Processed Chlorella vulgaris: Effects on Digestibility and Growth Performance in Nile Tilapia (Oreochromis niloticus)
Abstract
1. Introduction
2. Materials and Methods
2.1. Algae Processing and Feed Formulation
2.2. Experimental Setup
2.3. Fecal Sampling and Retention Calculations
2.4. Zootechnical Performance
2.5. Chemical and Digestibility Analysis
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- Tokuşoglu, Ö.; Ünal, M.K. Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrysis galbana. J. Food Sci. 2003, 68, 1144–1148. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef] [PubMed]
- Eilam, Y.; Khattib, H.; Pintel, N.; Avni, D. Microalgae—Sustainable Source for Alternative Proteins and Functional Ingredients Promoting Gut and Liver Health. Glob. Chall. 2023, 7, 2200177. [Google Scholar] [CrossRef]
- Kumar, R.; Hegde, A.S.; Sharma, K.; Parmar, P.; Srivatsan, V. Microalgae as a Sustainable Source of Edible Proteins and Bioactive Peptides—Current Trends and Future Prospects. Food Res. Int. 2022, 157, 111338. [Google Scholar] [CrossRef] [PubMed]
- Wild, K.J.; Trautmann, A.; Katzenmeyer, M.; Steingaß, H.; Posten, C.; Rodehutscord, M. Chemical Composition and Nutritional Characteristics for Ruminants of the Microalgae Chlorella vulgaris Obtained Using Different Cultivation Conditions. Algal Res. 2019, 38, 101385. [Google Scholar] [CrossRef]
- Niccolai, A.; Zittelli, G.C.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of Interest as Food Source: Biochemical Composition and Digestibility. Algal Res. 2019, 42, 101617. [Google Scholar] [CrossRef]
- Olaizola, M. Commercial Development of Microalgal Biotechnology: From the Test Tube to the Marketplace. Biomol. Eng. 2003, 20, 459–466. [Google Scholar] [CrossRef]
- Amer, L.; Adhikari, B.; Pellegrino, J. Technoeconomic Analysis of Five Microalgae-to-Biofuels Processes of Varying Complexity. Bioresour. Technol. 2011, 102, 9350–9359. [Google Scholar] [CrossRef]
- Bhatta, S.; Stevanovic Janezic, T.; Ratti, C. Freeze-Drying of Plant-Based Foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef]
- Gerken, H.G.; Donohoe, B.; Knoshaug, E.P. Enzymatic Cell Wall Degradation of Chlorella vulgaris and Other Microalgae for Biofuels Production. Planta 2013, 237, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Safi, C.; Ursu, A.V.; Laroche, C.; Zebib, B.; Merah, O.; Pontalier, P.Y.; Vaca-Garcia, C. Aqueous Extraction of Proteins from Microalgae: Effect of Different Cell Disruption Methods. Algal Res. 2014, 3, 61–65. [Google Scholar] [CrossRef]
- Teuling, E.; Schrama, J.M.; Gruppen, H.; Wierenga, P.A. Effect of cell wall characteristics on algae nutrient digestibility in Nile tilapia (Oreochromis niloticus) and African catfish (Clarus gariepinus). Aquaculture 2017, 479, 490–500. [Google Scholar] [CrossRef]
- Naumann, C.; Bassler, R. Die Chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 2012. [Google Scholar]
- Jagger, S.; Wiseman, J.; Cole, D.J.A.; Craigon, J. Evaluation of Inert Markers for the Determination of Ileal and Fecal Apparent Digestibility Values in the Pig. Br. J. Nutr. 1992, 68, 729–739. [Google Scholar] [CrossRef]
- Maynard, L.A.; Loosli, J.K. Animal Nutrition, 6th ed.; McGraw-Hill Book Co.: New York, NY, USA, 1979. [Google Scholar]
- Bureau, D.P.; Hua, K. Letter to the Editor of Aquaculture. Aquaculture 2006, 2, 103–105. [Google Scholar] [CrossRef]
- Kose, A.; Ozen, M.O.; Elibol, M.; Oncel, S.S. Investigation of In Vitro Digestibility of Dietary Microalga Chlorella vulgaris and Cyanobacterium Spirulina platensis as a Nutritional Supplement. 3 Biotech 2017, 7, 170. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.; Grande, P.M.; Blank, L.M.; Klose, H. Insights into Cell Wall Disintegration of Chlorella vulgaris. PLoS ONE 2022, 17, e0262500. [Google Scholar] [CrossRef] [PubMed]
- Teuling, E.; Wierenga, P.A.; Agboola, J.O.; Gruppen, H.; Schrama, J.M. Cell wall disruption increases bioavailability of Nannochloropsis gaditana nutrients for juvenile Nile tilapia (Oreochromis niloticus). Aquaculture 2019, 499, 269–282. [Google Scholar] [CrossRef]
- Canelli, G.; Murciano Martínez, P.; Hauser, B.M.; Kuster, I.; Rohfritsch, Z.; Dionisi, F.; Bolten, C.J.; Neutsch, L.; Mathys, A. Tailored Enzymatic Treatment of Chlorella vulgaris Cell Wall Leads to Effective Disruption While Preserving Oxidative Stability. LWT 2021, 143, 111157. [Google Scholar] [CrossRef]
- Van De Walle, S.; Muylaert, K.; Van Royen, G. Influence of Cell Disruption on Techno-Functional Properties and Digestibility of Chlorella vulgaris Proteins. Innov. Food Sci. Emerg. Technol. 2025, 102, 104023. [Google Scholar] [CrossRef]
- Sarker, P.K.; Gamble, M.M.; Kelson, S.; Kapuscinski, A.R. Nile tilapia (Oreochromis niloticus) show high digestibility of lipid and fatty acids from marine Schizochytrium sp. and of protein and essential amino acids from freshwater Spirulina sp. feed ingredients. Aquac. Nutr. 2016, 22, 109–119. [Google Scholar] [CrossRef]
- Barone, R.S.C.; Sonoda, D.Y.; Lorenz, E.K.; Cyrino, J.E.P. Digestibility and Pricing of Chlorella sorokiniana Meal for Use in Tilapia Feeds. Sci. Agric. 2017, 75, 184–190. [Google Scholar] [CrossRef]
- Austreng, E. Digestibility Determination in Fish Using Chromic Oxide Marking and Analysis of Contents from Different Segments of the Gastrointestinal Tract. Aquaculture 1978, 13, 265–272. [Google Scholar] [CrossRef]
- Windell, J.T.; Foltz, J.W.; Sarokon, J.A. Methods of Fecal Collection and Nutrient Leaching in Digestibility Studies. Prog. Fish-Cult. 1978, 40, 51–55. [Google Scholar] [CrossRef]
- Henken, A.M.; Kleingeld, D.W.; Tijssen, P.A.T. The Effect of Feeding Level on Apparent Digestibility of Dietary Dry Matter, Crude Protein, and Gross Energy in the African Catfish Clarias gariepinus (Burchell, 1822). Aquaculture 1985, 51, 1–11. [Google Scholar] [CrossRef]
- Spyridakis, P.; Metailler, R.; Gabaudan, J.; Riaza, A. Studies on Nutrient Digestibility in European Sea Bass (Dicentrarchus labrax): 1. Methodological Aspects Concerning Feces Collection. Aquaculture 1989, 77, 61–70. [Google Scholar] [CrossRef]
- Vens-Cappell, B. Methodical Studies on Digestion in Trout. 1. Reliability of Digestion Coefficients in Relation to Methods for Feces Collection. Aquac. Eng. 1985, 4, 33–49. [Google Scholar] [CrossRef]
- Lovell, R.T. Digestibility of Nutrients in Feedstuffs for Catfish. In Nutrition and Feeding of Channel Catfish; Stickney, R.R., Lovell, R.T., Eds.; Auburn University: Auburn, AL, USA, 1977; pp. 33–37. [Google Scholar]
- Choubert, G.; De la Noüe, J.; Luquet, P. Digestibility in Fish: Improved Device for the Automatic Collection of Feces. Aquaculture 1982, 29, 185–189. [Google Scholar] [CrossRef]
- Smith, R.R. A Method for Measuring Digestibility and Metabolizable Energy of Fish Feeds. Prog. Fish-Cult. 1971, 33, 132–134. [Google Scholar] [CrossRef]
- Watanabe, T.; Takeuchi, T.; Satoh, S.; Kiron, V. Digestible Energy: Methodological Influences and a Mode of Calculation. Fish. Sci. 1996, 62, 288–292. [Google Scholar] [CrossRef]
- Nasser, S.F.; Aboseif, A.M.; Hussian, A.M. Improvement of Growth and Viability of Oreochromis niloticus in a Biofloc System Using Chlorella vulgaris. Turk. J. Fish. Aquat. Sci. 2021, 21, 491–500. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Mousa, M.A.A.; Mamoon, A.; Abdelghany, M.F.; Abdel-Hamid, E.A.A.; Abdel-Razek, N.; Ali, F.S.; Shady, S.H.H.; Gewida, A.G.A. Dietary Chlorella vulgaris Modulates the Performance, Antioxidant Capacity, Innate Immunity, and Disease Resistance Capability of Nile Tilapia Fingerlings Fed on Plant-Based Diets. Ani. Feed Sci. Technol. 2022, 283, 115181. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Yeh, K.-L.; Aisyah, R.; Lee, D.-J.; Chang, J.-S. Cultivation, Photobioreactor Design and Harvesting of Microalgae for Biodiesel Production: A Critical Review. Bioresour. Technol. 2011, 102, 71–81. [Google Scholar] [CrossRef]
- Yeh, K.-L.; Chang, J.-S. Effects of Cultivation Conditions and Media Composition on Cell Growth and Lipid Productivity of Indigenous Microalga Chlorella vulgaris ESP-31. Bioresour. Technol. 2012, 105, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Chia, M.A.; Lombardi, A.T.; Melão, M.G.G. Growth and Biochemical Composition of Chlorella vulgaris in Different Growth Media. An. Acad. Bras. Ciênc. 2013, 85, 1427–1438. [Google Scholar] [CrossRef] [PubMed]
Basal | FD Chlorella | SD Chlorella | |
---|---|---|---|
Ingredients | |||
Soybean Expeller | 425.0 | 290 | 290 |
Wheat Bran | 253.5 | 170 | 170 |
Corn Gluten Meal | 239.1 | 165 | 165 |
Soy Oil | 40.8 | 40 | 40 |
Wheat | 26.3 | 20 | 20 |
Freeze-dried Chlorella | 0 | 300 | 0 |
Spray-dried Chlorella | 0 | 0 | 300 |
Vitamin and Mineral Premix 1 | 10 | 10 | 10 |
Titanium Dioxide | 5 | 5 | 5 |
Proximate composition | |||
Dry matter | 807.3 | 892.5 | 877.0 |
Crude protein | 311.4 | 372.5 | 393.2 |
Ether extract | 113.2 | 105.8 | 106.1 |
Ash | 57.8 | 60.3 | 55.7 |
Gross energy (MJ kg−1) | 18.6 | 18.4 | 18.6 |
FD Chlorella | SD Chlorella | |
---|---|---|
Proximate composition | ||
Dry matter | 892.5 | 938.9 |
Crude protein | 551.2 | 603.8 |
Ether extract | 87.6 | 88.9 |
Ash | 46.5 | 48.9 |
Gross energy (MJ kg−1) | 2.08 | 2.00 |
Dry Matter 1 | Crude Protein 2 | Energy 2 | |
---|---|---|---|
FD Chlorella | 46.7 (b) | 67.5 | 21.2 b |
SD Chlorella | 51.2 (a) | 68.3 | 29.8 a |
SEM | 1.15 | 1.97 | 1.68 |
p value | |||
0.06 | >0.05 | <0.05 |
Crude Protein | Energy | |
---|---|---|
FD Chlorella | 73.8 b | 50.3 b |
SD Chlorella | 91.3 a | 67.9 a |
SEM | 8.74 | 8.79 |
p value | ||
<0.05 | <0.05 |
BWG (g) | SGR (%) | FI (g) | FCR (g:g) | Survival Rate (%) | |
---|---|---|---|---|---|
FD Chlorella | 3.92 b | 10.90 b | 7.02 | 1.81 a | 100 |
SD Chlorella | 4.98 a | 13.85 a | 7.15 | 1.42 b | 100 |
SEM | 0.529 | 1.474 | 0.065 | 0.195 | - |
p value | |||||
<0.05 | <0.05 | >0.05 | <0.05 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sessegolo Ferzola, P.H.; Meyer, M.; Gierus, M. Processed Chlorella vulgaris: Effects on Digestibility and Growth Performance in Nile Tilapia (Oreochromis niloticus). Fishes 2025, 10, 462. https://doi.org/10.3390/fishes10090462
Sessegolo Ferzola PH, Meyer M, Gierus M. Processed Chlorella vulgaris: Effects on Digestibility and Growth Performance in Nile Tilapia (Oreochromis niloticus). Fishes. 2025; 10(9):462. https://doi.org/10.3390/fishes10090462
Chicago/Turabian StyleSessegolo Ferzola, Pedro Henrique, Moritz Meyer, and Martin Gierus. 2025. "Processed Chlorella vulgaris: Effects on Digestibility and Growth Performance in Nile Tilapia (Oreochromis niloticus)" Fishes 10, no. 9: 462. https://doi.org/10.3390/fishes10090462
APA StyleSessegolo Ferzola, P. H., Meyer, M., & Gierus, M. (2025). Processed Chlorella vulgaris: Effects on Digestibility and Growth Performance in Nile Tilapia (Oreochromis niloticus). Fishes, 10(9), 462. https://doi.org/10.3390/fishes10090462