Fish Stock Assessment Models for Developing Nations with Emphasis on the Use of the Classic Gordon–Schaefer Model: A Review
Abstract
1. Introduction
2. Population Model
3. Stock Assessment
4. Empirical Models
5. Yield Models
6. Surplus Production Models
6.1. The Gordon–Schaefer Model
6.1.1. Parameter Estimation
6.1.2. Annual Sustainable Production
6.1.3. Depletion
6.1.4. Reference Points
6.1.5. Bifurcation Analysis
6.1.6. Tax Policy
6.1.7. Management Advice
6.2. The Fox and Pella–Tomlinson Models
7. Other Stock Assessment Methods
7.1. Abundance Maximum Sustainable Yield (AMSY), Catch-MSY and CMSY Methods
7.2. Just Another Bayesian Biomass Assessment Method
7.3. Delay Difference Models
7.4. Virtual Population Analysis
7.5. Length- and Age-Based Data-Limited Models
7.6. Time Series and Forecasting
8. Studies on Stock Assessment and Application of the GS Model
9. Suitability of the GS Model to Malawian Fish Stocks
10. Conclusions and Recommendation for Future Research
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tesfaye, M.; Getahun, A. Review on fish stock assessments models with more emphasis on the use of empirical and analytical models for potential yield prediction. Acta Entomol. Zool. 2021, 2, 23–30. [Google Scholar] [CrossRef]
- Cope, J.M. The good practices of practicable alchemy in the stock assessment continuum: Fundamentals and principles of analytical methods to support science-based fisheries management under data and resource limitations. Fish. Res. 2024, 270, 106859. [Google Scholar] [CrossRef]
- Maunder, M.N.; Punt, A.E. A review of integrated analysis in fisheries stock assessment. Fish. Res. 2012, 142, 61–72. [Google Scholar] [CrossRef]
- Darasi, F.; Mahenna, S.; Aksissou, M. The coastal fisheries in Tangier Port: Catch assessment and current status. Egypt. J. Aquat. Biol. Fish. 2020, 24, 496–506. [Google Scholar] [CrossRef]
- Darwall, W.R.T.; Allison, E.H. Monitoring, assessing, and managing fish stocks in lake Malawi/Nyassa: Current approaches and future possibilities. Aquat. Ecosyst. Health Manag. 2002, 5, 293–305. [Google Scholar] [CrossRef]
- Government of Malawi. Analysis of Catch and Effort Data for the Fisheries of Nkhotakota 1976–1999; Department of Fisheries: Mangochi, Malawi, 2001.
- M’balaka, M.S.; Kanyerere, G.; Kawonga, D. Assessment of artisanal chambo fisheries in Mangochi district. Int. J. Fish. Aquat. Stud. 2018, 6, 96–102. [Google Scholar]
- Government of Malawi. Analysis of Catch and Effort Data for the Fisheries of Southeast Arm of Lake Malawi; Department of Fisheries: Mangochi, Malawi, 2002.
- Government of Malawi. National Fisheries and Aquaculture Policy; Department of Fisheries: Mangochi, Malawi, 2016.
- Government of Malawi. National Fisheries Policy 2012–2017; Department of Fisheries: Mangochi, Malawi, 2012.
- Maguza-Tembo, F. Bio-Economics of Common Resource Over Exploitation: Case of Lake Malombe Chambo (Oreochromis sp. cichlidae) Fishery in Malawi. Master’s Thesis, Tromsϕ University, Norway, Tromsϕ, 2002. [Google Scholar]
- Weyl, O.L.F.; Ribbink, A.J.; Tweddle, D. Lake Malawi: Fishes, fisheries, biodiversity, health and habitat. Aquat. Ecosyst. Health Manag. 2010, 13, 241–254. [Google Scholar] [CrossRef]
- FAO. Management Techniques for Elasmobranch Fisheries; FAO Fisheries Technical Paper 487; FAO: Rome, Italy, 2005. [Google Scholar]
- Bell, R.J.; Collie, J.S.; Jamu, D.; Banda, M. Changes in the biomass of chambo in the southeast arm of Lake Malawi: A stock assessment of Oreochromis spp. J. Great Lakes Res. 2012, 38, 720–729. [Google Scholar] [CrossRef]
- Singini, W.; Kaunda, E.; Kasulo, V.; Jere, W. Wealth based fisheries management of chambo (Oreochromis spp.) fish stock of lake malombe in malawi. Int. J. Fish. Aquac. 2013, 5, 270–277. [Google Scholar]
- Haddon, M. Using R for Modelling and Quantitative Methods in Fisheries; Chapman and Hall/CRC Press: New York, NY, USA, 2021; pp. 1–176. [Google Scholar]
- Anderson, L.G.; Siejo, J.C. Bio-Economics of Fisheries Management; Wiley Blackwell: New York, NY, USA, 2010; pp. 8–26. [Google Scholar]
- FAO. Stock Assessment for Fishery Management: A Framework Guide to the Stock Assessment Tools of the Fisheries Management Science Programme; FAO Fisheries Technical Paper 487; FAO: Rome, Italy, 2006. [Google Scholar]
- National Research Council. Improving Fish Stock Assessments; National Academies Press: Washington, DC, USA, 1998; pp. 21–126.
- Hilborn, R.; Walters, C.J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainity; Chapman and Hall/CRC: New York, NY, USA, 1992; pp. 349–368. [Google Scholar] [CrossRef]
- Punt, A.E.; Dum, A.; Elvarsson, B.P.; Hampton, J.; Hoyle, S.D.; Maunder, M.N.; Methot, R.D.; Nielsen, A. Essential features of the next-generation integrated fisheries stock assessment package: A perspective. Fish. Res. 2020, 229, 105617. [Google Scholar] [CrossRef]
- Froese, R.; Winker, H.; Coro, G.; Demirel, N.; Tsikliras, A.C.; Dimarchopoulou, D.; Scarcella, G.; Palomares, M.L.D.; Dureuil, M.; Pauly, D. Estimating stock status from relative abundance and resilience. ICES J. Mar. Sci. 2020, 77, 527–538. [Google Scholar] [CrossRef]
- Froese, R.; Demirel, N.; Coro, G.; Kleisber, K.M.; Winker, H. Estimating fisheries reference points from catch and resilience. Fish Fish. 2016, 18, 506–526. [Google Scholar] [CrossRef]
- Martell, S.; Froese, R. A simple method for estimating MSY from catch and resilience. Fish Fish. 2013, 14, 504–514. [Google Scholar] [CrossRef]
- Sant’Ana, R.; Kikuchi, E.; Mourato, B.L.; Kimoto, A.; Ortiz, M.; Cardoso, L.G. Bayesian surplus production models (JABBA) applied to the eastern atlanticskipjack tuna stock assessment. Collect. Vol. Sci. Pap. ICCAT 2022, 79, 675–700. [Google Scholar]
- Smith, M.T.; Addison, J.T. Methods for stock assessment of crustacean fisheries. Fish. Res. 2003, 65, 231–256. [Google Scholar] [CrossRef]
- Ertiban, S.M. The empirical models in fish stock assessment. Agric. Biol. J. N. Am. 2016, 7, 287–295. [Google Scholar]
- Razzaq, S.; Kalhoro, M.A.; Memon, A.M.; Buzdar, M.A.; Shafi, M.; Saeed, F.; Baloch, A. Fishery stock assessment of megalaspis cordyla by using non equilibrium surplus production models in the arabian sea coast of Pakistan. J. Anim. Plant Sci. 2019, 29, 132–140. [Google Scholar]
- Ryder, R.; Henderson, H. Estimates of potential fish yield for the nasser reservoir, arab republic of Egypt. J. Fish. Board Can. 1975, 32, 2137–2151. [Google Scholar] [CrossRef]
- Chen, X. (Ed.) Fisheries Resources Economics; China Agriculture Press: Beijing, China, 2021; pp. 1–400. [Google Scholar]
- Jime’nez-Badillo, L. Application of holistic and analytical models for the management of tilapia fisheries in reservoirs. Hydrobiological 2004, 14, 61–68. [Google Scholar]
- Thompson, A.B.; Allison, E.H. Potential Yield Estimates of Unexploited Pelagic Fish Stocks in Lake Malawi. Fish. Manag. Ecol. 1997, 4, 31–48. [Google Scholar] [CrossRef]
- Zainun, I.; Sofyan, S.; Fajri, F.; Bagio, B. Application of surplus production model on tuna fishery in Sabang, weh island, Indonesia. OP Conf. Ser. Earth Environ. Sci. 2019, 348, 012109. [Google Scholar] [CrossRef]
- Mohsin, M.; Guilin, D.; Zhuo, C.; Hengbin, Y.; Noman, M. Maximum sustainable yield estimates of carangoides fishery resource in pakistan and its bioeconomic implications. Pak. J. Zool 2019, 51, 279–287. [Google Scholar] [CrossRef]
- Causido-Rocha, M.; Pennino, M.G.; Izquierdo, F.; Paz, A. Surplus production models: A practical review of recent approaches. Rev. Fish Biol. Fish. 2022, 32, 1–18. [Google Scholar] [CrossRef]
- Ibrahim, M. An application of optimal control to the marine artisanal fisheries in Ghana. Commun. Math. Biol. Neurosci. 2019, 2019, 22. [Google Scholar]
- Adkins, W.A.; Davidson, M.G. Ordinary Differential Equations; Springer: New York, NY, USA, 2010; pp. 18–20. [Google Scholar]
- Dewantara, E.C.; Fahrudin, A.; Wahyudin, Y. Maximum economic yield (mey) of stolephorus sp fisheries in the area of fisheries sanctuary of Karang jeruk, Tegal Regency. J. Mar. Fish. Soc. Ecol. Syst. 2019, 29–34. Available online: https://www.semanticscholar.org/paper/Maximum-Economic-Yield-(MEY)-of-Stolephorus-Sp-in-Dewantara-Fahrudin/456d0af11d0e3c914c3742e5e6c0df4c6cc1f742 (accessed on 10 December 2022).
- Mohsin, M.; Hengbin, Y.; Luyao, Z.; Shah, S.B.H. Assessment of bioeconomic and management aspects of tuner fishery resource in Pakistan. J. Anim. Plant Sci. 2020, 30, 1516–1524. [Google Scholar]
- Hengbin, Y.; Mohsin, M.; Noman, M.F. Application of gordon-shaefer model to evaluate bioeconomic and management aspects of Scomberomorus sinensis Fishery in Shandong, China. Indian J. Geo Mar. Sci. 2020, 47, 1250–1257. [Google Scholar]
- Mendenhall, W.; Beaver, R.J.; Beaver, B.M. Introduction to Probability and Statistics; Brooks/Cole: Pacific Grove, CA, USA, 2009; pp. 502–541. [Google Scholar]
- Anna, Z. An analysis of capture fisheries resource depletion in cirata reservoir, west java, Indonesia. Biodiversitas 2018, 19, 927–935. [Google Scholar] [CrossRef]
- Memon, K.H.; Liu, Q.; Shaikh, Q.; Kalhoro, M.A.; Chang, M.S.; Memon, A.M.; Ruk, M.; Ujjan, S.A. Applications of ceda (catch effort data analysis) computer software in estimation of maximum sustainable yield of the black pomfret parastromateus nigerfishery from pakistani waters. Indian J. Geo Mar. Sci. 2017, 46, 576–581. [Google Scholar]
- Prager, M.H. A Stock Production Model Incorporating Covariates and Auxilliary Programs, ASPIC Version. Available online: www.prager.com (accessed on 15 July 2017).
- Singini, W.; Kaunda, E.; Kasulo, V.; Jere, W.; Msiska, O. Bioeconomic approach to rebuilding small haplochromine cichlids of lake malombe, malawi. Int. J. Sci. Technol. Res. 2012, 1, 10–15. [Google Scholar]
- Grafton, R.Q.; Kirekly, J.; Kompas, T.; Squires, D. Economics of Fisheries Management; Routledge: London, UK, 2018; pp. 1–176. [Google Scholar] [CrossRef]
- Habib, A.; Ullah, M.H.; Duy, N.N. Bioeconomics of Commercial Marine Fisheries of Bay of Bengal: Status and Direction. Econ. Res. Int. 2014, 2014, 538074. [Google Scholar] [CrossRef]
- Stergiou, K.I.; Christou, E.D. Modelling and forecasting annual fisheries catches: Comparison of regression, univariate and multivariate time series methods. Fish. Res. 1995, 25, 105–138. [Google Scholar] [CrossRef]
- Kar, T.K.; Chakraborty, K. Bioeconomic analysis of Maryland’s Chesapeake bay oyster fishery with reference to optimal utilization and management of resource. Int. J. Eng. Sci. Technol. 2009, 1, 172–189. [Google Scholar] [CrossRef]
- Zhang, K. Fish stock assessment based on abundance index and resilience: A case study of largehead hairtail in Sea of Japan and East China Sea. South China Fish. Sci. 2022, 18, 1–9. [Google Scholar] [CrossRef]
- Winker, H.; Carvalho, F.; Kapur, M. JABBA: Just Another Bayesian Biomass Assessment. Fish. Res. 2018, 204, 275–288. [Google Scholar] [CrossRef]
- Winker, H.; Kerwath, S.; Merino, G.; Ortiz, M. Bayesian state space surplus production model JABBA assessment of atlantic bigeye tuna (Thunnus obesus) stock. Collect. Vol. Sci. Pap. ICCAT 2019, 75, 2129–2168. [Google Scholar]
- ICES. Report on the Classification of Stock Assessment Methods Developed by SISAM; ICES CM 2012/ACOM/SCICOM:01; ICES. Available online: https://www.ices.dk/community/Documents/SISAM/Report%20on%20the%20Classification%20of%20Stock%20Assessment%20Methods%20developed%20by%20SISAM.pdf (accessed on 12 December 2023).
- Hordyk, A.; Ono, K.; Valencia, S.; Loneragan, N.; Prince, J. A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES J. Mar. Sci. 2014, 72, 217–231. [Google Scholar] [CrossRef]
- Smith, M.W.; Then, A.Y.; Wor, C.; Ralph, G.; Pollock, K.H.; Hoenig, J.M. Recommendations for Catch-Curve Analysis. N. Am. J. Fish. Manag. 2012, 32, 956–967. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and Forecasting; John Wiley: Hoboken, NJ, USA, 2008; pp. 302–511. [Google Scholar]
- Mahenna, S.F.; Fattouh, S.A.; Mehassab, A.F.; Koleib, Z.M. A comparative study of fish production from lake manzalah before and during the cleansing and development operations based on surplus production modeling approach. Egypt. J. Aquat. Biol. Fish. 2022, 26, 613–624. [Google Scholar]
- Taghavimotlagh, S.A.; Daryanabard, G.R.; Vahabnezhad, A. An analysis of the maximum economic yield of kilka fisheries in the Southern Caspian Sea. Iran. J. Fish. Sci. 2022, 21, 785–797. [Google Scholar] [CrossRef]
- Barr, M.A.E. Catch per unit effort, maximum sustainable yield and exploitation of demersal fish of omani artisanal fishery. Ournal Coast. Life Med. 2016, 4, 440–443. [Google Scholar] [CrossRef]
- Obegi, B.N.; Sarfo, I.; Morara, G.N.; Boera, P.; Waithaka, E.; Mutie, A. Bio-economic modeling of fshing activities in Kenya: The case of lake Naivasha ramsar site. J. Bioecon. 2020, 22, 15–31. [Google Scholar] [CrossRef]
- Srinath, M. Evaluation of schaefer’s production model. Indian J. Fish 2002, 49, 361–368. [Google Scholar]
- Alrouby, E.T.H.; Abdul-Tawab, Y.E. Analytical study of the current and the future situation of fishery resources in qaroun and al-rayyan lakes in fayoum governorate, Egypt. Egypt J. Aquat. Biol. Fish 2019, 23, 303–320. [Google Scholar] [CrossRef]
- Karthikeyan, M.; Naskar, M.; Das, D.K.; Sarkar, U.K.; Vijayaraghavan, R. A modeling approach to determine the harvest potential for sustainable fishery in stocked reservoirs. Int. J. Ecol. Environ. Sci. 2021, 46, 241–246. [Google Scholar]
- Maiyza, S.I.; Mehanna, S.F.; El-karyoney, I.A. An evaluation for the exploitation level of Egyptian marine fisheries. Egypt. J. Aquat. Biol. Fish. 2020, 24, 441–452. [Google Scholar] [CrossRef]
- Mkenda, A.F.; Former, H. The maximum sustainable yield of artisanal fishery in Zanzibar: A cointegration approach. Environ. Resour. Econ. 2001, 19, 311–328. [Google Scholar] [CrossRef]
- Rais, A.H.; Wulandari, T.N.M. Production and maximum sustainable yield of fisheries activity in Hulu sungai utara regency. E3S Web Conf. 2020, 147, 02008. [Google Scholar] [CrossRef]
- Chavez, E.A. Maximum sustainable yield, maximum economic yield and sustainability in fisheries. J. Aquac. Mar. Biol. 2020, 9, 15–17. [Google Scholar] [CrossRef]
- Mohsin, M.; Mu, Y.T.; Noman, M.; Hengbin, Y.; Mehak, A. Estimation of maximum sustainable harvest levels and bioeconomic implications of babylonia spirata fisheries in Pakistan by using CEDA and ASPIC. Oceanogr. Fish. Open Access J. 2018, 7, 1–8. [Google Scholar]
- Clarke, R.P. A bioeconomic analysis of the Northwestern Hawaiian islands lobster fishery. Mar. Resour. Econ. 1992, 27, 115–140. [Google Scholar] [CrossRef]
- Hasibuan, J.S.; Ramadan, M.R.; Desrita; Manurung, V.R.; Susetya, I.E.; Sabila, P.S.; Dewinta, A.F. Bioeconomic analysis of mackerel resources management (Rastrelliger sp.) at Malacca strait, serdang bedagai regency, sumatera utara. OP Conf. Ser. Earth Environ. Sci. 2023, 1241, 012123. [Google Scholar] [CrossRef]
- Wijayanto, D.; Sardiyatmo; Setyanto, I.; Kurohman, F. Bioeconomic analysis of the impact of ‘cantrang’ (danish seine) toward gill net in Pati regency, INdonesia. AACL Bioflux 2019, 12, 25–33. [Google Scholar]
- Shehu, V.; Spaho, A.B. Birfucation analysis as a useful tool for fishery management. Ournal Nat. Tech. Sci. 2015, 20, 17–26. [Google Scholar]
- Gumulira, E.; Forrester, G.; Lazar, N. Bio-economic analysis of Engraulicypris sardella (usipa) in south east arm of lake Malawi. Int. J. Fish. Aquac. 2019, 11, 86–96. [Google Scholar]
- El-Mahdy, S.M.; Osman, Y.A.A.; Maiyza, S.I.; Mohammad, A.S.; Hassanien, E.M. Fish production and evaluation of the fishery status for shalateen fishing area, Red Sea, Egypt. Egypt. J. Aquat. Biol. Fish. 2019, 27, 439–453. [Google Scholar] [CrossRef]
- Mardhatillar, I.; Damora, A.; Rahmah, A.; Nurfadillah, N.; Muhammad, M. Application of Schaefer model on mackerels fishery in Aceh waters, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 348, 012114. [Google Scholar] [CrossRef]
- Ibrahim, M. Optimal control of a fishery utilising compensation and critical depensation models. Appl. Math. Inf. Sci. Int. J. 2020, 14, 467–479. [Google Scholar]
- Mohsin, M.; Mu, Y.; Memon, A.M.; Kalhoro, M.T.; Shah, S.B.H. Fishery stock assessment of Kiddi shrimp (Parapenaeopsis stylifera) in the Northern Arabian Sea Coast of Pakistan by using surplus production models. Chin. J. Oceanol. Limnol. 2017, 33, 966–973. [Google Scholar] [CrossRef]
- Lazaro, M.; Jere, W.W.L. The status of the commercial chambo (Oreochromis species) fishery in Malawi: A time series approach. Int. J. Sci. Technol. 2013, 3, 322–327. [Google Scholar]
- Mulumpwa, M.; Jere, W.W.L.; Kakota, T.; Mtethiwa, A.; Kang’ombe, J. Modeling and forecasting of Engraulicypris sardella (usipa) yields from Mangochi artisanal fisheries of lake Malawi using holt exponential smoothing method. Malawi J. Sci. Technol. 2020, 12, 66–86. [Google Scholar]
- Mulumpwa, M.; Jere, W.W.L.; Mtethiwa, A.; Kakota, T.; Kang’ombe, J. Modeling and forecasting of ecatfish species yield from mangochi artisan fisheries of lake Malawi in Malawi. Afr. J. Food Agric. Nutr. Dev. 2020, 20, 16864–16883. [Google Scholar]
- Makwinja, R.; Mengistou, S.; Kaunda, E.; Alemiew, T.; Phiri, T.B.; Kosamu, I.B.M.; Kaonga, C.C. Modeling of lake Malombe annual fish landings and catch per unit effort (cpue). Forecasting 2021, 3, 39–55. [Google Scholar] [CrossRef]
- Zaindi, I.; Singini, W.; Mazengera, K. Forecasting copadichromis (utaka) production for lake Malawi, Nkhatabay fishery—A stochastic model approach. J. Fish. Livest. Prod. 2016, 4, 162. [Google Scholar] [CrossRef]
- Zwieten, P.A.M.V.; Banda, M.; Kolding, J. Selecting indicators to assess the fisheries of Lake Malawi and Lake Malombe: Knowledge base and evaluative capacity. J. Great Lakes Res. 2011, 37, 26–44. [Google Scholar]
Method | Benefits | Limitations | References |
---|---|---|---|
Yield Models | They can be used to forecast the effects of effort, fishing gears, or mesh sizes on yield or biomass | They are difficult to implement in cases where data availability is a problem | [1,26] |
Empirical Models | They are simple, quick and cost effective since they use readily available data | They are dependent on previous studies whose results may change; they do not estimate fishing effort | [27] |
Surplus Production Models | They are simple and they consider stock as homogeneous biomass; they require simple data such as catch and effort data | They assume stock has stabilised at the current rate of fishing; they ignore complexities of age and spatial structure | [1,28] |
Delay Difference Models | They are simple, just like surplus production models, but they have the additional advantage that they account for both recruit and spawner effects | Where data is scarce, delay difference models offer no advantage to surplus production models | [26] |
Length-based and Age-based Models | They make use of age-specific and length-specific information | They require many observations and include many parameters | [19] |
Country | MSY | MEY | OAY | OSY | Bifurcation | Depletion | ASP | References |
---|---|---|---|---|---|---|---|---|
Egypt | Yes | No | No | No | No | No | No | [62] |
Egypt | Yes | No | No | No | No | No | No | [64] |
Egypt | Yes | Yes | No | No | No | No | No | [57] |
Egypt | Yes | No | No | No | No | No | No | [74] |
Indonesia | Yes | Yes | No | No | No | Yes | Yes | [42] |
Indonesia | Yes | Yes | Yes | No | No | No | No | [38] |
Indonesia | Yes | Yes | Yes | No | No | No | No | [71] |
Indonesia | Yes | Yes | Yes | No | No | No | No | [70] |
Indonesia | Yes | No | No | No | No | No | Yes | [33] |
Indonesia | Yes | No | No | No | No | No | No | [75] |
Oman | Yes | No | No | No | No | No | No | [59] |
USA | Yes | Yes | Yes | No | No | No | No | [69] |
USA | Yes | Yes | Yes | Yes | No | No | No | [49] |
Morocco | Yes | No | No | No | No | No | No | [4] |
China | Yes | Yes | Yes | No | No | No | No | [40] |
Ghana | Yes | Yes | No | No | No | No | No | [76] |
Ghana | Yes | Yes | Yes | Yes | Yes | No | No | [36] |
Pakistan | Yes | No | No | No | No | No | No | [43] |
Pakistan | Yes | Yes | No | No | No | No | No | [68] |
Pakistan | Yes | No | No | No | No | No | No | [34] |
Pakistan | Yes | No | No | No | No | No | No | [77] |
Pakistan | Yes | No | No | No | No | No | No | [28] |
Pakistan | Yes | Yes | Yes | No | No | No | No | [39] |
Zanzibar | Yes | Yes | No | No | No | No | No | [65] |
India | Yes | No | No | No | No | No | No | [63] |
India | Yes | Yes | Yes | No | No | No | No | [47] |
Iran | Yes | Yes | No | No | No | No | No | [58] |
Kenya | Yes | Yes | No | No | No | No | No | [60] |
Malawi | Yes | Yes | No | No | No | No | No | [73] |
Malawi | Yes | No | No | No | No | No | No | [7] |
Malawi | Yes | Yes | No | No | No | No | No | [73] |
Malawi | Yes | Yes | Yes | No | No | No | No | [45] |
Malawi | Yes | Yes | No | No | No | No | No | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamera, F.; Kamndaya, M.; Kadaleka, S.; Phepa, P.; Mwamtobe, P.M.; Soko, A. Fish Stock Assessment Models for Developing Nations with Emphasis on the Use of the Classic Gordon–Schaefer Model: A Review. Fishes 2025, 10, 442. https://doi.org/10.3390/fishes10090442
Chamera F, Kamndaya M, Kadaleka S, Phepa P, Mwamtobe PM, Soko A. Fish Stock Assessment Models for Developing Nations with Emphasis on the Use of the Classic Gordon–Schaefer Model: A Review. Fishes. 2025; 10(9):442. https://doi.org/10.3390/fishes10090442
Chicago/Turabian StyleChamera, Francisco, Mphatso Kamndaya, Solomon Kadaleka, Patrick Phepa, Peter Mpasho Mwamtobe, and Alpha Soko. 2025. "Fish Stock Assessment Models for Developing Nations with Emphasis on the Use of the Classic Gordon–Schaefer Model: A Review" Fishes 10, no. 9: 442. https://doi.org/10.3390/fishes10090442
APA StyleChamera, F., Kamndaya, M., Kadaleka, S., Phepa, P., Mwamtobe, P. M., & Soko, A. (2025). Fish Stock Assessment Models for Developing Nations with Emphasis on the Use of the Classic Gordon–Schaefer Model: A Review. Fishes, 10(9), 442. https://doi.org/10.3390/fishes10090442