Pascua marecoralliensis, a New Species of Goby (Gobiiformes, Gobiidae) from the Central Coral Sea with Validation of the Genus Pascua ‡
Abstract
1. Introduction
Character | Condition in Pascua | Condition in Hetereleotris (incl. Cerogobius) |
---|---|---|
Basicaudal scales | Two modified basicaudal scales on each side of the fish. On the dorsal and ventral margins of the basicaudal, these scales have enlarged posterior fields and a single row of extremely long ctenii extending over the caudal fin base. | Scales on basicaudal, where present, lack elongate ctenii. H. aurantiaca has three scales with slightly elongate ctenii along the base of the caudal fin. |
Male urogenital papillae | Flattened and elongate, similar to those found in some species of Eviota. | Details unclear. Some may be short and rounded, similar in form to female; others longer and triangular. |
Sensory papillae on cheek | Reduced pattern of sensory papillae on the cheek. Transverse suborbital rows 2 and 3 consist of a single papilla; rows 1 and 4 with five or fewer papillae. | Transverse suborbital papilla rows 2 and 3 consist of two or more papillae; row 1 usually with five or more papillae, row 4 often with nine or more papillae. |
Posterior nares | Simple pores or with slightly elevated anterior margins. | Usually with an elevated rim or tube. |
Mandibular papillae | Two papillae arranged mediolaterally immediately behind the mental frenum/ridge. Two parallel rows (e and i) of papillae following ventral margin of mandible. | Usually lacking papillae behind mental frenum. Two parallel rows (e and i) of papillae following ventral margin of mandible start on lateral margins of mental frenum. |
2. Materials and Methods
2.1. Specimen Collection
2.2. Molecular Phylogenetics
Gene Region | Primer Name | Primer Sequence (5′ to 3′) | Primer Design |
---|---|---|---|
RAG1 * | RAG1F1 | CTGAGCTGCAGTCAGTACCATAAGATGT | [30] |
RAG1Ra | CGGGCRTAGTTCCCRTTCATCCTCAT | [31] | |
sreb2 * | sreb2_F10 | ATGGCGAACTAYAGCCATGC | [32] |
sreb2_R1094 | CTGGATTTTCTGCAGTASAGGAG | [32] | |
zic1 * | zic1_F9 | GGACGCAGGACCGCARTAYC | [32] |
zic1_R967 | CTGTGTGTGTCCTTTTGTGRATYTT | [32] | |
Ptr | PtrF2 | TCGTTCATGGGATGTTTACAAAT | [33] |
PtrR2 | GGATGAGCCAGAAGTTCCCCAGAG | [33] | |
COI † | Fish F1 | TCAACCAACCACAAAGACATTGGCAC | [34] |
Fish R1 | ACTTCAGGGTGACCGAAGAATCAGA | [34] | |
cytb † | FishcytB-F | ACCACCGTTGTTATTCAACTACAAGAAC | [35] |
TruccytB-R | CCGACTTCCGGATTACAAGACCG | [35] |
2.3. Micro-CT Scanning and Segmentation
2.4. Morphology and Morphometrics
3. Results
3.1. Molecular Phylogeny
3.2. Taxonomy
3.2.1. Validation of the Genus Pascua Randall, 2005
- Material Examined: Pascua caudilinea all from Rapa Nui (Isla de Pascua): AMS I. 17452-001, 25 mm SL; AMS I. 43246-001 24 mm SL; Pascua sticta: AMS I. 43612-001 (Paratypes), 2 (21–26.5 mm SL), Rapa Iti; Hetereleotris readerae: AMS I. 27149-048 (Holotype), 21 mm SL male, Elizabeth Reef; AMS I.27149–036 (Paratypes), 2 (20–21 mm SL), Elizabeth Reef; AMS I.27138–053 (Paratypes), 2 (19–24 mm SL), Middleton Reef; AMS I. 27139-030 (Paratype) 21 mm SL, Middleton Reef.
- Diagnosis: A gobiid with the first gill slit fully closed by a membrane. Dorsal rays VII, 7–9, dorsal pterygiophore formula 3-22110; two anal fin pterygiophores inserted anterior to first haemal spine; anal rays I, 7–9; pectoral rays 15–22, no rays free from membrane; pelvic fins I,5, fifth ray shorter and unbranched, widely separated at base and lacking an anterior frenum, distance between inner rays about equal to base of either fin; caudal fin rounded, with 17 segmented rays. Body with 22~29 scales in longitudinal series, ctenoid except a few scales above base of pectoral fin and on abdomen where cycloid; upper and lower basicaudal scales with enlarged posterior field and extremely long ctenii projecting over caudal fin; head, nape, prepectoral area, and chest naked. Vertebrae l0 + 17 [37]. Sensory papillae of cheek greatly reduced; second and third transverse rows reduced to single papillae, row d reduced to 2 papillae anterior of the ventral end of row 4 and row b consisting of 2 or 3 papillae extending forwards from the preopercular margin; two papillae behind mental frenum/ridge. Cephalic sensory pore system B’, C, D, E, F, G, H’ [43]; pores N’, O’ present in some species. Posterior nostril not tubular. Urogenital papillae elongated and flattened in males.
- First gill slit closed by a membrane from the gill cover (present in some but not all Hetereleotris; partially closed in some Eviota, Tomiyamichthys, Callogobius species).
- Vertebrae 10 + 17, including urostyle (widely distributed among gobiids).
- First dorsal fin with 6 spines (widely distributed among gobiids).
- First dorsal pterygiophore insertion formula 3-22110 (widely distributed and common among gobiids).
- First dorsal fin usually connected to base of spine of second dorsal fin (present in some but not all Hetereleotris; extremely rare in gobiids).
- 17 segmented caudal fin rays, usually 15 branched (widely distributed among gobiids).
- Characteristic transverse papilla pattern (widely distributed among gobiids).
- Single-lobed mental frenum followed by two parallel rows of papillae (widely distributed among gobiids).
- Metapterygoid slender lacking ventral process extending across quadrate (not broadly surveyed across gobiids, extent of distribution unknown).
- Prominent median process on preoperculum reaching to upper part of symplectic (not broadly surveyed across gobiids, extent of distribution unknown)
- Lower hypural plate not fused with terminal vertebral element or upper hypural plate (widely distributed among gobiids).
Genus/Species | Lineage | Location | Reference |
---|---|---|---|
Chriolepis | Gobiosoma | WAC, EP | [25] |
Paedovaricus | Gobiosoma | WAC | |
Pinnichthys | |||
Varicus | |||
Psilotris | Gobiosoma | WAC | [50] |
Aboma | Gobiosoma | EP | [51] |
Pariah | WAC | ||
Risor | |||
Birdsongichthys | Gobiosoma | WAC | [52] |
Robinsichthys | |||
Gobiosoma | Gobiosoma | WAC, EP | [53] |
Odondebuenia | Gobius | EAM | [54] |
Vanneaugobius | Gobius | EAM | [55] |
Cabillus | Gobiopsis | Australia, TIP, WIO | [56,57,58] |
Callogobius | Callogobius | Australia, RS, TIP | [48,59] |
Hetereleotris aurantiaca * | Hetereleotris † | RS | [16] |
Pascua caudilinea P. sticta comb. nov. | Gobiodon | EP | [7] |
P. readerae comb. nov. | Gobiodon | Australia | |
P. marecoralliensis sp. nov. | Herein |
3.2.2. Pascua readerae (Hoese and Larson, 2005) comb. nov.
- Material Examined: AMS I.27149-048 (Holotype; Figure 4) 21 mm SL male, Elizabeth Reef; AMS I.27149–036 (Paratypes), 2 (20–21 mm SL), Elizabeth Reef; AMS I.27138–053 (Paratypes), 2 (19–24 mm SL), Middleton Reef; AMS I. 27139-030 (Paratype) 21 mm SL, Middleton Reef.
- Diagnosis: Complete description provided in Hoese and Larson [7]: (1) extremely large ctenii on its basicaudal scales (Figure 4b), (2) an elongate, flattened urogenital papilla (Figure 4c), (3) a reduced transverse papilla pattern on the cheek (second and third transverse rows reduced to single papillae (Figure 4d), (4) the posterior naris a simple pore with no elevated margins (Figure 4d), and (5) two papillae behind the mental ridge (Figure 4e).
3.2.3. Pascua sticta (Hoese and Larson, 2005) comb. nov.
- Diagnosis: Complete description provided in Hoese and Larson [7]: (1) extremely large ctenii on its basicaudal scales (Figure 5b), (2) an elongate, flattened urogenital papilla in males (Figure 5c), the female papilla is broad and rectangular (Figure 5d), (3) a reduced transverse papilla pattern on the cheek (second and third transverse rows reduced to single papillae), (4) the posterior naris a simple pore with no elevated margins, and (5) two papillae behind the mental ridge. The last three characters were observed in the preserved specimens, but photomicrographs were not collected.
3.2.4. Pascua marecoralliensis sp. nov.
- Holotype: AMS I.49536-002, 13.8 mm SL, collected using an enclosed clove oil station at 11 m depth from reef to the north of Lorna Cay, Lihou Reef in the Australian Coral Sea 17.12527° S, 151.82535° E, from the vessel Iron Joy (RB Holdings). Collectors C. Goatley, P. Berents and R. Morais-Araujo.
- Paratypes: Two specimens, AMS I.49536-038, collected with holotype. Smaller with posterior half damaged following initial photography.
- Etymology: The specific epithet is an adjective combining the Latin mare (sea; n., nom.), corallium (coral; n., nom.) and the suffix -ensis (from; f., nom.). The epithet is feminine in correspondence with the generic name and, together, refers to the type locality of the specimen, the Coral Sea. The common name refers to the type localities of the species and the genus, Rapa Nui, colonially named Isla de Pascua or Easter Island.
- The posterior nares are simple pores lacking any elevated margins (Figure 7).
- The male urogenital papilla is flattened and elongate (Figure 8).
- The sensory papillae on the cheek are reduced. The second and third transverse rows reduced to single papillae, row d reduced to 2 papillae anterior of the ventral end of row 4 and row b consisting of 2 or 3 papillae extending forwards from the preopercular margin (Figure 7a).
- Two papillae are found immediately behind the mental ridge (although the mental frenum/flap is absent or reduced to a small ridge). These are followed by two rows of papillae (e and i) along the preopercular-mandibular margin (Figure 7c).
- Diagnosis: P. marecoralliensis sp. nov. differs from all other species in the genus Pascua in the following five characters:
- Fewer unpaired fin rays D. VI + I,7; A. I,7. All Pascua and Hetereleotris have eight or more dorsal fin rays, except for one specimen of P. readerae that has been reported to have seven anal fin rays (Table 4).
- Fewer pectoral fin rays (15[2], 16[1]) than other Pascua spp. (17–22, usually 18–20).
- Head dorsoventrally compressed (height 70–80% of width) compared to rounded or laterally compressed in other Pascua spp.
- The first and second dorsal fins are separate in P. marecoralliensis sp. nov.; they are connected by a rudimentary membrane in other Pascua spp. [7].
- Description:
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Key to Species in the Genus Pascua Randall, 2005
|
|
|
|
|
References
- Nelson, J.S.; Grande, T.C.; Wilson, M.V.H. Fishes of the World: Fifth Edition; John Wiley & Sons: Hoboken, NJ, USA, 2016; p. 707. [Google Scholar]
- Fricke, R.; Eschmeyer, W.N.; Fong, J.D. Eschmeyer’s Catalog of Fishes, Species by Family/Subfamily. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (accessed on 17 April 2023).
- Delventhal, N.R. Systematics of Callogobius (Teleostei: Gobiidae). Ph.D. Thesis, University of Manitoba, Winnipeg, MB, Canada, 2018. [Google Scholar]
- Hammer, M.P.; Taillebois, L.; King, A.J.; Crook, D.A.; Wedd, D.; Adams, M.; Unmack, P.J.; Hoese, D.F.; Bertozzi, T. Unravelling the taxonomy and identification of a problematic group of benthic fishes from tropical rivers (Gobiidae: Glossogobius). J. Fish Biol. 2021, 99, 87–100. [Google Scholar] [CrossRef]
- Randall, J.E. Pascua caudilinea, a new genus and species of gobiid fish (Perciformes: Gobiidae) from Easter Island. Zool. Stud. 2005, 44, 19–25. [Google Scholar]
- Zoobank. Pascua caudilinea. LSID: Urn:lsid:zoobank.org:act:D0C8AA1B-2822-4311-8DCB-E6A7F70D300A. Available online: https://zoobank.org/NomenclaturalActs/D0C8AA1B-2822-4311-8DCB-E6A7F70D300A (accessed on 1 April 2025).
- Hoese, D.F.; Larson, H.K. Description of two new species of Hetereleotris (Gobiidae) from the south Pacific, with a revised key to species and synonymization of the genus Pascua with Hetereleotris. Zootaxa 2005, 1096, 1–16. [Google Scholar] [CrossRef]
- Zoobank. Hetereleotris sticta. LSID: Urn:lsid:zoobank.org:act:F77184F4-DA4F-46C3-9C74-D2B6A9B5B3F2. Available online: https://zoobank.org/NomenclaturalActs/F77184F4-DA4F-46C3-9C74-D2B6A9B5B3F2 (accessed on 1 April 2025).
- Zoobank. Hetereleotris readerae. LSID: Urn:lsid:zoobank.org:act:9F50CB57-0FF6-4D3A-9F5D-E16EAC784990. Available online: https://zoobank.org/NomenclaturalActs/9F50CB57-0FF6-4D3A-9F5D-E16EAC784990 (accessed on 1 April 2025).
- Randall, J.E. Validation of the gobiid fish genus Pascua. Aqua. Int. J. Ichthyol. 2006, 12, 35–38. [Google Scholar]
- Fricke, R.; Eschmeyer, W.N.; van der Laan, R. Eschmeyer’s Catalog of Fishes: Genera, Species, References. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed on 9 June 2023).
- Shibukawa, K. Hetereleotris exilis, a new goby (Teleostei, Perciformes, Gobiidae) from the Ryukyu Islands, Japan. Bull. Natl. Mus. Nat. Sci. Ser. A 2010, S4, 89–95. [Google Scholar]
- Kovačić, M.; Bogorodsky, S.V. A new species of Hetereleotris (Perciformes: Gobiidae) from the Red Sea. Zootaxa 2014, 3764, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Shibukawa, K.; Iwata, A. Grallenia, a new goby genus from the Western Pacific, with descriptions of two new species (Perciformes: Gobiidae: Gobiinae). Bull. Natl. Mus. Nat. Sci. Ser. A 2007, Supp. 1, 123–136. [Google Scholar]
- Froese, R.; Pauly, D. FishBase. Available online: www.fishbase.se (accessed on 1 April 2025).
- Kovačić, M.; Bogorodsky, S.V.; Mal, A.O. Two new species of Hetereleotris (Perciformes: Gobiidae) from the Red Sea. Zootaxa 2019, 4608, 501–516. [Google Scholar] [CrossRef]
- Kovačić, M.; Bogorodsky, S.V.; Zajonz, U.; Tornabene, L. A new species of Hetereleotris (Teleostei: Gobiidae) from the Socotra Archipelago (north-western Indian Ocean), a rare case of a hole-associated adaptation in gobiid fishes. Zootaxa 2021, 4996, 283–300. [Google Scholar] [CrossRef]
- Hoese, D.F. Descriptions of two new species of Hetereleotris (Pisces: Gobiidae) from the Western Indian Ocean, with discussion of related species. Ser. Publ. J.L.B. Smith Inst. Ichthyol. 1986, 41, 1–25. [Google Scholar]
- Gill, A.C. Hetereleotris georgegilli, a new species of gobiid fish, with notes on other Mauritian Hetereleotris species. Bull. Nat. Hist. Mus. Zool. 1998, 64, 91–95. [Google Scholar]
- Hoey, A.S.; Pratchett, M.S.; Harrison, H.B. Coral Reef Health in the Coral Sea Marine Park: Report on Reef Surveys April 2018 to March 2020; Parks Australia: Canberra, Australia, 2020; p. 170. [Google Scholar]
- Brandl, S.J.; Goatley, C.H.R.; Bellwood, D.R.; Tornabene, L. The hidden half: Ecology and evolution of cryptobenthic fishes on coral reefs. Biol. Rev. 2018, 93, 1846–1873. [Google Scholar] [CrossRef]
- Goatley, C.H.R.; Tornabene, L. Tempestichthys bettyae, a new genus and species of ocean sleeper (Gobiiformes, Thalasseleotrididae) from the central Coral Sea. Syst. Biodivers. 2022, 20, 1–15. [Google Scholar] [CrossRef]
- Agorreta, A.; San Mauro, D.; Schliewen, U.; Van Tassell, J.L.; Kovačić, M.; Zardoya, R.; Rüber, L. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Mol. Phylogenet. Evol. 2013, 69, 619–633. [Google Scholar] [CrossRef]
- Tornabene, L.; Ahmadia, G.N.; Berumen, M.L.; Smith, D.J.; Jompa, J.; Pezold, F.L. Evolution of microhabitat association and morphology in a diverse group of cryptobenthic coral reef fishes (Teleostei: Gobiidae: Eviota). Mol. Phylogenet. Evol. 2013, 66, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Tornabene, L.; Van Tassell, J.L.; Gilmore, R.G.; Robertson, D.R.; Young, F.; Baldwin, C.C. Molecular phylogeny, analysis of character evolution, and submersible collections enable a new classification of a diverse group of gobies (Teleostei: Gobiidae: Nes subgroup), including nine new species and four new genera. Zool. J. Linn. Soc. 2016, 177, 764–812. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Ayres, D.L.; Darling, A.; Zwickl, D.J.; Beerli, P.; Holder, M.T.; Lewis, P.O.; Huelsenbeck, J.P.; Ronquist, F.; Swofford, D.L.; Cummings, M.P.; et al. BEAGLE: An application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 2012, 61, 170–173. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. The CIPRES science gateway: A community resource for phylogenetic analyses. In Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, Salt Lake City, UT, USA, 18–21 July 2011; p. 8. [Google Scholar]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- López, J.A.; Chen, W.-J.; Ortí, G. Esociform Phylogeny. Copeia 2004, 2004, 449–464. [Google Scholar] [CrossRef]
- Tornabene, L.; Pezold, F.L. Phylogenetic analysis of Western Atlantic Bathygobius (Teleostei: Gobiidae). Zootaxa 2011, 3042, 27–36. [Google Scholar] [CrossRef]
- Li, C.; Ortí, G.; Zhang, G.; Lu, G. A practical approach to phylogenomics: The phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol. Biol. 2007, 7, 44. [Google Scholar] [CrossRef]
- Yamada, T.; Sugiyama, T.; Tamaki, N.; Kawakita, A.; Kato, M. Adaptive radiation of gobies in the interstitial habitats of gravel beaches accompanied by body elongation and excessive vertebral segmentation. BMC Evol. Biol. 2009, 9, 145. [Google Scholar] [CrossRef]
- Ward, R.D.; Zemlak, T.S.; Innes, B.H.; Last, P.R.; Hebert, P.D.N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1847–1857. [Google Scholar] [CrossRef]
- Sevilla, R.G.; Diez, A.; Norén, M.; Mouchel, O.; Jérôme, M.; Verrez-Bagnis, V.; Van Pelt, H.; Favre-Krey, L.; Krey, G.; The Fishtrace Consortium; et al. Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes. Mol. Ecol. Notes 2007, 7, 730–734. [Google Scholar] [CrossRef]
- Rolfe, S.; Pieper, S.; Porto, A.; Diamond, K.; Winchester, J.; Shan, S.; Kirveslahti, H.; Boyer, D.; Summers, A.; Maga, A.M. SlicerMorph: An open and extensible platform to retrieve, visualize and analyse 3D morphology. Methods Ecol. Evol. 2021, 12, 1816–1825. [Google Scholar] [CrossRef]
- Birdsong, R.S.; Murdy, E.O.; Pezold, F.L. A study of the vertebral column and median fin osteology in gobioid fishes with comments on gobioid relationships. Bull. Mar. Sci. 1988, 42, 174–214. [Google Scholar]
- Böhlke, J.E.; Robins, C.R. The taxonomic position of the west Atlantic goby, Eviota personata, with descriptions of two new related species. Proc. Acad. Nat. Sci. Phila. 1962, 114, 175–189. [Google Scholar]
- Van Tassell, J.L.; Tornabene, L.; Colin, P.L. Review of the western Atlantic species of Bollmannia (Teleostei: Gobiidae: Gobiosomatini) with the description of a new allied genus and species. Aqua Int. J. Ichthyol. 2012, 18, 61–94. [Google Scholar]
- Heiple, Z.; Huie, J.M.; Medeiros, A.P.M.; Hart, P.B.; Goatley, C.H.R.; Arcila, D.; Miller, E.C. Many ways to build an angler: Diversity of feeding morphologies in a deep-sea evolutionary radiation. Biol. Lett. 2023, 19, 20230049. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, D.K.; Karan, E.A.; Collar, D.C. Evolutionary patterns of scale morphology in damselfishes (Pomacentridae). Biol. J. Linn. Soc. 2022, 135, 138–158. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N.; Somerfield, P.J.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation; PRIMER-E Ltd.: Plymouth, UK, 2014. [Google Scholar]
- Akihito, P.; Hayashi, M.; Yoshino, T.; Shimada, K.; Senou, H.; Yamamoto, T. Suborder Gobioidei. In The Fishes of the Japanese Archipelago, 2nd ed.; Masuda, H., Amaoka, K., Araga, C., Uyeno, T., Yoshino, T., Eds.; Tokai University Press: Tokyo, Japan, 1988; pp. 236–289. [Google Scholar]
- Gill, A.C.; Mooi, R.D. Thalasseleotrididae, new family of marine gobioid fishes from New Zealand and temperate Australia, with a revised definition of its sister taxon, the Gobiidae (Teleostei: Acanthomorpha). Zootaxa 2012, 52, 41–52. [Google Scholar] [CrossRef]
- Shibukawa, K.; Suzuki, T.; Senou, H.; Yano, K. Records of three shrimp-goby species (Teleostei, Perciformes, Gobiidae) from the Ryukyu Archipelago, Japan. Bull. Natl. Sci. Mueum Tokyo Ser. A 2005, 31, 191–204. [Google Scholar]
- Hoese, D.F.; Shibukawa, K.; Johnson, J.E. Description of a new species of Tomiyamichthys from Australia with a discussion of the generic name. Zootaxa 2016, 4079, 582–594. [Google Scholar] [CrossRef]
- Randall, J.E.; Sakamoto, K.; Shibukawa, K. Cabillus atripelvicus, a new species of gobiid fish from the Ogasawara Islands, with a key to species of the genus. Ichthyol. Res. 2007, 54, 38–43. [Google Scholar] [CrossRef]
- Delventhal, N.R.; Mooi, R.D.; Bogorodsky, S.V.; Mal, A.O. A review of the Callogobius (Teleostei: Gobiidae) from the Red Sea with the description of a new species. Zootaxa 2016, 4179, 225–243. [Google Scholar] [CrossRef]
- Akihito, P.; Meguro, K. Five species of the genus Callogobius in Japan and their relationships. Jpn. J. Ichthyol. 1977, 24, 113–127. [Google Scholar]
- Tornabene, L.; Baldwin, C.C. Psilotris vantasselli, a new species of goby from the tropical western Atlantic (Teleostei: Gobiidae: Gobiosomatini: Nes subgroup). Zootaxa 2019, 4624, 191–204. [Google Scholar] [CrossRef]
- Van Tassell, J.L. Gobiiformes of the Americas. In The Biology of Gobies; Patzner, R.A., Van Tassell, J.L., Kovačić, M., Kapoor, B.G., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 139–176. [Google Scholar]
- Tornabene, L.; Manning, R.; Robertson, D.R.; Van Tassell, J.L.; Baldwin, C.C. A new lineage of deep-reef gobies from the Caribbean, including two new species and one new genus (Teleostei: Gobiidae: Gobiosomatini). Zool. J. Linn. Soc. 2023, 197, 322–343. [Google Scholar] [CrossRef]
- Tornabene, L.; Van Tassell, J.L. Redescription of the goby genus Gobiosoma (Teleostei: Gobiidae: Gobiosomatini), with the synonymy of the genus Enypnias. J. Nat. Hist. 2014, 48, 1413–1437. [Google Scholar] [CrossRef]
- Miller, P.J. Gobiidae. In Fishes of the North-Eastern Atlantic and the Mediterranean; Whitehead, P.J.P., Bauchot, M.-L., Hureau, J.-C., Nielsen, J., Tortonese, E., Eds.; UNESCO: Paris, France, 1986; Volume 3, pp. 1019–1085. [Google Scholar]
- Van Tassell, J.L.; Miller, P.J.; Brito, A. A revision of Vanneaugobius (Teleostei: Gobiidae), with description of a new species. J. Nat. Hist. 1988, 22, 545–567. [Google Scholar] [CrossRef]
- Greenfield, D.W.; Randall, J.E. The marine gobies of the Hawaiian Islands. Proc. Calif. Acad. Sci. 2004, 55, 498–549. [Google Scholar]
- Kovačić, M.; Bogorodsky, S.V. Two new species of Cabillus (Perciformes: Gobiidae) and the first record of Cabillus macrophthalmus from the Western Indian Ocean. Zootaxa 2013, 3717, 179–194. [Google Scholar] [CrossRef]
- Shibukawa, K.; Aizawa, M. Cabillus pexus, a new marine goby (Teleostei, Gobiidae) from Amami-Oshima Island, Ryukyu Islands, Japan. Bull. Natl. Mus. Nat. Sci. Ser. A 2013, 39, 133–142. [Google Scholar]
- Delventhal, N.R.; Mooi, R.D. Callogobius winterbottomi, a new species of goby (Teleostei: Gobiidae) from the Western Indian Ocean. Zootaxa 2013, 3630, 155–164. [Google Scholar] [CrossRef]
- Sanzo, L. Distribuzione delle papille cutanee (organi ciatiformi) e suo valore sistematico nei Gobi. Mitteilungen Aus Der Zool. Stn. Zu Neapel 1911, 20, 249–328. [Google Scholar]
- Lachner, E.A.; McKinney, J.F. Barbuligobius boehlkei, a new Indo-Pacific genus and species of Gobiidae (Pisces), with notes on the genera Callogobius and Pipidonia. Copeia 1974, 1974, 869–879. [Google Scholar] [CrossRef]
- Kovačić, M.; Bogorodsky, S.V.; Mal, A.O. A new species of Hetereleotris (Perciformes: Gobiidae) from Farasan Island (Red Sea). Zootaxa 2014, 3846, 119–126. [Google Scholar] [CrossRef]
- Kovačić, M.; Bogorodsky, S.V.; Troyer, E.M.; Tornabene, L. Cerogobius petrophilus (Perciformes: Gobiidae), a new gobiid genus and species from the Red Sea. Zootaxa 2019, 4565, 171–189. [Google Scholar] [CrossRef]
- Greenfield, D.W. An overview of the dwarfgobies, the second most speciose coral-reef fish genus (Teleostei: Gobiidae: Eviota). J. Ocean. Sci. Found. 2017, 54, 32–54. [Google Scholar]
- Hodge, J.R.; Read, C.I.; van Herwerden, L.; Bellwood, D.R. The role of peripheral endemism in species diversification: Evidence from the coral reef fish genus Anampses (Family: Labridae). Mol. Phylogenet. Evol. 2012, 62, 653–663. [Google Scholar] [CrossRef]
- Bowen, B.W.; Rocha, L.A.; Toonen, R.J.; Karl, S.A.; Laboratory, T.T. The origins of tropical marine biodiversity. Trends Ecol. Evol. 2013, 28, 359–366. [Google Scholar] [CrossRef]
- van der Meer, M.H.; Horne, J.B.; Gardner, M.G.; Hobbs, J.P.; Pratchett, M.; van Herwerden, L. Limited contemporary gene flow and high self-replenishment drives peripheral isolation in an endemic coral reef fish. Ecol. Evol. 2013, 3, 1653–1666. [Google Scholar] [CrossRef]
- Johnson, K.; Tornabene, L.; Li, C.; Rüber, L.; Schliewen, U.; Hogan, D.; Pezold, F. Exon-capture data resolve relationships resulting from a rapid radiation within family Gobiidae. Mol. Phylogenet. Evol. 2025, 212, 108424. [Google Scholar] [CrossRef]
- Larson, H.K. A revision of the gobiid genus Bryaninops (Pisces), with a description of six new species. Beagle 1985, 2, 57–93. [Google Scholar] [CrossRef]
- Suzuki, T.; Greenfield, D.W. Two new dwarfgobies from the Ryukyu Islands, Japan: Eviota shibukawai and Eviota filamentosa (Teleostei: Gobiidae). J. Ocean. Sci. Found. 2014, 11, 32–39. [Google Scholar]
- Lachner, E.A.; Karnella, S.J. Fishes of the Indo-Pacific genus Eviota with descriptions of eight new species (Teleostei, Gobiidae). Smithson. Contrib. Zool. 1980, 315, 1–127. [Google Scholar] [CrossRef]
- Jewett, S.L.; Lachner, E.A. Seven new species of the Indo-Pacific genus Eviota (Pisces: Gobiidae). Proc. Biol. Soc. Wash. 1983, 96, 780–806. [Google Scholar]
- Vaz, D.F.B.; Goatley, C.H.R.; Tornabene, L. Osteology of dwarfgobies Eviota and Sueviota (Gobiidae: Gobiomorpharia), with phylogenetic inferences within coral gobies. J. Morphol. 2025, 286, e70039. [Google Scholar] [CrossRef] [PubMed]
- Meiri, S.; Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 2003, 30, 331–351. [Google Scholar] [CrossRef]
- Fernández-Torres, F.; Martínez, P.A.; Olalla-Tárraga, M.Á. Shallow water ray-finned marine fishes follow Bergmann’s rule. Basic Appl. Ecol. 2018, 33, 99–110. [Google Scholar] [CrossRef]
- Troyer, E.M.; Betancur, R.R.; Hughes, L.C.; Westneat, M.; Carnevale, G.; White, W.T.; Pogonoski, J.J.; Tyler, J.C.; Baldwin, C.C.; Orti, G.; et al. The impact of paleoclimatic changes on body size evolution in marine fishes. Proc. Natl. Acad. Sci. USA 2022, 119, e2122486119. [Google Scholar] [CrossRef]
- Chakraborty, A.; Sakai, M.; Iwatsuki, Y. Museum fish specimens and molecular taxonomy: A comparative study on DNA extraction protocols and preservation techniques. J. Appl. Ichthyol. 2006, 22, 160–166. [Google Scholar] [CrossRef]
- Moreau, C.S.; Wray, B.D.; Czekanski-Moir, J.E.; Rubin, B.E.R. DNA preservation: A test of commonly used preservatives for insects. Invertebr. Syst. 2013, 27, 81–86. [Google Scholar] [CrossRef]
- Faulwetter, S.; Vasileiadou, A.; Kouratoras, M.; Dailianis, T.; Arvanitidis, C. Micro-computed tomography: Introducing new dimensions to taxonomy. ZooKeys 2013, 263, 1–45. [Google Scholar] [CrossRef]
- Robertson, D.R.; Baldwin, C.C.; Bellwood, D.; Pyle, R.; Smith-Vaniz, W.F.; Tornabene, L.; Van Tassell, J.L. Aspiration or expiration: Hypoxia and the interpretation of fish predation in the fossil record. Palaios 2019, 34, 245–247. [Google Scholar] [CrossRef]
- Leal, E.; Fernandez-Duran, B.; Guillot, R.; Rios, D.; Cerda-Reverter, J.M. Stress-induced effects on feeding behavior and growth performance of the sea bass (Dicentrarchus labrax): A self-feeding approach. J. Comp. Physiol. B 2011, 181, 1035–1044. [Google Scholar] [CrossRef]
- Brandl, S.J.; Casey, J.M.; Meyer, C.P. Dietary and habitat niche partitioning in congeneric cryptobenthic reef fish species. Coral Reefs 2020, 39, 305–317. [Google Scholar] [CrossRef]
- Depczynski, M.; Bellwood, D.R. The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar. Ecol. Prog. Ser. 2003, 256, 183–191. [Google Scholar] [CrossRef]
- Kramer, M.J.; Bellwood, O.; Bellwood, D.R. The trophic importance of algal turfs for coral reef fishes: The crustacean link. Coral Reefs 2013, 32, 575–583. [Google Scholar] [CrossRef]
- Depczynski, M.; Bellwood, D.R. Extremes, plasticity, and invariance in vertebrate life history traits: Insights from reef fishes. Ecology 2006, 87, 3119–3127. [Google Scholar] [CrossRef] [PubMed]
- Mihalitsis, M.; Morais, R.A.; Bellwood, D.R. Small predators dominate fish predation in coral reef communities. PLoS Biol. 2022, 20, e3001898. [Google Scholar] [CrossRef] [PubMed]
- Grutter, A.S.; Bshary, R. Cleaner fish, Labroides dimidiatus, diet preferences for different types of mucus and parasitic gnathiid isopods. Anim. Behav. 2004, 68, 583–588. [Google Scholar] [CrossRef]
- GBIF. The Global Biodiversity Information Facility. Available online: https://www.gbif.org (accessed on 1 April 2025).
- Winterbottom, R.; Hoese, D.F. A revision of the Australian species of Trimma (Actinopterygii, Gobiidae), with descriptions of six new species and redescriptions of twenty-three valid species. Zootaxa 2015, 3934, 1–102. [Google Scholar] [CrossRef] [PubMed][Green Version]
[43] | B’ | C | D | E | F | G | H’ | N’ | O’ | Meristics | |
---|---|---|---|---|---|---|---|---|---|---|---|
[61] | NA | AITO | PITO | SOT | AOT | POT | IT | POP | POP | ||
[60] | σ | λ | κ | ω | α | β | ρ | δ * | ε | DII | A |
C. petrophilus | − | − | − | − | − | − | − | − | − | I,12−13 | I,12−13 |
H. apora | − | − | − | − | − | − | − | − | − | I,11; | I,10 |
H. aurantiaca | − | − | − | − | − | − | − | − | − | I,10 | I,9 |
H. bipunctata | − | − | − | − | − | − | − | − | − | I,13 | I,12 |
H. caminata | + | + | + | + | + | − | + | + | + | I,12 | I,10 |
H. diademata | − | − | − | − | − | − | − | − | − | I,12 | I,11 |
H. dorsovittata | − | − | − | − | − | − | − | − | − | I,12 | I,11 |
H. exilis | − | − | − | − | − | − | − | − | − | I,12 | I,11 |
H. georgegilli | + | + | + | + | + | − | − | − | − | I,10-11 | I,9 |
H. kenyae | + | − | ? | − | + | − | + | − | − | I,12 | I,9-10 |
H. margaretae | − | − | − | − | − | − | − | − | − | I,11 | I,10 |
H. nasoramosa | + | + | + | + | + | − | + | + | + | I,12 | I,11 |
H. nebulofasciata | + | + | + | + | + | − | + | − | − | I,11 | I,10 |
H. poecila | + | + | + | + | + | − | + | − | − | I,12 | I,11 |
H. psammophila | − | − | − | − | − | − | − | − | − | I,10 | I,9 |
H. semisquamata | − | − | − | − | − | − | − | − | − | I,11 | I,10 |
H. tentaculata | + | + | + | + | + | − | + | + | + | I,12 | I,11 |
H. vinsoni | + | + | + | + | + | − | + | − | − | I,10 | I,9 |
H. vulgaris | + | + | + | + | + | − | + | + | + | I,11 | I,10 |
H. zanzibarensis | + | + | + | + | + | + | + | − | − | I,9 | I,8 |
H. zonata | + | − | ? | − | + | − | + | − | − | I,12−13 | I,10−11 |
P. marecoralliensis | + | + | + | + | + | + | + | − | − | I,7 | I,7 |
P. readerae | + | + | + | + | + | + | + | + | + | I,8 | I,7(1); I,8(2) |
P. caudilinea | + | + | + | + | + | + | + | + | + | I,8-9 | I,8 |
P. sticta | + | + | + | + | + | + | + | + | + | I,8−9 | I,8−9 |
Measurement | AMS I.49536-002 (Holotype) | AMS I.49536-038 (2 Specimens; Paratypes) | |
---|---|---|---|
Standard length (mm) | 13.8 | 12.6 | 11.7 |
Head length | 28.0 | 29.6 | 29.4 |
Snout to origin of first dorsal | 36.7 | 37.7 | 41.7 |
Snout to origin of second dorsal | 55.9 | 56.0 | 59.7 |
Snout to origin of anal | 58.1 | 60.2 | 63.7 |
Maximum head depth | 18.5 | 17.3 | 19.2 |
Body depth at origin of first dorsal | 19.0 | 19.1 | 20.9 |
Body depth at origin of second dorsal | 19.2 | 19.3 | 19.7 |
Minimum depth of caudal peduncle | 14.8 | 13.8 | 13.9 |
Eye diameter | 8.6 | 8.6 | 10.3 |
Maxilla length | 12.9 | 11.7 | 12.1 |
Snout length | 5.4 | 4.6 | 4.3 |
Maximum length of first dorsal | 19.9 | 18.5 | 14.7 |
Maximum length of second dorsal | 19.3 | 20.9 | 15.8 |
Maximum length of caudal | 28.5 | 27.5 | 28.8 |
Maximum length of anal | 20.7 | 18.2 | 20.6 |
Maximum length of pelvic | 31.6 | 33.4 | 34.8 |
Maximum length of pectoral | 28.3 | 24.6 | 23.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goatley, C.H.R.; Varela, A.I.; Sellanes, J.; Tornabene, L. Pascua marecoralliensis, a New Species of Goby (Gobiiformes, Gobiidae) from the Central Coral Sea with Validation of the Genus Pascua. Fishes 2025, 10, 449. https://doi.org/10.3390/fishes10090449
Goatley CHR, Varela AI, Sellanes J, Tornabene L. Pascua marecoralliensis, a New Species of Goby (Gobiiformes, Gobiidae) from the Central Coral Sea with Validation of the Genus Pascua. Fishes. 2025; 10(9):449. https://doi.org/10.3390/fishes10090449
Chicago/Turabian StyleGoatley, Christopher H. R., Andrea I. Varela, Javier Sellanes, and Luke Tornabene. 2025. "Pascua marecoralliensis, a New Species of Goby (Gobiiformes, Gobiidae) from the Central Coral Sea with Validation of the Genus Pascua" Fishes 10, no. 9: 449. https://doi.org/10.3390/fishes10090449
APA StyleGoatley, C. H. R., Varela, A. I., Sellanes, J., & Tornabene, L. (2025). Pascua marecoralliensis, a New Species of Goby (Gobiiformes, Gobiidae) from the Central Coral Sea with Validation of the Genus Pascua. Fishes, 10(9), 449. https://doi.org/10.3390/fishes10090449