Water Renewal Rate and Temperature on the Growth Performance and Physiology of Piaractus brachypomus in a Recirculating Aquaculture System (RAS)
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish Cultivation and Conditions
2.2. Acclimation to the Experimental Environment
2.3. Experimental Protocol
2.4. Water Quality
2.5. Growth Performance Indices
- -
- Daily weight gain (g/day) (DWG) = weight gain/days of experiment;
- -
- Initial body weight (IW);
- -
- Final body weight (FW);
- -
- Total length (cm) (TL);
- -
- Daily feed intake (DFI);
- -
- Feed conversion ratio (FCR) = feed intake/biomass gain;
- -
- Specific growth rate (%/day) (SGR) = SGR = 100 (ln FW − ln IW)/ΔT, where IW is initial weight, FW is final weight, and Δt is the number of days between samplings.
2.6. Blood Analyses
2.7. Tissue Assays and Biometric Indexes
- -
- Hepatosomatic index (%) = (liver weight/body weight) × 100;
- -
- Mesenteric fat index (%) = (adipose tissue weight/body weight) × 100.
2.8. Statistical Analysis
- -
- Water quality: Samples were collected from all tanks.
- -
- Growth performance indices: All juveniles were sampled for weight and length collection and subsequent calculation of zootechnical indices, totaling the experimental n of 56 juveniles per treatment.
- -
- Blood analyses: 2 juveniles per tank were randomly selected for blood sample collection, totaling a sample n of 8 juveniles per treatment.
- -
- Tissue assays and biometric indexes: The same 2 juveniles from each tank used for blood analysis were euthanized and used for tissue collection. Sample n of 8 juveniles per treatment.
3. Results
3.1. Water Quality
3.2. Growth Performance
3.3. Hematological and Biochemical Parameters
3.4. Tissue Lipid Content
4. Discussion
4.1. Water Quality
4.2. Growth Performance
4.3. Hematological and Biochemical Parameters
4.4. Tissue Lipid Content
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mesa-Granda, M.N.; Botero-Aguirre, M.C. La cachama blanca (Piaractus brachypomus), una especie potencial para el mejoramiento genético. Rev. Colomb. Cienc. Pec. 2007, 20, 79–86. [Google Scholar] [CrossRef]
- Jorge, P.H.; Mastrochirico-Filho, V.A.; Hata, M.E.; Mendes, N.J.; Ariede, R.B.; Freitas, M.V.; Vera, M.; Porto-Foresti, F.; Hashimoto, D.T. Genetic characterization of the fish (Piaractus brachypomus) by microsatellites derived from transcriptome sequencing. Front. Genet. 2018, 9, 46. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Pradhan, P.K.; Das, P.C.; Srivastava, S.M.; Lal, K.K.; Jena, J.K. Growth performance and compatibility of pacu, Piaractus brachypomus with Indian major carps in polyculture system. Aquaculture 2018, 490, 236–239. [Google Scholar] [CrossRef]
- Fresneda, A.; Lenis, G.; Agudelo, E.; Olivera, M. Espermiación inducida y crioconservación de semen de cachama blanca (Piaractus brachypomus). Rev. Colomb. Cien. Pec. 2004, 17, 46–52. [Google Scholar] [CrossRef]
- Ende, S.; Henjes, J.; Spiller, M.; Elshobary, M.; Hanelt, D.; Abomohra, A. Recent advances in recirculating aquaculture systems and role of microalgae to close system loop. Biores. Technol. 2024, 407, 131107. [Google Scholar] [CrossRef]
- Martins, C.I.M.; Eding, E.H.; Verdegem, M.C.J.; Heinsbroek, L.T.N.; Schneider, O.; Blancheton, J.P.; Roque d’Orbcastel, E.; Verreth, J.A.J. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng. 2010, 43, 83–93. [Google Scholar] [CrossRef]
- Dalsgaard, I.; Lund, I.; Thorarinsdottir, R.; Drengstig, A.; Arvonen, K.; Pedersen, P.B. Farming different species in RAS in Nordic countries: Current status and future perspectives. Aquac. Eng. 2013, 53, 2–13. [Google Scholar] [CrossRef]
- Obirikorang, K.; Agbo, N.; Obirikorang, C.; Adjei-Boateng, D.; Ahiave, S.; Skov, P. Effects of water flow rates on growth and welfare of Nile tilapia (Oreochromis niloticus) reared in a recirculating aquaculture system. Aquac. Int. 2019, 27, 449–462. [Google Scholar] [CrossRef]
- Davidson, J.; Good, C.; Welsh, C.; Brazil, B.; Summerfelt, S. Heavy metal and waste metabolite accumulation and their potential effect on rainbow trout performance in a replicated water reuse system operated at low or high system flushing rates. Aquac. Eng. 2009, 41, 136–145. [Google Scholar] [CrossRef]
- Jørgensen, E.H.; Haatuft, A.; Puvanendran, V.; Mortensen, A. Effects of reduced water exchange rate and oxygen saturation on growth and stress indicators of juvenile lumpfish (Cyclopterus lumpus L.) in aquaculture. Aquaculture 2017, 474, 26–33. [Google Scholar] [CrossRef]
- Djurichkovic, L.D.; Donelson, J.M.; Fowler, A.M.; Feary, D.A.; Booth, D.J. The effects of water temperature on the juvenile performance of two tropical damselfishes expatriating to temperate reefs. Sci. Rep. 2019, 9, 13937. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.K.; Han, H.S.; Hur, J.W. Effects of water temperature changes on oxygen consumption and hematological factors in olive flounder (Paralichthys olivaceus). Fish Aquat. Sci. 2021, 24, 99–107. [Google Scholar] [CrossRef]
- Favero, G.C.; Santos, F.A.C.; Júlio, G.S.C.; Batista, F.S.; Bonifácio, C.T.; Torres, I.F.A.; Paranhos, C.O.; Luz, R.K. Effects of water temperature and feeding time on growth performance and physiological parameters of (Piaractus brachypomus) juveniles. Aquaculture 2022, 548, 737716. [Google Scholar] [CrossRef]
- Costa, D.P.; Leme, F.O.P.; Takata, R.; Costa, D.C.; Silva, W.S.; Melillo Filho, R.; Alves, G.M.; Luz, R.K. Effects of temperature on growth, survival and physiological parameters in juveniles of (Lophiosilurus alexandri), a carnivorous neotropical catfish. Aquac. Res. 2016, 47, 1706–1715. [Google Scholar]
- Barroso, D.C.; Almeida-Val, V.M.F.; Val, A.L. Temperature and food availability alters the physiology and aerobic capacity of tambaqui (Colossoma macropomum). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020, 245, 110704. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Peck, M.A. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J. Fish. Biol. 2010, 77, 1745–1779. [Google Scholar]
- Ibarz, A.; Padrós, F.; Gallardo, M.Á.; Fernández-Borrás, J.; Blasco, J.; Tort, L. Low-temperature challenges to gilthead sea bream culture: Review of cold-induced alterations and ‘Winter Syndrome’. Rev. Fish Biol. Fish. 2010, 20, 539–556. [Google Scholar]
- He, J.; Qiang, J.; Yang, H.; Xu, P.; Zhu, Z.X.; Yang, R.Q. Changes in the fatty acid composition and regulation of antioxidant enzymes and physiology of juvenile genetically improved farmed tilapia Oreochromis niloticus (L.), subjected to short-term low temperature stress. J. Therm. Biol. 2015, 53, 90–97. [Google Scholar] [CrossRef]
- Favero, G.C.; Boaventura, T.P.; Ferreira, A.L.; Silva, A.C.F.; Porto, L.A.; Luz, R.K. Fasting/re-feeding and water temperature promote the mobilization of body reserves in juvenile freshwater carnivorous catfish Lophiosilurus alexandri. Aquaculture 2019, 511, 734223. [Google Scholar]
- Ferreira, A.L.; Santos, F.A.C.; Bonifácio, C.T.; Luz, R.K. Effects of live prey concentration, salinity, and weaning age on larviculture of (Piaractus brachypomus) reared in a recirculating aquaculture system. Trop. Anim. Health Prod. 2023, 55, 99. [Google Scholar]
- Silva, W.S.; Ferreira, A.L.; Neves, L.C.; Ferreira, N.S.; Palheta, G.D.A.; Takata, R.; Luz, R.K. Effects of stocking density on survival, growth and stress resistance of juvenile tambaqui (Colossoma macropomum) reared in a recirculating aquaculture system (RAS). Aquac. Int. 2021, 29, 609–621. [Google Scholar] [CrossRef]
- Goldenfarb, P.B.; Bowyer, F.P.; Hall, E.; Brosious, E. Reproducibility in the hematology laboratory: The microhematocrit determination. Am. J. Clin. Pathol. 1971, 56, 35–39. [Google Scholar] [CrossRef]
- Wintrobe, M.M. Classification and treatment on the basis of differences in the average volume and hemoglobin content of the red corpuscles. Arch. Intern. Med. 1934, 54, 256–280. [Google Scholar]
- Mattioli, C.C.; Takata, R.; Leme, F.O.P.; Costa, D.C.; Melillo-Filho, R.; Silva, W.S.; Luz, R.K. The effects of acute and chronic exposure to water salinity on juveniles of the carnivorous freshwater catfish (Lophiosilurus alexandri). Aquaculture 2017, 481, 255–266. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.; Oliveira, M.; Salomão, R.; Santos, R.; Paula, T.; Silva, M.; Mareco, E. Influence of temperature and exercise on growth performance, muscle, and adipose tissue in pacus (Piaractus mesopotamicus). J. Therm. Biol. 2017, 69, 221–227. [Google Scholar] [CrossRef]
- Mrnak, J.; Heironimus, L.; James, D.; Chipps, S. Effect of water velocity and temperature on energy use, behaviour and mortality of pallid sturgeon Scaphirhynchus albus larvae. J. Fish Biol. 2020, 97, 1690–1700. [Google Scholar] [CrossRef]
- García-Vega, A.; Ruiz-Legazpi, J.; Fuentes-Pérez, J.; Bravo-Córdoba, F.; Sanz-Ronda, F. Effect of thermo-velocity barriers on fish: Influence of water temperature, flow velocity and body size on the volitional swimming capacity of northern straight-mouth nase (Pseudochondrostoma duriense). J. Fish Biol. 2023, 102, 689–706. [Google Scholar] [CrossRef]
- Luz, R.K.; Santos, J.C.E.; Pedreira, M.M.; Teixeira, E.A. Effect of water flow rate and feed training on “pacamã” (Siluriforme: Pseudopimelodidae) juvenile production. Arq. Bras. Med. Vet. Zoot. 2011, 63, 973–979. [Google Scholar] [CrossRef]
- Amanajás, R.D.; Val, A.L. Thermal biology of tambaqui (Colossoma macropomum): General insights for aquaculture in a changing world. Rev. Aquac. 2023, 15, 480–490. [Google Scholar]
- Xiao, R.; Wang, G.; Chen, Z.; Ye, Z.; Zhu, S.; Ding, X.; Zhou, F.; Guo, J.; Zhao, J. Effects of flow velocity on water quality and ammonia excretion in recirculating aquaculture system culturing juvenile largemouth bass (Micropterus salmoides). Int. J. Agric. Biol. Eng. 2022, 15, 213–218. [Google Scholar] [CrossRef]
- Fang, D.; Mei, J.; Xie, J.; Qiu, W. The effects of transport stress (temperature and vibration) on blood biochemical parameters, oxidative stress, and gill histomorphology of pearl gentian groupers. Fishes 2023, 8, 218. [Google Scholar] [CrossRef]
- Parodi, T.; Cunha, M.; Becker, A.; Zeppenfeld, C.; Martins, D.; Koakoski, G.; Barcellos, L.; Heinzmann, B.; Baldisserotto, B. Anesthetic activity of the essential oil of Aloysia triphylla and effectiveness in reducing stress during transport of albino and gray strains of silver catfish, Rhamdia quelen. Fish Physiol. Biochem. 2014, 40, 323–334. [Google Scholar] [CrossRef]
- Saint-Paul, U. Physiological adaptation to hypoxia of a neotropical characoid fish Colossoma macropomum, serrasalmidae. Environ. Biol. Fishes 1984, 11, 53–62. [Google Scholar] [CrossRef]
- Parker, T.M.; Barnes, M.E. Rearing velocity impacts on landlocked fall Chinook salmon (Oncorhynchus tshawytscha) growth, condition, and survival. Open J. Anim. Sci. 2014, 4, 244. [Google Scholar] [CrossRef]
- Schram, E.; Verdegem, M.; Widjaja, R.; Kloet, C.; Foss, A.; Schelvis-Smit, R.; Roth, B.; Imsland, A. Impact of increased flow rate on specific growth rate of juvenile turbot (Scophthalmus maximus, Rafinesque 1810). Aquaculture 2009, 292, 46–52. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, J.; Zhang, J.; Ren, X.; Zhang, X.; Liu, Y.; Shi, X. Effect of water flow on growth and metabolism in Sebastes schlegelii. Aquaculture 2023, 571, 739485. [Google Scholar] [CrossRef]
- Li, X.; Ji, L.; Wu, L.; Gao, X.; Li, X.; Li, J.; Liu, Y. Effect of flow velocity on the growth, stress and immune responses of turbot (Scophthalmus maximus) in recirculating aquaculture systems. Fish Shellfish Immunol. 2019, 86, 1169–1176. [Google Scholar] [CrossRef]
- Fei, F.; Fang, Y.; Zhu, Z.; Liu, X.; Li, A.; Zhang, J.; Gao, X.; Li, W.; Yang, H.; Li, W.; et al. Impact of flow velocity on growth performance, muscle texture, and nutritional composition in seabass (Lateolabrax maculatus). Aquac. Int. 2025, 33, 111. [Google Scholar] [CrossRef]
- León-Ramírez, J.; García-Trejo, J.; Felix-Cuencas, L.; López-Tejeida, S.; Sosa-Ferreyra, C.; González-Orozco, A. Effect of the water exchange rate in a recirculation aquaculture system on growth, glucose and cortisol levels in Oreochromis niloticus. Lat. Am. J. Aquat. Res. 2022, 50, 267–275. [Google Scholar] [CrossRef]
- Good, C.; Davidson, J.; Welsh, C.; Brazil, B.; Snekvik, K.; Summerfelt, S. The impact of water exchange rate on the health and performance of rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems. Aquaculture 2009, 294, 80–85. [Google Scholar] [CrossRef]
- Jobling, M. Temperature and growth: Modulation of growth rate via temperature. In Seminar Series-Society for Experimental Biology; Wood, C.M., McDonald, D.G., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 225–253. [Google Scholar]
- Fernandes, E.M.; Almeida, L.C.F.; Hashimoto, D.T.; Lattanzi, G.R.; Gervaz, W.R.; Leonardo, A.F.; Neto, R.V.R. Survival of purebred and hybrid Serrasalmidae under low water temperature conditions. Aquaculture 2018, 497, 97–102. [Google Scholar] [CrossRef]
- Vásquez-Torres, W. A pirapitinga, reprodução e cultivo. In Espécies Nativas Para Piscicultura no Brasil; Baldisserotto, B., Gomes, L.C., Eds.; UFSM: Santa Maria, CA, USA, 2005; pp. 203–223. [Google Scholar]
- Policar, T.; Kristan, J.; Thorarensen, H.; Velísek, J.; Kolárová, J.; Stejskal, V.; Malinovskyi, O. Effects of oxygen levels and temperature on growth and physiology of pikeperch juveniles cultured in a recirculating aquaculture system. Animal 2024, 18, 101347. [Google Scholar] [CrossRef]
- Ahmed, I.; Reshi, Q.; Fazio, F. The influence of the endogenous and exogenous factors on hematological parameters in different fish species: A review. Aquac. Int. 2020, 28, 869–899. [Google Scholar] [CrossRef]
- Pinto, D.; Pellegrin, L.; Nitz, L.F.; Costa, S.T.; Monserrat, J.M.; Garcia, L. Haematological and oxidative stress responses in Piaractus mesopotamicus under temperature variations in water. Aquac. Res. 2019, 50, 3017–3027. [Google Scholar] [CrossRef]
- Khieokhajonkhet, A.; Sangphrom, S.; Aeksiri, N.; Tatsapong, P.; Wuthijaree, K.; Kaneko, G. Effects of long-term exposure to high temperature on growth performance, chemical composition, hematological and histological changes, and physiological responses in hybrid catfish ♂Clarias gariepinus (Burchell, 1822) × ♀C. macrocephalus (Günther, 1864). J. Therm. Biol. 2022, 105, 103226. [Google Scholar] [PubMed]
- Witeska, M.; Kondera, E.; Lugowska, K.; Bojarski, B. Hematological methods in fish-Not only for beginners. Aquaculture 2022, 547, 737498. [Google Scholar]
- Barton, B.A.; Iwama, G.K. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. An. Rev. Fish Dis. 1991, 1, 3–26. [Google Scholar] [CrossRef]
- Liang, H.L.; Xu, H.; Ge, X.P.; Zhu, J.; Ren, M.C.; Mi, H.F. Water temperature affects the protein requirements, growth performance, and nutritional metabolism of grass carp (Ctenopharyngodon idella) juveniles. Aquac. Rep. 2022, 25, 101267. [Google Scholar] [CrossRef]
- Li, R.X.; Chen, L.Y.; Limbu, S.M.; Qian, Y.C.; Zhou, W.H.; Chen, L.Q.; Luo, Y.; Qiao, F.; Zhang, M.L.; Du, Z.Y. High cholesterol intake remodels cholesterol turnover and energy homeostasis in Nile tilapia (Oreochromis niloticus). Mar. Life Sci. Technol. 2023, 5, 56–74. [Google Scholar] [CrossRef]
- Haschek, W.M.; Rousseaux, C.G.; Wallig, M.A.; Bolon, B. Principles of toxicology. In Fundamentals of Toxicologic Pathology, 2nd ed.; Haschek, W.M., Wallig, M.A., Rousseaux, C.G., Eds.; Elsevier Inc.: London, UK, 2009; pp. 1–8. [Google Scholar]
- Liu, A.; Pirozzi, I.; Codabaccus, B.; Sammut, J.; Booth, M. The interactive effect of dietary choline and water temperature on the liver lipid composition, histology, and plasma biochemistry of juvenile yellowtail kingfish (Seriola lalandi). Aquaculture 2021, 531, 735893. [Google Scholar] [CrossRef]
- Grigorakis, K. Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: A review. Aquaculture 2007, 272, 55–75. [Google Scholar] [CrossRef]
| Statistic | p-Value | |||
|---|---|---|---|---|
| Dissolved Oxygen (mg/L) 2 | pH 1 | Total Ammonia (mg/L) 2 | Electrical Conductivity (µS/cm) 2 | |
| Q | 0.0001 ** | 0.0841 ns | 0.1422 ns | 0.0193 * |
| T | 0.0023 ** | <0.0001 ** | 0.1738 ns | 0.0075 ** |
| Q × T | <0.0001 ** | 0.6470 ns | 0.3138 ns | 0.0024 ** |
| Treatments | Means for Q | |||
| Q42L/h | 5.72 ± 0.17 b | 6.74 ± 0.15 | 0.21 ± 0.10 | 0.48 ± 0.03 a |
| Q128L/h | 6.01 ± 0.12 a | 6.70 ± 0.13 | 0.15 ± 0.13 | 0.45 ± 0.03 b |
| Treatments | Means for T | |||
| T26°C | 5.89 ± 0.25 a | 6.85 ± 0.08 a | 0.15 ± 0.13 | 0.45 ± 0.04 b |
| T29°C | 5.72 ± 0.16 b | 6.75 ± 0.05 b | 0.17 ± 0.12 | 0.49 ± 0.02 a |
| T32°C | 5.99 ± 0.08 a | 6.56 ± 0.04 c | 0.23 ± 0.07 | 0.46 ± 0.02 b |
| Treatments | Means for Q × T | |||
| Q42L/hT26°C | 5.66 ± 0.10 c | 6.88 ± 0.10 | 0.17 ± 0.13 | 0.47 ± 0.04 ab |
| Q42L/hT29°C | 5.57 ± 0.08 c | 6.77 ± 0.04 | 0.21 ± 0.10 | 0.49 ± 0.02 a |
| Q42L/hT32°C | 5.92 ± 0.02 ab | 6.56 ± 0.04 | 0.25 ± 0.00 | 0.48 ± 0.01 a |
| Q128L/hT26°C | 6.12 ± 0.05 a | 6.83 ± 0.06 | 0.13 ± 0.14 | 0.43 ± 0.03 b |
| Q128L/hT29°C | 5.86 ± 0.03 bc | 6.73 ± 0.04 | 0.13 ± 0.14 | 0.49 ± 0.01 a |
| Q128L/hT32°C | 6.06 ± 0.05 a | 6.55 ± 0.04 | 0.21 ± 0.10 | 0.44 ± 0.01 b |
| Statistic | p-Value | ||||||
|---|---|---|---|---|---|---|---|
| FW (g) | TL (cm) | DWG (g/Day) | DFI (g) | FCR | SGR (%/Day) | Survival (%) | |
| Q | 0.6163 ns | 0.2902 ns | 0.4574 ns | 0.0001 ** | 0.0002 ** | 0.8478 ns | 0.6109 ns |
| T | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 | 0.8457 ns |
| Q × T | 0.0862 ns | 0.0087 ** | 0.0062 ** | 0.0096 ** | 0.0049 ** | 0.0061 ** | 0.2152 ns |
| Treatments | Means for Q | ||||||
| Q42L/h | 7.24 ± 0.97 | 6.78 ± 0.31 | 0.36 ± 0.02 | 0.38 ± 0.04 b | 1.06 ± 0.08 ab | 10.42 ± 0.31 | 95.83 ± 6.43 |
| Q128L/h | 7.12 ± 1.34 | 6.69 ± 0.49 | 0.35 ± 0.03 | 0.44 ± 0.03 a | 1.26 ± 0.07 a | 10.44 ± 0.64 | 96.43 ± 8.34 |
| Treatments | Means for T | ||||||
| T26°C | 5.89 ± 0.64 c | 6.30 ± 0.31 c | 0.32 ± 0.02 b | 0.39 ± 0.03 b | 1.21 ± 0.14 b | 9.90 ± 0.33 b | 98.21 ± 3.31 |
| T29°C | 7.54 ± 0.76 b | 6.83 ± 0.24 b | 0.36 ± 0.02 a | 0.40 ± 0.06 b | 1.09 ± 0.14 a | 10.66 ± 0.42 a | 95.54 ± 7.58 |
| T32°C | 8.11 ± 0.53 a | 7.08 ± 0.13 a | 0.38 ± 0.01 a | 0.45 ± 0.03 a | 1.18 ± 0.07 b | 10.73 ± 0.16 a | 94.64 ± 9.92 |
| Treatments | Means for Q × T | ||||||
| Q42L/hT26°C | 6.33 ± 0.50 | 6.53 ± 0.20 b | 0.34 ± 0.01 b | 0.37 ± 0.02 cd | 1.08 ± 0.04 b | 10.14 ± 0.19 cd | 96.43 ± 4.12 |
| Q42L/hT29°C | 7.26 ± 0.73 | 6.72 ± 0.22 ab | 0.35 ± 0.02 ab | 0.34 ± 0.01 d | 0.97 ± 0.02 a | 10.41 ± 0.26 ab | 92.86 ± 10.10 |
| Q42L/hT32°C | 8.13 ± 0.70 | 7.09 ± 0.19 a | 0.38 ± 0.01 a | 0.43 ± 0.02 ab | 1.14 ± 0.06 bc | 10.70 ± 0.21 ab | 98.21 ± 3.57 |
| Q128L/hT26°C | 5.44 ± 0.43 | 6.07 ± 0.21 c | 0.31 ± 0.01 c | 0.41 ± 0.02 bc | 1.33 ± 0.02 d | 9.66 ± 0.24 d | 100.00 ± 0.00 |
| Q128L/hT29°C | 7.81 ± 6.87 | 6.93 ± 0.22 ab | 0.37 ± 0.02 a | 0.45 ± 0.03 ab | 1.21 ± 0.08 c | 10.90 ± 0.44 a | 98.21 ± 3.57 |
| Q128L/hT32°C | 8.10 ± 0.39 | 7.08 ± 0.06 a | 0.38 ± 0.003 a | 0.46 ± 0.02 a | 1.23 ± 0.04 c | 10.77 ± 0.09 a | 91.07 ± 13.52 |
| Statistic | p-Value | ||||||
|---|---|---|---|---|---|---|---|
| FW (g) | TL (cm) | DWG (g/Day) | DFI (g) | FCR | SGR (%/Day) | Survival (%) | |
| Q | 0.7714 ns | 0.4605 ns | 0.8445 ns | <0.0001 ** | 0.0042 ** | 0.8875 ns | 0.7899 ns |
| T | 0.0002 ** | <0.0001 ** | 0.0021 ** | 0.6218 ns | 0.0014 ** | 0.9108 ns | 0.0839 ns |
| Q × T | 0.3991 ns | 0.2558 ns | 0.5930 ns | 0.2482 ns | 0.4064 ns | 0.6958 ns | 0.6077 ns |
| Treatments | Means for Q | ||||||
| Q42L/h | 19.46 ± 3.86 | 9.24 ± 0.44 | 0.83 ± 0.14 | 0.78 ± 0.09 b | 0.95 ± 0.17 a | 6.67 ± 0.45 | 91.67 ± 10.48 |
| Q128L/h | 19.74 ± 2.97 | 9.15 ± 0.61 | 0.82 ± 0.18 | 0.93 ± 0.04 a | 1.19 ± 0.28 b | 6.70 ± 0.46 | 90.48 ± 12.31 |
| Treatments | Means for T | ||||||
| T26°C | 16.16 ± 1.89 b | 8.62 ± 0.30 b | 0.69 ± 0.09 b | 0.86 ± 0.10 | 1.29 ± 0.28 b | 6.73 ± 0.41 | 92.86 ± 10.10 |
| T29°C | 20.42 ± 2.54 a | 9.37 ± 0.35 a | 0.86 ± 0.14 a | 0.83 ± 0.14 | 0.99 ± 0.20 a | 6.63 ± 0.56 | 96.43 ± 5.40 |
| T32°C | 22.23 ± 2.28 a | 9.59 ± 0.31 a | 0.94 ± 0.12 a | 0.87 ± 0.08 | 0.93 ± 0.12 a | 6.70 ± 0.39 | 83.93 ± 13.63 |
| Treatments | Means for Q × T | ||||||
| Q42lL/hT26°C | 17.23 ± 1.65 | 8.83 ± 0.24 | 0.73 ± 0.08 | 0.81 ± 0.11 | 1.11 ± 0.13 | 6.67 ± 0.25 | 91.07 ± 13.52 |
| Q42L/hlT29°C | 20.05 ± 3.12 | 9.35 ± 0.46 | 0.85 ± 0.18 | 0.72 ± 0.09 | 0.87 ± 0.18 | 6.73 ± 0.80 | 96.43 ± 4.12 |
| Q42L/hT32°C | 21.95 ± 2.21 | 9.55 ± 0.28 | 0.92 ± 0.10 | 0.80 ± 0.05 | 0.88 ± 0.04 | 6.61 ± 0.11 | 87.50 ± 12.20 |
| Q128L/hT26°C | 15.1 ± 1.62 | 8.42 ± 0.18 | 0.64 ± 0.09 | 0.92 ± 0.05 | 1.46 ± 0.30 | 6.79 ± 0.57 | 94.64 ± 6.84 |
| Q128L/hT29°C | 20.78 ± 2.21 | 9.40 ± 0.28 | 0.86 ± 0.10 | 0.95 ± 0.03 | 1.11 ± 0.15 | 6.52 ± 0.26 | 96.43 ± 7.14 |
| Q128L/hT32°C | 22.52 ± 2.66 | 9.63 ± 0.38 | 0.96 ± 0.16 | 0.93 ± 0.05 | 0.99 ± 0.15 | 6.79 ± 0.57 | 80.36 ± 15.84 |
| Statistic | p-Value | ||||||
|---|---|---|---|---|---|---|---|
| FW (g) | TL (cm) | DWG (g/Day) | DFI (g) | FCR | SGR (%/Day) | Survival (%) | |
| Q | 0.7874 ns | 0.8788 ns | 0.8809 ns | 0.9245 ns | 0.8156 ns | 0.8830 ns | 0.8724 ns |
| T | 0.0300 * | 0.0010 ** | 0.5754 ns | 0.0003 ** | 0.0133 ** | 0.0012 ** | 0.7899 ns |
| Q × T | 0.3617 ns | 0.6522 ns | 0.4940 ns | 0.0259 ** | 0.851 ns | 0.7439 ns | 0.8724 ns |
| Treatments | Means for Q | ||||||
| Q42L/h | 32.85 ± 3.67 | 12.20 ± 0.58 | 0.87 ± 0.15 | 1.10 ± 0.10 | 1.29 ± 0.26 | 3.43 ± 0.61 | 91.67 ± 10.48 |
| Q128L/h | 32.42 ± 5.03 | 12.18 ± 0.67 | 0.86 ± 0.17 | 1.10 ± 0.20 | 1.32 ± 0.39 | 3.46 ± 0.66 | 90.48 ± 12.31 |
| Treatments | Means for T | ||||||
| T26°C | 29.40 ± 3.17 b | 11.51 ± 0.3 b | 0.88 ± 0.11 | 0.96 ± 0.12 b | 1.10 ± 0.16 a | 3.99 ± 0.30 a | 93.75 ± 9.69 |
| T29°C | 33.98 ± 3.95 ab | 12.49 ± 0.47 a | 0.90 ± 0.14 | 1.12 ± 0.10 a | 1.26 ± 0.19 b | 3.40 ± 0.42 ab | 91.07 ± 9.92 |
| T32°C | 34.53 ± 4.15 a | 12.56 ± 0.38 a | 0.82 ± 0.21 | 1.22 ± 0.12 a | 1.56 ± 0.39 b | 2.93 ± 0.59 b | 91.07 ± 8.32 |
| Treatments | Means for Q × T | ||||||
| Q42L/hT26°C | 31.14 ± 2.84 | 11.62 ± 0.29 | 0.93 ± 0.11 | 1.05 ± 0.07 bc | 1.14 ± 0.15 | 3.95 ± 0.35 | 91.07 ± 13.52 |
| Q42L/hT29°C | 33.92 ± 5.73 | 12.50 ± 0.68 | 0.92 ± 0.20 | 1.09 ± 0.09 bc | 1.22 ± 0.26 | 3.49 ± 0.42 | 87.50 ± 12.20 |
| Q42L/hT32°C | 33.49 ± 1.57 | 12.49 ± 0.15 | 0.77 ± 0.09 | 1.16 ± 0.11 ab | 1.52 ± 0.20 | 2.84 ± 0.47 | 96.43 ± 7.14 |
| Q128L/hT26°C | 27.65 ± 2.70 | 11.39 ± 0.30 | 0.84 ± 0.09 | 0.88 ± 0.10 c | 1.06 ± 0.17 | 4.04 ± 0.29 | 96.43 ± 4.12 |
| Q128L/hT29°C | 34.04 ± 1.88 | 12.49 ± 0.24 | 0.88 ± 0.07 | 1.15 ± 0.11 ab | 1.30 ± 0.11 | 3.31 ± 0.45 | 94.64 ± 6.84 |
| Q128L/hT32°C | 35.57 ± 5.90 | 12.64 ± 0.54 | 0.87 ± 0.30 | 1.28 ± 0.11 a | 1.60 ± 0.55 | 3.02 ± 0.76 | 85.71 ± 5.83 |
| Statistic | p-Value | |||||
|---|---|---|---|---|---|---|
| Hemoglobin (g/dL) | Hematocrit (%) | Erythrocytes (106/µL) | MCV (fL) | MCH (pg) | MCHC (g/dL) | |
| Q | 0.0079 ** | 0.4765 ns | 0.8089 ns | 0.6822 ns | 0.3325 ns | 0.3875 ns |
| T | <0.0001 ** | <0.0001 ** | 0.5575 ns | 0.3792 ns | 0.3853 ns | 0.0935 ns |
| Q × T | 0.1985 ns | 0.5017 ns | 0.8609 ns | 0.8224 ns | 0.6034 ns | 0.5575 ns |
| Treatments | Means for Q | |||||
| Q42L/h | 7.23 ± 0.68 b | 27.46 ± 4.64 | 1.16 ± 0.28 | 249.06 ± 75.48 | 64.62 ± 11.99 | 26.82 ± 3.69 |
| Q128L/h | 7.74 ± 0.99 a | 28.14 ± 3.88 | 1.14 ± 0.27 | 260.99 ± 67.62 | 71.26 ± 18.12 | 27.69 ± 3.05 |
| Treatments | Means for T | |||||
| T26°C | 6.73 ± 0.53 b | 24.73 ± 2.87 b | 1.10 ± 0.28 | 243.38 ± 66.76 | 65.13 ± 17.02 | 27.65 ± 4.06 |
| T29°C | 7.68 ± 0.84 a | 26.87 ± 2.42 b | 1.20 ± 0.28 | 234.43 ± 50.75 | 66.12 ± 11.98 | 28.35 ± 2.20 |
| T32°C | 8.06 ± 0.65 a | 31.73 ± 3.95 a | 1.16 ± 0.25 | 286.07 ± 85.68 | 72.56 ± 17.05 | 25.67 ± 3.28 |
| Treatments | Means for Q × T | |||||
| Q42L/hT26°C | 6.69 ± 0.39 | 24.25 ± 2.19 | 1.09 ± 0.24 | 233.63 ± 57.71 | 63.72 ± 11.16 | 27.87 ± 3.93 |
| Q42L/hT29°C | 7.24 ± 0.56 | 26.00 ± 2.07 | 1.21 ± 0.35 | 230.11 ± 58.73 | 63.29 ± 13.24 | 27.93 ± 2.33 |
| Q42L/hT32°C | 7.78 ± 0.62 | 32.13 ± 4.76 | 1.20 ± 0.25 | 283.45 ± 99.54 | 66.84 ± 12.80 | 24.66 ± 3.97 |
| Q128L/hT26°C | 6.76 ± 0.66 | 25.29 ± 3.59 | 1.11 ± 0.33 | 254.53 ± 79.01 | 66.54 ± 22.17 | 27.39 ± 4.51 |
| Q128L/hT29°C | 8.13 ± 0.87 | 27.86 ± 2.54 | 1.20 ± 0.21 | 239.37 ± 43.96 | 68.96 ± 10.68 | 28.84 ± 2.11 |
| Q128L/hT32°C | 8.34 ± 0.59 | 31.29 ± 3.09 | 1.12 ± 0.27 | 289.07 ± 74.50 | 78.28 ± 19.63 | 26.83 ± 1.93 |
| Statistic | p-Value | |||||
|---|---|---|---|---|---|---|
| Glucose (mg/dL) | Total Plasma Protein (g/dL) | Triglycerides (mg/dL) | Cholesterol (mg/dL) | ALT (U/L) | AST (U/L) | |
| Q | 0.4964 ns | 0.9421 ns | 0.3941 ns | 0.3946 ns | 0.3642 ns | 0.6983 ns |
| T | 0.1164 ns | 0.0204 * | 0.6205 ns | 0.0102 * | 0.1040 ns | 0.3430 ns |
| Q × T | 0.5069 ns | 0.8253 ns | 0.5966 ns | 0.0625 ns | 0.0639 ns | 0.4658 ns |
| Treatments | Means for Q | |||||
| Q42lL/h | 77.32 ± 12.56 | 4.97 ± 0.28 | 227.01 ± 68.40 | 122.63 ± 18.12 | 9.95 ± 4.48 | 135.60 ± 45.22 |
| Q128L/h | 79.78 ± 12.79 | 4.97 ± 0.33 | 207.65 ± 59.46 | 127.64 ± 19.44 | 11.53 ± 5.53 | 128.50 ± 61.88 |
| Treatments | Means for T | |||||
| T26°C | 76.20 ± 12.61 | 4.80 ± 0.30 b | 224.68 ± 57.81 | 114.27 ± 15.46 b | 10.42 ± 3.78 | 137.23 ± 45.99 |
| T29°C | 75.51 ± 12.60 | 4.99 ± 0.28 ab | 222.78 ± 72.19 | 130.16 ± 21.24 a | 12.71 ± 6.16 | 145.23 ± 68.22 |
| T32°C | 83.93 ± 11.55 | 5.11 ± 0.25 a | 203.45 ± 62.93 | 131.45 ± 15.06 a | 8.93 ± 4.16 | 115.00 ± 43.13 |
| Treatments | Means for Q × T | |||||
| Q42L/hT26°C | 72.49 ± 6.42 | 4.83 ± 0.29 | 214.43 ± 37.84 | 113.77 ± 17.30 | 11.29 ± 4.42 | 135.71 ± 30.05 |
| Q42L/hT29°C | 74.09 ± 15.70 | 5.00 ± 0.30 | 243.30 ± 91.39 | 128.54 ± 21.03 | 9.57 ± 5.09 | 138.33 ± 71.46 |
| Q42L/hT32°C | 85.37 ± 10.87 | 5.08 ± 0.21 | 224.22 ± 73.07 | 126.33 ± 14.59 | 9.00 ± 4.24 | 133.14 ± 36.07 |
| Q128L/hT26°C | 79.91 ± 16.38 | 4.77 ± 0.34 | 232.37 ± 70.90 | 114.76 ± 14.57 | 9.20 ± 2.59 | 139.00 ± 63.14 |
| Q128L/hT29°C | 76.94 ± 9.45 | 4.97 ± 0.27 | 207.39 ± 55.51 | 131.57 ± 22.77 | 15.86 ± 5.76 | 151.14 ± 70.46 |
| Q128L/hT32°C | 82.49 ± 12.76 | 5.14 ± 0.30 | 179.71 ± 42.19 | 136.57 ± 14.59 | 8.86 ± 4.41 | 96.86 ± 44.29 |
| Statistic | p-Value | |
|---|---|---|
| Lipid in Liver (mg/g of Tissue) | Lipid in Muscle (mg/g of Tissue) | |
| Q | 0.0070 ** | 0.3123 ns |
| T | 0.2614 ns | 0.0134 ** |
| Q × T | 0.0009 ** | 0.0063 ** |
| Treatments | Means for Q | |
| Q42L/h | 34.97 ± 9.97 b | 11.79 ± 4.64 |
| Q128L/h | 43.07 ± 11.10 a | 10.46 ± 5.59 |
| Treatments | Means for T | |
| T26°C | 36.46 ± 8.21 b | 13.39 ± 4.77 a |
| T29°C | 29.84 ± 10.43 a | 8.42 ± 4.59 b |
| T32°C | 43.59 ± 15.15 a | 11.35 ± 5.08 ab |
| Treatments | Means for Q × T | |
| Q42L/hT26°C | 31.87 ± 2.59 b | 16.24 ± 2.13 a |
| Q42L/hT29°C | 45.03 ± 13.02 ab | 10.64 ± 3.95 abc |
| Q42L/hT32°C | 29.56 ± 7.52 b | 7.94 ± 3.62 bc |
| Q128L/hT26°C | 41.05 ± 9.54 ab | 11.01 ± 5.19 abc |
| Q128L/hT29°C | 37.24 ± 8.66 b | 5.11 ± 3.55 c |
| Q128L/hT32°C | 54.82 ± 8.89 a | 14.08 ± 4.58 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pedras, P.P.C.; Lipovetsky, Z.; Santos, F.A.C.d.; Souza, A.d.S.; Silva, L.A.A.; Júlio, G.S.d.C.; Ananias, I.d.M.C.; Silva, S.d.S.; Luz, R.K.; Favero, G.C. Water Renewal Rate and Temperature on the Growth Performance and Physiology of Piaractus brachypomus in a Recirculating Aquaculture System (RAS). Fishes 2026, 11, 64. https://doi.org/10.3390/fishes11010064
Pedras PPC, Lipovetsky Z, Santos FACd, Souza AdS, Silva LAA, Júlio GSdC, Ananias IdMC, Silva SdS, Luz RK, Favero GC. Water Renewal Rate and Temperature on the Growth Performance and Physiology of Piaractus brachypomus in a Recirculating Aquaculture System (RAS). Fishes. 2026; 11(1):64. https://doi.org/10.3390/fishes11010064
Chicago/Turabian StylePedras, Pedro P. C., Zandhor Lipovetsky, Fábio A. C. dos Santos, André de S. Souza, Luisa A. A. Silva, Gustavo S. da C. Júlio, Imaculada de M. C. Ananias, Sidney dos S. Silva, Ronald K. Luz, and Gisele C. Favero. 2026. "Water Renewal Rate and Temperature on the Growth Performance and Physiology of Piaractus brachypomus in a Recirculating Aquaculture System (RAS)" Fishes 11, no. 1: 64. https://doi.org/10.3390/fishes11010064
APA StylePedras, P. P. C., Lipovetsky, Z., Santos, F. A. C. d., Souza, A. d. S., Silva, L. A. A., Júlio, G. S. d. C., Ananias, I. d. M. C., Silva, S. d. S., Luz, R. K., & Favero, G. C. (2026). Water Renewal Rate and Temperature on the Growth Performance and Physiology of Piaractus brachypomus in a Recirculating Aquaculture System (RAS). Fishes, 11(1), 64. https://doi.org/10.3390/fishes11010064

