Effects of Different Densities of Sea Grape Caulerpa lentillifera on Water Quality, Growth and Survival of the Whiteleg Shrimp Litopenaeus vannamei in Polyculture System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experiment Design and Management
- Treatment 1: Shrimp monoculture (Control);
- Treatment 2: Shrimp + sea grape 0.5 kg m−3(S + 0.5 kg);
- Treatment 3: Shrimp + sea grape 1 kg m−3 (S + 1 kg);
- Treatment 4: Shrimp + sea grape 1.5 kg m−3 (S + 1.5 kg);
- Treatment 5: Shrimp + sea grape 2 kg m−3 (S + 2 kg).
2.3. Water Quality Parameters
2.4. Sea Grape Biomass
2.5. Shrimp Performance
2.6. Statistical Analysis
3. Results
3.1. Water Quality Parameters
3.2. Biomass and Growth of Sea Grape
3.3. Growth Performance of Whiteleg Shrimp
3.4. Survival, Production, and Feed Conversion Ratio
4. Discussions
4.1. Effects of Integrating Different Densities of Sea Grape with Whiteleg Shrimp on Water Quality and Sea Grape Growth
4.2. Effects of Integrating Different Densities of Sea Grape with Whiteleg Shrimp on Shrimp Performance and Feed Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Fishery Statistical Collections—Global Aquaculture Production. Food and Agriculture Organisation of the United Nations-Fisheries and Aquaculture Department. 2019. Available online: http://fao.org/fishery/statistics/global-aquaculture-production/ (accessed on 15 December 2020).
- Rubel, H.; Woods, W.; Pérez, D.; Unnikrishnan, S.; Meyer, A. A strategic approach to sustainable shrimp production in Vietnam: The case for improved economics and sustainability. Boston Consulting Group (BCG). 2019. Available online: http://media-publications.bcg.com/BCG-A-Strategic-Approach-to-Sustainable-Shrimp-Production-in-Vietnam-Aug-2019.pdf (accessed on 13 January 2021).
- Liao, I.C.; Chien, Y.H. The pacific white shrimp, Litopenaeus vannamei, in Asia: The world’s most widely cultured alien crustacean. In The Wrong Place-Alien Marine Crustaceans: Distribution, Biology and Impacts; Springer: Dordrecht, The Netherlands, 2011; pp. 489–519. [Google Scholar]
- Nguyen, T.A.T.; Nguyen, K.A.T.; Jolly, C. Is super-intensification the solution to shrimp production and export sustainability? Sustainability 2019, 11, 5277. [Google Scholar] [CrossRef] [Green Version]
- Anh, P.T.; Kroeze, C.; Bush, S.R.; Mol, A.P.J. Water pollution by intensive brackish shrimp farming in southeast Vietnam: Causes and options for control. Agric. Water Manag. 2010, 97, 872–882. [Google Scholar] [CrossRef]
- Zhang, Y.; Bleeker, A.; Liu, J. Nutrient discharge from China’s aquaculture industry and associated environmental impacts. Environ. Res. Lett. 2015, 10, 1–14. [Google Scholar] [CrossRef]
- Chaikaew, P.; Rugkarn, N.; Pongpipatwattana, V.; Kanokkantapong, V. Enhancing ecological-economic efficiency of intensive shrimp farm through in-out nutrient budget and feed conversion ratio. Sustain. Environ. Res. 2019, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Troell, M.; Halling, C.; Neori, A.; Chopin, T.; Buschmann, A.H.; Kautsky, N.; Yarish, C. Integrated mariculture: Asking the right questions. Aquaculture 2003, 226, 69–90. [Google Scholar] [CrossRef]
- Chopin, T.; MacDonald, B.; Robinson, S.; Cross, S.; Pearce, C.; Knowler, D.; Noce, A.; Reid, G.; Cooper, A.; Speare, D.; et al. The Canadian integrated multi-trophic aquaculture network (CIMTAN)-A Network for a New Era of Ecosystem Responsible Aquaculture. Fisheries 2013, 38, 297–308. [Google Scholar] [CrossRef]
- Largo, D.B.; Diola, A.G.; Marababol, M.S. Development of an integrated multi-trophic aquaculture (IMTA) system for tropical marine species in southern Cebu, Central Philippines. Aquac. Rep. 2016, 3, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, S.; Kitazawa, D.; Zhou, J.; Park, S.; Gao, S.; Shen, Y. Bio-mitigation based on integrated multi-trophic aquaculture in temperate coastal waters: Practice, assessment, and challenges. Lat. Am. J. Aquat. Res. 2019, 47, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, A.H.; Troell, M.; Kautsky, N. Integrated algal farming: A review. Cah. Biol. Mar. 2001, 42, 83–90. [Google Scholar]
- Kang, Y.H.; Hwang, J.R.; Chung, I.K.; Park, S.R. Development of a seaweed species-selection index for successful culture in a seaweed-based integrated aquaculture system. J. Ocean Univ. China 2013, 12, 125–133. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Hurd, C.L. Seaweed nutrient physiology: Application of concepts to aquaculture and bioremediation. Phycologia 2019, 58, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Anh, N.T.N.; An, B.N.T.; Lan, L.M.; Hai, T.N. Integrating different densities of white leg shrimp Litopenaeus vannamei and red seaweed Gracilaria tenuistipitata in the nursery phase: Effects on water quality and shrimp performance. J. Appl. Phycol. 2019, 31, 3223–3234. [Google Scholar] [CrossRef]
- Shokita, S.; Kakazu, K.; Tomori, A.; Toma, T. Mariculture of seaweeds. In Aquaculture in Tropical Area; Midori Shobo Co., Ltd.: Tokyo, Japan, 1991; pp. 31–95. [Google Scholar]
- Paul, N.A.; De Nys, R. Promise and pitfalls of locally abundant seaweeds as biofilters for integrated aquaculture. Aquaculture 2008, 281, 49–55. [Google Scholar] [CrossRef]
- Ramadas, V.; Chandralega, G. Screening of phytochemicals, fatty acid composition and in-vitro analysis of antioxidant property of green edible seaweed Caulerpa lentillifera (family: Caulerpaceae). Int. J. Pharm. Sci. Res. 2020, 11, 1495–1505. [Google Scholar]
- Marungrueng, K.; Pavasant, P. Removal of basic dye (Astrazon Blue FGRL) using macroalga Caulerpa lentillifera. J. Environ. Manag. 2006, 78, 268–274. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F.; Wang, Q.; Dong, S.; Tian, X. A comparative study of the nutrient uptake and growth capacities of seaweeds Caulerpa lentillifera and Gracilaria lichenoides. J. Appl. Phycol. 2016, 28, 3083–3089. [Google Scholar] [CrossRef]
- Saputra, N.R.M.; Sukoso, S.; Kartikaningsih, H. A solid waste pond tiger shrimp (Peneaus monodon) as fertilizer for Caulerpa lentillifera. J. Exp. Life Sci. 2017, 7, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Sun, Y.; Liu, H.; Liu, S.; Qin, Y.; Li, P. Advances in cultivation, wastewater treatment application, bioactive components of Caulerpa lentillifera and their biotechnological applications. PeerJ 2019, 7, e6118. [Google Scholar] [CrossRef] [Green Version]
- Hamano, K.; Tsutsui, I.; Srisapoome, P. Co-Culture of Black Tiger Shrimp (Penaeus monodon) And Sea grape (Caulerpa lentillifera). Research Highlights, JICA Project. 2005. Available online: https://www.jircas.go.jp/en/publication/research_results/2005_17 (accessed on 15 January 2021).
- De Paula Silva, P.H.; McBride, S.; de Nys, R.; Paul, N.A. Integrating filamentous ‘green tide’algae into tropical pond-based aquaculture. Aquaculture 2008, 284, 74–80. [Google Scholar] [CrossRef]
- Anh, N.T.N.; Ngan, P.T.T. Effects of different feeding rates on water quality and feed efficiency of black tiger shrimp (Penaeus monodon) co-cultured with sea grape (Caulerpa lentillifera) (in Vietnamese with abstract in English). Vietnam. J. Agric. Sci. 2017, 10, 119–124. [Google Scholar]
- Kha, N.M.; Anh, N.T.N. Efficiency of co-culture model of the white leg shrimp (Litopenaeus vannamei) with different densities of red seaweed Gracilaria sp. (in Vietnamese with abstract in English). HUAF. J. Agric. Sci. 2017, 1, 303–312. [Google Scholar]
- Bambaranda, B.V.A.S.; Sasaki, N.; Chirapart, A.; Salin, K.R.; Tsusaka, T.W. Optimization of macroalgal density and salinity for nutrient removal by Caulerpa lentillifera from aquaculture effluent. Processes 2019, 7, 303. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, M.S.; Ganesh, P.R.C.; Amarnath, D.; Sudha, B.S.; Babu, T.S. Spatial variation of water quality parameters of shrimp (Litopenaeus vannamei) culture ponds at Narsapurapupeta, Kajuluru and Kaikavolu villages of East Godavari district, Andhra Pradesh. Int. J. Fish. Aquat. Stud. 2016, 4, 390–395. [Google Scholar]
- Jaganmohan, P.; Kumari, C.L. Assessment of water quality in shrimp (Litopenaeus vannamei) grow out ponds in selected villages of SPSR Nellore district of Andhra Pradesh, India during winter crop season. Int. J. Fish. Aquat. Stud. 2018, 6, 260–266. [Google Scholar]
- Neori, A.; Chopin, T.; Troell, M.; Buschmann, A.H.; Kraemer, G.P.; Halling, C.; Shpigel, M.; Yarish, C. Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 2004, 231, 361–391. [Google Scholar] [CrossRef]
- Zubia, M.; Draisma, S.G.A.; Morrissey, K.L.; Varela-Álvarez, E.; De Clerck, O. Concise review of the genus Caulerpa J.V. Lamouroux. J. Appl. Phycol. 2020, 32, 23–33. [Google Scholar] [CrossRef]
- Fourooghifard, H.; Matinfar, A.; Mortazavi, M.S.; Roohani Ghadikolaee, K.; Roohani Ghadikolaee, M. Nitrogen and phosphorous budgets for integrated culture of whiteleg shrimp Litopenaeus vannamei with red seaweed Gracilaria corticata in zero water exchange system. Iran. J. Fish. Sci. 2018, 17, 471–486. [Google Scholar]
- Lin, Y.C.; Chen, J.C. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. J. Exp. Mar. Biol. Ecol. 2001, 259, 109–119. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Chen, J.C. Joint action of elevated ambient nitrite and nitrate on hemolymph nitrogenous compounds and nitrogen excretion of tiger shrimp Penaeus monodon. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2002, 131, 303–314. [Google Scholar] [CrossRef]
- Schuler, D.J.; Boardman, G.D.; Kuhn, D.D.; Flick, G.J. Acute toxicity of ammonia and nitrite to Pacific white shrimp, Litopenaeus vannamei, at low salinities. J. World. Aquac. Soc. 2010, 41, 438–446. [Google Scholar] [CrossRef]
- Brito, L.O.; Arantes, R.; Magnotti, C.; Derner, R.; Pchara, F.; Olivera, A.; Vinatea, L. Water quality and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in co-culture with green seaweed Ulva lactuca (Linaeus) in intensive system. Aquac. Int. 2014, 22, 497–508. [Google Scholar] [CrossRef]
- Cobo, M.L.; Sonnenholzner, S.; Wille, M.; Sorgeloos, P. Ammonia tolerance of Litopenaeus vannamei (Boone) larvae. Aquac. Int. 2014, 45, 470–475. [Google Scholar]
- Valencia-Castañeda, G.; Frías-Espericueta, M.G.; Vanegas-Pérez, R.C.; Pérez-Ramírez, J.A.; Chávez-Sánchez, M.C.; Páez-Osuna, F. Acute toxicity of ammonia, nitrite and nitrate to shrimp Litopenaeus vannamei postlarvae in low-salinity water. Bull. Environ. Contam. Toxicol. 2018, 101, 229–234. [Google Scholar] [CrossRef]
- Furtado, P.S.; Poersch, L.H.; Wasielesky, W. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture 2011, 321, 130–135. [Google Scholar] [CrossRef]
- Wang, P.Y. Effects of salinity and light intensity on the growth of Caulerpa lentillifera. J. Agric. Sci. Technol. 2011, 24, 131–132. [Google Scholar]
- Guo, H.; Yao, J.; Sun, Z.; Duan, D. Effects of salinity and nutrients on the growth and chlorophyll fluorescence of Caulerpa lentillifera. Chin. J. Oceanol. Limnol. 2015, 33, 410–418. [Google Scholar] [CrossRef]
- Rabia, M.D.S. Cultivation of Caulerpa lentillifera using tray and sowing methods in brackish water pond. Environ. Sci. 2016, 4, 23–29. [Google Scholar]
- Paul, N.A.; Dworjanyn, S.A.; De Nys, R. Green Caviar” and “Sea Grapes”: Targeted Cultivation of High-Value Seaweeds from the Genus Caulerpa. Aust. Flora Found. 2009. [Google Scholar]
- Dall, W. Food and feeding of some Australian penaeid shrimp. FAO Fish. Rep. 1968, 2, 251–258. [Google Scholar]
- Porchas-Cornejo, M.A.; Martínez-Porchas, M.; Martínez-Córdova, L.R.; Ramos-Trujillo, L.; Barraza-Guardado, R. Consumption of natural and artificial foods by shrimp (Litopenaeus vannamei) reared in ponds with and without enhancement of natural productivity. Isr. J. Aquac. 2012, 709, 1–7. [Google Scholar]
- FAO. A Guide to the Seaweed Industry; Fisheries Technical Paper; McHugh, D.J., Ed.; FAO: Rome, Italy, 2003; p. 441. [Google Scholar]
- Fourooghifard, H.; Matinfar, A.; Mortazavi, M.S.; Roohani Ghadikolaee, K.; Mirbakhsh, M. Growth parameters of whiteleg shrimp Litopenaeus vannamei and red seaweed Gracilaria corticata in integrated culturing method under zero water exchange system. Aquac. Res. 2017, 48, 5235–5242. [Google Scholar] [CrossRef]
- Susilowati, T.; Hutabarat, J.; Anggoro, S.; Zainuri, M. The improvement of the survival, growth and production of Vannamei shrimp (Litopenaeus vannamei) and seaweed (Gracilaria verucosa) based on polyculture cultivation. Int. J. Mar. Aquat. Res. Conserv. Co-Exist. 2014, 1, 6–11. [Google Scholar]
- Cruz-Suarez, L.E.; Leon, A.; Pena-Rodrıguez, A.; Rodrgıuez-Pena, G.; Mol, B.; Ricque-Marie, D. Shrimp/Ulva co-culture: A sustainable alternative to diminish the need for artificial feed and improve shrimp quality. Aquaculture 2010, 301, 64–68. [Google Scholar] [CrossRef]
- Cruz-Suárez, L.E.; Tapia-Salazar, M.; Nieto-López, M.G.; Ricque-Marie, D. A review of the effects of macroalgae in shrimp feeds and in co-culture. Avanc. En. Nutr. Acuic. 2008. [Google Scholar]
- Anh, N.T.N.; Nhung, D.T.; Hai, T.N. Feed efficiency of white leg shrimp (Litopeneaus vannamei) in co-culture with gut weed (Enterormorpha sp.) and blanket weed (Cladophoraceae). (In Vietnamese with abstract in English). Sci. J. CTU Vietnam. 2014, 31b, 98–105. [Google Scholar]
- Tsutsui, I.; Songphatkaew, J.; Meeanan, C.; Aue-umneoy, D.; Sukchai, H.; Pinphoo, P.; Klomkling, S.; Ganmanee, M.; Sudo, H.; Hamano, K. Co-culture with Chaetomorpha sp. enhanced growth performance and reduced feed conversion ratio of the giant tiger prawn, Penaeus monodon. Int. Aquat. Res. 2015, 7, 193–199. [Google Scholar] [CrossRef] [Green Version]
Culture Period | Shrimp Weight (g) | Feed Number | Pellet Size (mm) | Feeding Rate (% Biomass Day−1) |
---|---|---|---|---|
Week 1 | 0.01–1 | No. 1 | 0.7 | 10 |
Week 2–3 | 1–3 | No. 2 | 1.2 | 8 |
Week 4–5 | 3–7 | No. 2M | 1.2 | 6 |
Week 6–7 | 7–11 | No. 2ML | 1.5 | 5 |
Week 8 | 11–14 | No. 3 | 1.8 | 4 |
Temperature (°C) | DO (mg L−1) | pH | Alkalinity (mgCaCo3 L−1) | ||||
---|---|---|---|---|---|---|---|
7:00 | 14:00 | 7:00 | 14:00 | 7:00 | 14:00 | ||
Control | 27.4 ± 0.8 | 28.7 ± 0.9 | 4.73 ± 0.43 | 5.15 ± 0.32 | 8.14 ± 0.17 | 8.40 ± 0.21 | 146.2 ± 14.6 |
S + 0.5 kg | 27.5 ± 0.8 | 28.7 ± 0.9 | 4.66 ± 0.53 | 5.17 ± 0.35 | 8.15 ± 0.18 | 8.38 ± 0.22 | 145.4 ± 13.3 |
S + 1 kg | 27.5 ± 0.7 | 28.8 ± 0.9 | 4.66 ± 0.47 | 5.18 ± 0.40 | 8.11 ± 0.18 | 8.38 ± 0.24 | 143.9 ± 13.4 |
S + 1.5 kg | 27.5 ± 0.8 | 28.7 ± 0.9 | 4.41 ± 0.48 | 5.21 ± 0.40 | 8.12 ± 0.19 | 8.38 ± 0.24 | 143.2 ± 14.0 |
S + 2 kg | 27.4 ± 0.7 | 28.7 ± 0.9 | 4.33 ± 0.30 | 5.25 ± 0.35 | 8.10 ± 0.19 | 8.38 ± 0.23 | 143.2 ± 12.9 |
Light Intensity (µmol Photons m−2 s−1) | 7:00 | 10:00 | 13:00 | 16:00 | |||
59 ± 34 | 135 ± 52 | 212 ± 91 | 55 ± 29 |
Treatment | Initial Biomass (kg m−3) | Final Biomass (kg m−3) | Biomass Increment (%) | Relative Growth Rate (% Day−1) |
---|---|---|---|---|
Control | - | - | - | - |
S + 0.5 kg | 0.5 | 2.08 ± 0.15 a | 316 ± 30 b | 1.10 ± 0.06 b |
S + 1 kg | 1.0 | 3.55 ± 0.42 b | 255 ± 42 b | 0.98 ± 0.10 b |
S + 1.5 kg | 1.5 | 3.93 ± 0.38 b | 162 ± 25 a | 0.75 ± 0.08 a |
S + 2 kg | 2.0 | 5.03 ± 0.79 c | 152 ± 39 a | 0.71 ± 0.12 a |
p-value (ANOVA) | 0.001 | 0.001 | 0.002 |
Treatment | Control | S + 0.5 kg | S + 1 kg | S + 1.5 kg | S + 2 kg | p-Value (ANOVA) |
---|---|---|---|---|---|---|
IW (g) | 0.37 ± 0.06 | 0.37 ± 0.06 | 0.37 ± 0.06 | 0.37 ± 0.06 | 0.37 ± 0.06 | - |
FW (g) | 12.29 ± 0.19 a | 15.73 ± 0.72 b | 16.47 ± 0.80 b | 16.19 ± 0.99 b | 15.71 ± 0.36 b | 0.000 |
WG (g) | 11.92 ± 0.19 a | 15.36 ± 0.72 b | 16.10 ± 0.80 b | 15.82 ± 0.99 b | 15.33 ± 0.36 b | 0.000 |
DWG (g day−1) | 0.213 ± 0.006 a | 0.273 ± 0.012 b | 0.283 ± 0.015 b | 0.280 ± 0.17 b | 0.277 ± 0.006 b | 0.000 |
SGRW (% day−1) | 6.24 ± 0.03 a | 6.67 ± 0.08 b | 6.76 ± 0.09 b | 6.72 ± 0.11 b | 6.67 ± 0.04 b | 0.000 |
IL (cm) | 3.53 ± 0.31 | 3.53 ± 0.31 | 3.53 ± 0.31 | 3.53 ± 0.31 | 3.53 ± 0.31 | 0.000 |
FL (cm) | 12.64 ± 0.16 a | 13.67 ± 0.22 b | 13.78 ± 0.18 b | 13.60 ± 0.14 b | 13.59 ± 0.26 b | 0.000 |
SGRL (% day−1) | 2.27 ± 0.03 a | 2.42 ± 0.03 b | 2.43 ± 0.02 b | 2.41 ± 0.02 b | 2.41 ± 0.04 b | 0.000 |
Survival (%) | 54.8 ± 5.7 a | 73.3 ± 9.4 b | 78.5 ± 6.8 b | 73.7 ± 9.5 b | 77.8 ± 8.0 b | 0.026 |
Production (kg m−3) | 2.02 ± 0.22 a | 3.44 ± 0.43 b | 3.87 ± 0.15 b | 3.57 ± 0.33 b | 3.67 ± 0.40 b | 0.000 |
FCR | 0.97 ± 0.04 b | 0.86 ± 0.03 a | 0.80 ± 0.01 a | 0.84 ± 0.04 a | 0.84 ± 0.05 a | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ly, K.V.; Murungu, D.K.; Nguyen, D.P.; Nguyen, N.A.T. Effects of Different Densities of Sea Grape Caulerpa lentillifera on Water Quality, Growth and Survival of the Whiteleg Shrimp Litopenaeus vannamei in Polyculture System. Fishes 2021, 6, 19. https://doi.org/10.3390/fishes6020019
Ly KV, Murungu DK, Nguyen DP, Nguyen NAT. Effects of Different Densities of Sea Grape Caulerpa lentillifera on Water Quality, Growth and Survival of the Whiteleg Shrimp Litopenaeus vannamei in Polyculture System. Fishes. 2021; 6(2):19. https://doi.org/10.3390/fishes6020019
Chicago/Turabian StyleLy, Khanh Van, David Kamau Murungu, Dung Phuong Nguyen, and Ngoc Anh Thi Nguyen. 2021. "Effects of Different Densities of Sea Grape Caulerpa lentillifera on Water Quality, Growth and Survival of the Whiteleg Shrimp Litopenaeus vannamei in Polyculture System" Fishes 6, no. 2: 19. https://doi.org/10.3390/fishes6020019
APA StyleLy, K. V., Murungu, D. K., Nguyen, D. P., & Nguyen, N. A. T. (2021). Effects of Different Densities of Sea Grape Caulerpa lentillifera on Water Quality, Growth and Survival of the Whiteleg Shrimp Litopenaeus vannamei in Polyculture System. Fishes, 6(2), 19. https://doi.org/10.3390/fishes6020019