The Dietary Lipid Content Affects the Tissue Gene Expression of Muscle Growth Biomarkers and the GH/IGF System of Pejerrey (Odontesthes bonariensis) Juveniles
Abstract
:1. Introduction
2. Material and Methods
2.1. Diets
2.2. Growth Trial
2.3. Cloning and Sequencing
2.4. Molecular Phylogenetic Anaylsis of MSTN and MyoG Genes
2.5. Gene Expression
2.6. Statistics
3. Results
3.1. Partial Cloning of Pejerrey MSTN and MyoG
3.2. Phylogenetic Analysis of Pejerrey MSTN and MyoG
3.3. Gene Expression
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vélez, E.J.; Perelló-Amorós, M.; Lutfi, E.; Azizi, S.; Capilla, E.; Navarro, I.; Pérez-Sánchez, J.; Calduch-Giner, J.A.; Blasco, J.; Fernández-Borràs, J.; et al. A long-term growth hormone treatment stimulates growth and lipolysis in gilthead sea bream juveniles. Comp. Biochem. Physiol. 2019, 232, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Picha, M.E.; Turano, M.J.; Beckman, B.R.; Borski, R.J. Endocrine biomarkers of growth and applications to aquaculture: A minireview of growth hormone, insulin-like growth factor (IGF)-I, and IGF-binding proteins as potential growth indicators in fish. N. Am. J. Aquac. 2008, 70, 196–211. [Google Scholar] [CrossRef]
- Vélez, E.J.; Lutfi, E.; Azizi, S.; Perelló, M.; Salmerón, C.; Riera-Codina, M.; Ibarz, A.; Fernández-Borràs, J.; Blasco, J.; Capilla, E.; et al. Understanding fish muscle growth regulation to optimize aquaculture production. Aquaculture 2017, 467, 28–40. [Google Scholar] [CrossRef]
- Pérez-Sánchez, J.; Simó-Mirabet, P.; Naya-Català, F.; Martos-Sitcha, J.A.; Perera, E.; Bermejo-Nogales, A.; Benedito-Palos, L.; Calduch-Giner, J.A. Somatotropic axis regulation unravels the differential effects of nutritional and environmental factors in growth performance of marine farmed fishes. Front. Endocrinol. 2018, 9, 687. [Google Scholar] [CrossRef] [PubMed]
- De-Santis, C.; Jerry, D.R. Candidate growth genes in finfish—Where should we be looking? Aquaculture 2007, 272, 22–38. [Google Scholar] [CrossRef]
- Buckingham, M.; Rigby, P.W.J. Gene Regulatory Networks and Transcriptional Mechanisms that Control Myogenesis. Dev. Cell 2014, 28, 225–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edmondson, D.G.; Olson, E.N. Helix-loop-helix proteins as regulators of muscle-specific transcription. J. Biol. Chem. 1993, 268, 755–758. [Google Scholar]
- Olson, E.N.; Klein, W.H. bHLH factors in muscle development: Dead lines and commitments, what to leave in and what to leave out. Genes Dev. 1994, 8, 1–8. [Google Scholar] [CrossRef]
- Hasty, P.; Bradley, A.; Morris, J.H.; Edmondson, D.G.; Venuti, J.M.; Olson, E.N.; Klein, W.H. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 1993, 364, 501–506. [Google Scholar] [CrossRef]
- Nabeshima, Y.; Hanaoka, K.; Hayasaka, M.; Esumi, E.; Li, S.; Nonaka, I.; Nabeshima, Y. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 1993, 364, 532–535. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lawler, A.M.; Lee, S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ríos, R.; Carneiro, I.; Arce, V.M.; Devesa, J. Myostatin is an inhibitor of myogenic differentiation. Am. J. Physiol. Cell Physiol. 2002, 282, C993–C999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joulia, D.; Bernardi, H.; Garandel, V.; Rabenoelina, F.; Vernus, B.; Cabello, G. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp. Cell Res. 2003, 286, 263–275. [Google Scholar] [CrossRef]
- McCroskery, S.; Thomas, M.; Maxwell, L.; Sharma, M.; Kambadur, R. Myostatin negatively regulates satellite cell activation and self-renewal. J. Cell Boil. 2003, 162, 1135–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, N.G.; Interlichia, J.P.; Jackson, M.F.; Hwang, D.; Cohen, P.; Rodgers, B.D. Endocrine actions of myostatin: Systemic regulation of the IGF and IGF binding protein axis. Endocrinology 2011, 152, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wu, G.; Zohar, Y.; Du, S.J. Analysis of myostatin gene structure, expression and function in zebrafish. J. Exp. Biol. 2003, 206, 4067–4079. [Google Scholar] [CrossRef] [PubMed]
- Garikipati, D.K.; Rodgers, B.D. Myostatin regulation of myosatellite cells in a novel model system: II. Differentiation and gene subfunctionalization. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R1059–R1066. [Google Scholar] [CrossRef] [PubMed]
- Seiliez, I.; Sabin, N.; Gabillard, J.C. Myostatin inhibits proliferation but not differentiation of trout myoblasts. Mol. Cell. Endocrinol. 2012, 351, 220–226. [Google Scholar] [CrossRef]
- Acosta, J.; Carpio, Y.; Borroto, I.; Gonzalez, O.; Estrada, M.P. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J. Biotechnol. 2005, 119, 324–331. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Hu, S.-Y.; Gong, H.-Y.; Chen, M.H.-C.; Lu, J.-K.; Wu, J.-L. Suppression of myostatin with vector-based RNA interference causes a double-muscle effect in transgenic zebrafish. Biochem. Biophys. Res. Commun. 2009, 387, 766–771. [Google Scholar] [CrossRef]
- Gao, Y.; Dai, Z.; Shi, C.; Zhai, G.; Jin, X.; He, J.; Lou, Q.; Yin, Z. Depletion of myostatin b promotes somatic growth and lipid metabolism in zebrafish. Front. Endocrinol. 2016, 7, 88. [Google Scholar] [CrossRef]
- Chisada, S.I.; Okamoto, H.; Taniguchi, Y.; Kimori, Y.; Toyoda, A.; Sakaki, Y.; Takeda, S.; Yoshiura, Y. Myostatin-deficient medaka exhibit a double-muscling phenotype with hyperplasia and hypertrophy, which occur sequentially during post-hatch development. Dev. Biol. 2011, 359, 82–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabillard, J.-C.; Biga, P.R.; Rescan, P.-Y.; Seiliez, I. Revisiting the paradigm of myostatin in vertebrates: Insights from fishes. Gen. Comp. Endocrinol. 2013, 194, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Somoza, G.M.; Miranda, L.A.; Berasain, G.E.; Colautti, D.; Remes Lenicov, M.; Strüssmann, C.A. Historical aspects, current status and prospects of pejerrey aquaculture in South America. Aquac. Res. 2008, 39, 784–793. [Google Scholar] [CrossRef]
- Colautti, D.C.; Garcia de Souza, J.R.; Balboni, L.; Baigún, C.R.M. Extensive cage culture of pejerrey (Odontesthes bonariensis) in a shallow pampean lake in Argentina. Aquac. Res. 2010, 41, e376–e384. [Google Scholar] [CrossRef]
- Hualde, J.P.; Ceferino Torres, W.D.; Moreno, P.; Ferrada, M.; Demicheli, M.A.; Molinari, L.J.; Luquet, C.M. Growth and feeding of Patagonian pejerrey Odontesthes hatcheri reared in net cages. Aquac. Res. 2011, 42, 754–763. [Google Scholar] [CrossRef]
- Gomez-Requeni, P.; Kraemer, M.N.; Canosa, L.F. Regulation of somatic growth and gene expression of the GH-IGF system and PRP-PACAP by dietary lipid level in early juveniles of a teleost fish, the pejerrey (Odontesthes bonariensis). J. Comp. Physiol. B 2012, 182, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Requeni, P.; Bedolla-Cázares, F.; Montecchia, C.; Zorrilla, J.; Villian, M.; Toledo-Cuevas, E.M.; Canosa, F. Effects of increasing the dietary lipid levels on the growth performance, body composition and digestive enzyme activities of the teleost pejerrey (Odontesthes bonariensis). Aquaculture 2013, 416–417, 15–22. [Google Scholar] [CrossRef]
- Bertucci, J.I.; Tovar, M.O.; Blanco, A.M.; Gomez-Requeni, P.; Unniappan, S.; Canosa, L.F. Influence of water salinity on genes implicated in somatic growth, lipid metabolism and food intake in Pejerrey (Odontesthes bonariensis). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2017, 210, 29–38. [Google Scholar] [CrossRef]
- Bertucci, J.I.; Tovar, M.O.; Unniappan, S.; Navarro, J.C.; Canosa, L.F. Effects of dietary sunflower oil on growth parameters, fatty acid profiles and expression of genes regulating growth and metabolism in the pejerrey (Odontesthes bonariensis) fry. Aquac. Nutr. 2018, 24, 748–757. [Google Scholar] [CrossRef]
- Miranda, L.A.; Berasain, G.E.; Velasco, C.A.M.; Shirojo, Y.; Somoza, G.M. Natural spawning and intensive culture of pejerrey Odontesthes bonariensis juveniles. Biocell 2006, 30, 157–162. [Google Scholar] [PubMed]
- Toledo-Cuevas, E.M.; Moyano López, F.J.; Ramírez, D.T.; Strüssmann, C.A.; Álvarez-González, C.A.; Martínez-Chávez, C.C.; Martínez-Palacios, C.A. Development of digestive biochemistry in the initial stages of three cultured Atherinopsids. Aquac. Res. 2011, 42, 776–786. [Google Scholar] [CrossRef]
- Piedras, S.R.N.; Pouey, J.L.O.F.; Rutz, F. Effect of methionine and lysine supplementation on growth and survival of pejerrey (Odontesthes bonariensis) fingerlings. Rev. Bras. Zootec. 2004, 33, 1366–1371. [Google Scholar] [CrossRef]
- Sciara, A.A.; Rubiolo, J.A.; Somoza, G.M.; Arranz, S.E. Molecular cloning, expression and immunological characterization of pejerrey (Odontesthes bonariensis) growth hormone. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 142, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Sciara, A.A.; Somoza, G.M.; Arranz, S.E. Insulin-like growth factor-I of pejerrey, Odontesthes bonariensis: cDNA characterization, tissue distribution and expression profiles after growth hormone administration. J. Exp. Zool. Part A Ecol. Genet. Physiol. 2008, 309, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Sciara, A.A.; Vigliano, F.A.; Somoza, G.M.; Arranz, S.E. Muscular hypertrophy and growth-promoting effects in juvenile pejerrey (Odontesthes bonariensis) after oral administration of recombinant homologous growth hormone obtained by a highly efficient refolding process. Aquac. Res. 2011, 42, 844–857. [Google Scholar] [CrossRef]
- Albalat, A.; Gomez-Requeni, P.; Rojas, P.; Medale, F.; Kaushik, S.; Vianen, G.J.; Van den Thillart, G.; Gutierrez, J.; Perez-Sanchez, J.; Navarro, I. Nutritional and hormonal control of lipolysis in isolated gilthead seabream (Sparus aurata) adipocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R259–R265. [Google Scholar] [CrossRef] [PubMed]
- Benedito-Palos, L.; Saera-Vila, A.; Calduch-Giner, J.-A.; Kaushik, S.; Pérez-Sánchez, J. Combined replacement of fish meal and oil in practical diets for fast growing juveniles of gilthead sea bream (Sparus aurata L.): Networking of systemic and local components of GH/IGF axis. Aquaculture 2007, 267, 199–212. [Google Scholar] [CrossRef]
- Company, R.; Calduch-Giner, J.A.; Kaushik, S.; Pérez-Sánchez, J. Growth performance and adiposity in gilthead sea bream (Sparus aurata): Risks and benefits of high energy diets. Aquaculture 1999, 171, 279–292. [Google Scholar] [CrossRef]
- Campos, C.; Valente, L.M.; Borges, P.; Bizuayehu, T.; Fernandes, J.M. Dietary lipid levels have a remarkable impact on the expression of growth-related genes in Senegalese sole (Solea senegalensis Kaup). J. Exp. Biol. 2010, 213, 200–209. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [PubMed]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Daopin, S.; Piez, K.A.; Ogawa, Y.; Davies, D.R. Crystal structure of transforming growth factor-beta 2: An unusual fold for the superfamily. Science 1992, 257, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Johnston, I.A.; Moon, T.W. Fine structure and metabolism of multiply innervated fast muscle fibres in teleost fish. Cell Tissue Res. 1981, 219, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Weatherley, A.H.; Gill, H.S.; Lobo, A.F. Recruitment and maximal diameter of axial muscle fibres in teleosts and their relationship to somatic growth and ultimate size. J. Fish Biol. 1988, 33, 851–859. [Google Scholar] [CrossRef]
- Johansen, K.A.; Overturf, K. Alterations in expression of genes associated with muscle metabolism and growth during nutritional restriction and refeeding in rainbow trout. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 144, 119–127. [Google Scholar] [CrossRef]
- Chapalamadugu, K.C.; Robison, B.D.; Drew, R.E.; Powell, M.S.; Hill, R.A.; Amberg, J.J.; Rodnick, K.J.; Hardy, R.W.; Hill, M.L.; Murdoch, G.K. Dietary carbohydrate level affects transcription factor expression that regulates skeletal muscle myogenesis in rainbow trout. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009, 153, 66–72. [Google Scholar] [CrossRef]
- Rodgers, B.D.; Garikipati, D.K. Clinical, agricultural, and evolutionary biology of myostatin: A comparative review. Endocr. Rev. 2008, 29, 513–534. [Google Scholar] [CrossRef]
- Johnston, I.A.; Bower, N.I.; Macqueen, D.J. Growth and the regulation of myotomal muscle mass in teleost fish. J. Exp. Biol. 2011, 214, 1617–1628. [Google Scholar] [CrossRef] [Green Version]
- Stickland, N.C. Growth and development of muscle fibres in the rainbow trout (Salmo gairdneri). J. Anat. 1983, 137 Pt 2, 323–333. [Google Scholar]
- Brian, S.; Dyer, H. Systematic revision of the South American silversides (Teleostei, Atheriniformes). Biocell 2006, 30, 69–88. [Google Scholar]
- Dyer, A.R.; Barlow, C.G.; Bransden, M.P.; Carter, C.G.; Glencross, B.D.; Richardson, N.; Thomas, P.M.; Williams, K.C.; Carragher, J.F. Correlation of plasma IGF-I concentrations and growth rate in aquacultured finfish: A tool for assessing the potential of new diets. Aquaculture 2004, 236, 583–592. [Google Scholar] [CrossRef]
- Gómez-Requeni, P.; Mingarro, M.; Calduch-Giner, J.A.; Médale, F.; Martin, S.A.M.; Houlihan, D.F.; Kaushik, S.; Pérez-Sánchez, J. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 2004, 232, 493–510. [Google Scholar] [CrossRef]
- Gómez-Requeni, P.; Calduch-Giner, J.; Vega-Rubín de Celis, S.; Médale, F.; Kaushik, S.J.; Pérez-Sánchez, J. Regulation of the somatotropic axis by dietary factors in rainbow trout (Oncorhynchus mykiss). Br. J. Nutr. 2005, 94, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Hevrøy, E.M.; El-Mowafi, A.; Taylor, R.G.; Olsvik, P.A.; Norberg, B.; Espe, M. Lysine intake affects gene expression of anabolic hormones in atlantic salmon, Salmo salar. Gen. Comp. Endocrinol. 2007, 152, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Marti-Palanca, H.; Martinez-Barbera, J.P.; Pendon, C.; Valdivia, M.M.; Perez-Sanchez, J.; Kaushik, S. Growth hormone as a function of age and dietary protein: Energy ratio in a marine teleost, the gilthead sea bream (Sparus aurata). Growth Regul. 1996, 6, 253–259. [Google Scholar]
- Company, R.; Calduch-Giner, J.A.; Pérez-Sánchez, J.; Kaushik, S.J. Protein sparing effect of dietary lipids in common dentex (Dentex dentex): A comparative study with sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). Aquat. Living Resour. 1999, 12, 23–30. [Google Scholar] [CrossRef]
- Wille, K.; McLean, E.; Goddard, J.S.; Byatt, J.C. Dietary lipid level and growth hormone alter growth and body conformation of blue tilapia, Oreochromis aureus. Aquaculture 2002, 209, 219–232. [Google Scholar] [CrossRef]
- Higgs, D.A.; Sutton, J.N.; Kim, H.; Oakes, J.D.; Smith, J.; Biagi, C.; Rowshandeli, M.; Devlin, R.H. Influence of dietary concentrations of protein, lipid and carbohydrate on growth, protein and energy utilization, body composition, and plasma titres of growth hormone and insulin-like growth factor-1 in non-transgenic and growth hormone transgenic coho salmon, Oncorhynchus kisutch (Walbaum). Aquaculture 2009, 286, 127–137. [Google Scholar]
- Chauvigne, F.; Gabillard, J.C.; Weil, C.; Rescan, P.Y. Effect of refeeding on IGFI, IGFII, IGF receptors, FGF2, FGF6, and myostatin mRNA expression in rainbow trout myotomal muscle. Gen. Comp. Endocrinol. 2003, 132, 209–215. [Google Scholar] [CrossRef]
- Hagen, Ø.; Fernandes, J.M.O.; Solberg, C.; Johnston, I.A. Expression of growth-related genes in muscle during fasting and refeeding of juvenile Atlantic halibut, Hippoglossus hippoglossus L. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009, 152, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Saera-Vila, A.; Calduch-Giner, J.-A.; Pérez-Sánchez, J. Duplication of growth hormone receptor (GHR) in fish genome: Gene organization and transcriptional regulation of GHR type I and II in gilthead sea bream (Sparus aurata). Gen. Comp. Endocrinol. 2005, 142, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Fox, B.K.; Breves, J.P.; Davis, L.K.; Pierce, A.L.; Hirano, T.; Grau, E.G. Tissue-specific regulation of the growth hormone/insulin-like growth factor axis during fasting and re-feeding: Importance of muscle expression of IGF-I and IGF-II mRNA in the tilapia. Gen. Comp. Endocrinol. 2010, 166, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Saera-Vila, A.; Calduch-Giner, J.A.; Perez-Sanchez, J. Co-expression of IGFs and GH receptors (GHRs) in gilthead sea bream (Sparus aurata L.): Sequence analysis of the GHR-flanking region. J. Endocrinol. 2007, 194, 361–372. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Primer Sequence |
---|---|
PCR | |
MyoG-f1 | 5′-GAGCTTTTCGAGACCAATCC |
MyoG-r1 | 5′-TTGCAGCCTTTCAATGTACTG |
MSTN-f1 | 5′-TCCAACTCCTGCCCAAAG |
MSTN-r1 | 5′-TAGAGCAACCACAACGGTC |
Real time qPCR | |
MyoG-f2 | 5′-TGAACGAGGCCTTTGATG |
MyoG-r2 | 5′-GCAGCCTTTCAATGTACTGG |
MSTN-f2 | 5′-GTGGACTTTGAGGACTTT |
MSTN-r2 | 5′-CATGTACTCACACTCTCCA |
GHRI-f1 | 5′-CTTTGGAGAGAGGTGAAACGGTTG |
GHRI-r1 | 5′-CTTGGGCGTAGAAGTCTGTGTTG |
GHRII-f1 | 5′-GACGGACCTGGACACGGACTG |
GHRII-r1 | 5′-ACGGGAGAATGGAGCGGTGAC |
IGFI-f1 | 5′-CTGCGCAATGGAACAAAG |
IGFI-r1 | 5′-GAATGAGCGCTAGACATCC |
IGFII-f1 | 5′-AGCAGAGAACAGCCGAAT |
IGFII-r1 | 5′-GTAGAGCGTGAGAGCCAG |
βACT-f1 | 5′-GCTGTCCCTGTACGCCTCTGG |
βACT-r1 | 5′-GCTCGGCTGTGGTGGTGAAGC |
Diet | |||||||
---|---|---|---|---|---|---|---|
L6 | L10 | L25 | |||||
Mean | SEM | Mean | SEM | Mean | SEM | p * | |
Liver | |||||||
GHR-I | 1.00 | 0.24 | 1.02 | 0.23 | 1.24 | 0.26 | 0.76 |
GHR-II | 1.00 | 0.13 | 0.82 | 0.09 | 0.81 | 0.06 | 0.43 |
IGF-I | 1.00 b | 0.09 | 0.72 a | 0.11 | 0.67 a | 0.05 | 0.02 |
IGF-II | 1.00 | 0.11 | 0.78 | 0.09 | 1.01 | 0.14 | 0.31 |
Skeletal muscle | |||||||
GHR-I | 1.00 ab | 0.15 | 0.66 a | 0.08 | 1.06 b | 0.12 | 0.05 |
GHR-II | 1.00 b | 0.16 | 0.51 a | 0.08 | 0.56 a | 0.06 | 0.01 |
IGF-I | 1.00 | 0.14 | 1.33 | 0.16 | 1.24 | 0.21 | 0.38 |
IGF-II | 1.00 b | 0.11 | 0.61 a | 0.09 | 0.79 ab | 0.13 | 0.03 |
MSTN | 1.00 | 0.11 | 0.91 | 0.09 | 0.91 | 0.09 | 0.76 |
MyoG | 1.00 b | 0.13 | 0.60 a | 0.05 | 0.65 a | 0.05 | 0.01 |
Adipose tissue | |||||||
GHR-I | 1.00 | 0.18 | 0.99 | 0.16 | 1.06 | 0.14 | 0.96 |
GHR-II | 1.00 | 0.15 | 1.20 | 0.31 | 1.24 | 0.21 | 0.72 |
IGF-I | 1.00 a | 0.19 | 0.37 b | 0.12 | 0.67 ab | 0.21 | 0.05 |
IGF-II | 1.00 | 0.13 | 1.14 | 0.23 | 1.28 | 0.14 | 0.50 |
Diet | ||||||||
---|---|---|---|---|---|---|---|---|
L6 | L10 | L25 | Total * | |||||
r | p† | r | p† | r | p† | r | p† | |
Liver | ||||||||
BW ‡ vs. GHR-I | - | - | 0.675 | 0.016 | - | - | - | - |
BW ‡ vs. IGF-I | - | - | 0.632 | 0.037 | - | - | - | - |
GHR-I vs. IGF-I | - | - | 0.606 | 0.048 | - | - | - | - |
GHR-I vs. GHR-II | 0.827 | 0.002 | 0.634 | 0.027 | - | - | 0.562 | <0.001 |
GHR-II vs. IGF-I | - | - | - | - | - | - | 0.469 | 0.005 |
GHR-II vs. IGF-II | 0.676 | 0.032 | 0.774 | 0.005 | - | - | 0.533 | 0.002 |
Skeletal muscle | ||||||||
BW ‡ vs. IGF-II | - | - | 0.598 | 0.040 | - | - | - | - |
GHR-I vs. IGF-I | 0.596 | 0.053 | 0.816 | 0.001 | - | - | 0.382 | 0.024 |
GHR-I vs. GHR-II | 0.877 | <0.001 | 0.585 | 0.046 | 0.865 | <0.001 | 0.700 | <0.001 |
GHR-I vs. IGF-II | 0.803 | 0.003 | - | - | 0.567 | 0.055 | 0.651 | <0.001 |
GHR-II vs. IGF-II | 0.891 | <0.001 | 0.631 | 0.028 | 0.705 | 0.015 | 0.817 | <0.001 |
Adipose tissue | ||||||||
BW vs. GHR-II | −0.691 | 0.047 | - | - | - | - | - | - |
GHR-I vs. IGF-I | - | - | - | - | - | - | 0.595 | 0.006 |
GHR-I vs. GHR-II | - | - | 0.808 | 0.015 | 0.956 | <0.001 | 0.655 | <0.001 |
GHR-I vs. IGF-II | 0.740 | 0.014 | 0.793 | 0.019 | 0.890 | 0.004 | 0.744 | <0.001 |
GHR-II vs. IGF-II | - | - | 0.800 | 0.017 | 0.943 | <0.001 | 0.736 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Requeni, P.; Kraemer, M.N.; Canosa, L.F. The Dietary Lipid Content Affects the Tissue Gene Expression of Muscle Growth Biomarkers and the GH/IGF System of Pejerrey (Odontesthes bonariensis) Juveniles. Fishes 2019, 4, 37. https://doi.org/10.3390/fishes4030037
Gómez-Requeni P, Kraemer MN, Canosa LF. The Dietary Lipid Content Affects the Tissue Gene Expression of Muscle Growth Biomarkers and the GH/IGF System of Pejerrey (Odontesthes bonariensis) Juveniles. Fishes. 2019; 4(3):37. https://doi.org/10.3390/fishes4030037
Chicago/Turabian StyleGómez-Requeni, Pedro, Mauricio Nestor Kraemer, and Luis Fabián Canosa. 2019. "The Dietary Lipid Content Affects the Tissue Gene Expression of Muscle Growth Biomarkers and the GH/IGF System of Pejerrey (Odontesthes bonariensis) Juveniles" Fishes 4, no. 3: 37. https://doi.org/10.3390/fishes4030037
APA StyleGómez-Requeni, P., Kraemer, M. N., & Canosa, L. F. (2019). The Dietary Lipid Content Affects the Tissue Gene Expression of Muscle Growth Biomarkers and the GH/IGF System of Pejerrey (Odontesthes bonariensis) Juveniles. Fishes, 4(3), 37. https://doi.org/10.3390/fishes4030037