci. 2020, 230, 105084. [Google Scholar] [CrossRef]
- Øverli, Ø.; Korzan, W.J.; Ho, E.; Winberg, S.; Bollig, H.; Watt, M.; Forster, G.L.; Barton, B.A.; Øverli, E.; Renner, K.J.; et al. Stress Coping Style Predicts Aggression and Social Dominance in Rainbow Trout; Elsevier: Amsterdam, The Netherlands, 2004; Volume 45, pp. 235–241. [Google Scholar] [CrossRef]
- Newberry, R.C. Environmental enrichment: Increasing the biological relevance of captive environments. Appl. Anim. Behav. Sci. 1995, 44, 229–243. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Diaz-Gil, C.; Saraiva, J.L.; Moranta, D.; Castanheira, M.F.; Nuñez-Velázquez, S.; Ledesma-Corvi, S.; Mora-Ruiz, M.R.; Grau, A. Effects of structural environmental enrichment on welfare of juvenile seabream (Sparus aurata). Aquac. Rep. 2019, 15, 100224. [Google Scholar] [CrossRef]
- Batzina, A.; Karakatsouli, N. The presence of substrate as a means of environmental enrichment in intensively reared gilthead seabream Sparus aurata: Growth and behavioral effects. Aquaculture 2012, 370–371, 54–60. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Caballero-Froilán, J.C.; Jiménez-García, M.; Capó, X.; Tejada, S.; Saraiva, J.L.; Sureda, A.; Moranta, D. Enriched environments enhance cognition, exploratory behaviour and brain physiological functions of Sparus aurata. Sci. Rep. 2020, 10, 11252. [Google Scholar] [CrossRef] [PubMed]
Type of Mark | Dom α | Sub β | Sub γ |
---|---|---|---|
Dorsal fin | 4 | 2 | 3 |
Caudal fin | 3 | 3 | 3 |
No cut | 2 | 4 | 3 |
Total | 9 | 9 | 9 |
Aggressive Acts (A+) Mean (%) ± SD | Preferential Food Accession (FO) Mean (%) ± SD | |
---|---|---|
Dom (α) > Sub (β) | 98 ± 3% | 100 ± 0% |
Dom (α) > Sub (γ) | 85.7 ± 4% | 100 ± 0% |
Sub (β) > Sub (γ) | 81 ± 4% | 98 ± 1% |
Variables | Component 1 | Component 2 |
---|---|---|
Cortisol | 0.89 | −0.15 |
Glucose | 0.96 | 0.25 |
Lactate | 0.96 | 0.04 |
Osmolarity | 0.94 | 0.31 |
Phagocytosis | −0.50 | 0.85 |
Variance explained (%) | 75.3 | 18.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dara, M.; Dioguardi, M.; Vazzana, M.; Vazzana, I.; Accardi, D.; Carbonara, P.; Alfonso, S.; Cammarata, M. Effects of Social Hierarchy Establishment on Stress Response and Cell Phagocytosis in Gilt-Head Sea Bream (Sparus aurata). Fishes 2022, 7, 75. https://doi.org/10.3390/fishes7020075
Dara M, Dioguardi M, Vazzana M, Vazzana I, Accardi D, Carbonara P, Alfonso S, Cammarata M. Effects of Social Hierarchy Establishment on Stress Response and Cell Phagocytosis in Gilt-Head Sea Bream (Sparus aurata). Fishes. 2022; 7(2):75. https://doi.org/10.3390/fishes7020075
Chicago/Turabian StyleDara, Mariano, Maria Dioguardi, Mirella Vazzana, Irene Vazzana, Davide Accardi, Pierluigi Carbonara, Sébastien Alfonso, and Matteo Cammarata. 2022. "Effects of Social Hierarchy Establishment on Stress Response and Cell Phagocytosis in Gilt-Head Sea Bream (Sparus aurata)" Fishes 7, no. 2: 75. https://doi.org/10.3390/fishes7020075
APA StyleDara, M., Dioguardi, M., Vazzana, M., Vazzana, I., Accardi, D., Carbonara, P., Alfonso, S., & Cammarata, M. (2022). Effects of Social Hierarchy Establishment on Stress Response and Cell Phagocytosis in Gilt-Head Sea Bream (Sparus aurata). Fishes, 7(2), 75. https://doi.org/10.3390/fishes7020075