Evaluating How Growth and Diet of Native Freshwater Fishes Change in Response to Salinity and pH in a Semi-Arid Landscape
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Species
2.2. Field Sampling
2.3. Fish Growth
2.4. Fish Diet
2.5. Data Analysis
3. Results
3.1. Growth Patterns
3.2. Diet and Prey Selection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velasco, J.; Gutiérrez-Cánovas, C.; Botella-Cruz, M.; Sánchez-Fernández, D.; Arribas, P.; Carbonell, J.A.; Millán, A.; Pallarés, S. Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos. Trans. R. Soc. B 2019, 374, 20180011. [Google Scholar] [CrossRef] [PubMed]
- Brahney, J.; Ballantyne, A.P.; Kociolek, P.; Leavitt, P.R.; Farmer, G.L.; Neff, J.C. Ecological changes in two contrasting lakes associated with human activity and dust transport in western Wyoming. Limnol. Oceanogr. 2015, 60, 678–695. [Google Scholar] [CrossRef]
- Olson, J.R. Predicting combined effects of land use and climate change on river and stream salinity. Philos. Trans. R. Soc. B 2019, 374, 20180005. [Google Scholar] [CrossRef]
- Corsi, S.R.; Graczyk, D.J.; Geis, S.W.; Booth, N.L.; Richards, K.D. A fresh look at road salt: Aquatic toxicity and water-quality impacts on local, regional, and national scales. Environ. Sci. Technol. 2010, 44, 7376–7382. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Likens, G.E.; Pace, M.L.; Utz, R.M.; Haq, S.; Gorman, J.; Grese, M. Freshwater salinization syndrome on a continental scale. Proc. Natl. Acad. Sci. USA 2018, 115, E574–E583. [Google Scholar] [CrossRef]
- USGS. New Study Demonstrates How Climate and Irrigation Influence Salinity of Waters in the Upper Colorado Basin; U.S. Geological Survey: Reston, VA, USA, 2024. [Google Scholar]
- Bern, C.R.; Clark, M.L.; Schmidt, T.S.; Holloway, J.M.; McDougal, R.R. Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development. J. Hydrol. 2015, 524, 123–136. [Google Scholar] [CrossRef]
- Taboga, K.G.; Stafford, J.E. Groundwater salinity in Wyoming: Wyoming State Geological Survey Open File Report. 2020; 2020, 29p. Available online: https://www.wsgs.wyo.gov/products/wsgs-2020-ofr-06.pdf (accessed on 15 January 2025).
- NOAA. Sea Water Salinity. National Oceanic and Atmospheric Administration. 2025. Available online: https://www.noaa.gov/jetstream/ocean/sea-water (accessed on 15 January 2025).
- Hastie, L.C.; Young, M.R.; Boon, P.J.; Cosgrove, P.J.; Henninger, B. Sizes, densities and age structures of Scottish Margaritifera margaritifera (L.) populations. Aquat. Conserv. Mar. Freshw. Ecosyst. 2000, 10, 229–247. [Google Scholar] [CrossRef]
- Bœuf, G.; Payan, P. How should salinity influence fish growth? Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 411–423. [Google Scholar] [CrossRef]
- Lydeard, C.; Cowie, R.H.; Ponder, W.F.; Bogan, A.E.; Bouchet, P.; Clark, S.A.; Cummings, K.S.; Frest, T.J.; Gargominy, O.; Herbert, D.G.; et al. The global decline of nonmarine mollusks. BioScience 2004, 54, 321–330. [Google Scholar] [CrossRef]
- Walker, R.H.; Smith, G.D.; Hudson, S.B.; French, S.S.; Walters, A.W. Warmer temperatures interact with salinity to weaken physiological facilitation to stress in freshwater fishes. Conserv. Physiol. 2020, 8, coaa107. [Google Scholar] [CrossRef] [PubMed]
- Williams, W.D. Anthropogenic salinisation of inland waters. In the Saline Lakes, Proceedings of the 7th International Conference on Salt Lakes; California, CA, USA, 20–23 September 1999, Melack, J.M., Jellison, R., Herbst, D.B., Eds.; Springer: New York, NY, USA, 2001; pp. 329–337. [Google Scholar]
- LIFE. pH Requirements of Freshwater Aquatic Life. Freshwater Aquatic LIFE Program; 2004. Available online: https://semspub.epa.gov/work/03/2244701.pdf (accessed on 9 May 2025).
- Baker, J.P.; Gherini, S.A.; Munson, R.K.; Christensen, S.W.; Driscoll, C.T.; Gallagher, J.; Newton, R.M.; Reckhow, K.H.; Schofield, C.L. Adirondack Lakes Survey: An Interpretive Analysis of Fish Communities and Water Chemistry, 1984–1987; Oak Ridge National Lab. (ORNL) A: Oak Ridge, TN, USA; Adirondack Lakes Survey Corp B: Ray Brook, NY, USA, 1990. [Google Scholar]
- Folger, P.F.; Tiemann, M.; Bearden, D.M. The EPA draft report of groundwater contamination near Pavillion, Wyoming: Main findings and stakeholder responses. Congr. Res. Serv. 2012, 42327. Available online: https://wyofile.com/wp-content/uploads/2012/01/R42327-2.pdf (accessed on 9 May 2025).
- Evans, D.H.; Piermarini, P.M.; Choe, K.P. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 2005, 85, 97–177. [Google Scholar] [CrossRef] [PubMed]
- Mount, D.I. Chronic effect of low pH on fathead minnow survival, growth and reproduction. Water Res. 1973, 7, 987–993. [Google Scholar] [CrossRef]
- Clearwater, S.J.; Farag, A.M.; Meyer, J.S. Bioavailability and toxicity of dietborne copper and zinc to fish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2002, 132, 269–313. [Google Scholar] [CrossRef]
- Sibly, R.M.; Hone, J. Population growth rate and its determinants: An overview. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2002, 357, 1153–1170. [Google Scholar] [CrossRef]
- Fung, L.; Rae, J.; Baylis, A.; Juteau, C.; Mageroy, J. Status of the western pearlshell mussel in the Little Campbell River: Comparison between 2009 and 2015. Northwest Sci. 2016, 90, 317–328. [Google Scholar]
- Geist, J. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): A synthesis of conservation genetics and ecology. Hydrobiologia 2010, 644, 69–88. [Google Scholar] [CrossRef]
- Canosa, L.F.; Bertucci, J.I. The effect of environmental stressors on growth in fish and its endocrine control. Front. Endocrinol. 2023, 14, 1109461. [Google Scholar] [CrossRef] [PubMed]
- Anthony, J.L.; Kesler, D.H.; Downing, W.L.; Downing, J.A. Length-specific growth rates in freshwater mussels (Bivalvia: Unionidae): Extreme longevity or generalized growth cessation? Freshw. Biol. 2001, 46, 1349–1359. [Google Scholar] [CrossRef]
- Barton, B.A.; Iwama, G.K. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1991, 1, 3–26. [Google Scholar] [CrossRef]
- Wootton, R.J. Ecology of Teleost Fishes; Springer Science and Business Media: New York, NY, USA, 2012. [Google Scholar]
- Schull, Q.; Beauvieux, A.; Viblanc, V.A.; Metral, L.; Leclerc, L.; Romero, D.; Pernet, F.; Quéré, C.; Derolez, V.; Munaron, D.; et al. An integrative perspective on fish health: Environmental and anthropogenic pathways affecting fish stress. Mar. Pollut. Bull. 2023, 194, 115318. [Google Scholar] [CrossRef]
- Knight, D.H.; Jones, G.P.; Reiners, W.A.; Romme, W.H. Mountains and Plains: The Ecology of Wyoming Landscapes; Yale University Press: London, UK, 2014. [Google Scholar]
- NRCS. Wyoming Hydrologic Unit Map; U.S. Department of Agriculture Natural Resources Conservation Service: Washington, DC, USA, 2020. [Google Scholar]
- PRISM Climate Group. 30-Year Normals (1991–2020) for Wyoming; Oregon State University: Corvallis, OR, USA, 2024. [Google Scholar]
- Rahel, F.J.; Thel, L.A. Plains Killifish (Fundulus zebrinus): A Technical Conservation Assessmen; USDA Forest Service, Rocky Mountain Region: Ogden, UT, USA, 2004. [Google Scholar]
- Eberle, M.E. Type locality and conservation status of the northern plains killifish (Fundulus kansae: Fundulidae) in Kansas. Trans. Kans. Acad. Sci. 2009, 112, 87–97. [Google Scholar]
- Cross, F.B.; Moss, R.E.; Collins, J.T. Assessment of Dewatering Impacts on Stream Fisheries in the Arkansas and Cimarron Rivers; University of Kansas: Lawrence, KS, USA, 1985. [Google Scholar]
- Minckley, C.O.; Klaassen, H.E. Life history of the plains killifish, Fundulus kansae (Garman), in the Smoky Hill River, Kansas. Trans. Am. Fish. Soc. 1969, 98, 460–465. [Google Scholar] [CrossRef]
- WGFD. Wyoming Statewide Angling Regulations. Wyoming Game and Fish Department. 2017. Available online: https://wgfd.wyo.gov/media/1453/download?inline (accessed on 13 March 2025).
- Nico, L.G.; Fuller, P.L.; Neilson, M.; Pimephales promelas—Fathead Minnow. USGS Nonindigenous Aquatic Species Database. 2025. Available online: https://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=621 (accessed on 13 March 2025).
- Nico, L.G.; Fuller, P.L. Spatial and temporal patterns of nonindigenous fish introductions in the United States. Fisheries 1999, 24, 16–27. [Google Scholar] [CrossRef]
- Page, L.M.; Burr, B.M. A Field Guide to Freshwater Fishes: North America North of Mexico; Houghton Mifflin Harcourt: Boston, MA, USA, 1991. [Google Scholar]
- Matern, S.A.; Moyle, P.B.; Pierce, L.C. Native and alien fishes in a California estuarine marsh: Twenty-one years of changing assemblages. Trans. Am. Fish. Soc. 2002, 131, 797–816. [Google Scholar] [CrossRef]
- Carlander, K.D. Handbook of Freshwater Fishery Biology; Iowas State University Press: Ames, IA, USA, 1951. [Google Scholar]
- Nelson, J.S. Salinity tolerance of brook sticklebacks, Culaea inconstans, freshwater ninespine sticklebacks, Pungitius pungitius, and freshwater fourspine sticklebacks, Apeltes quadracus. Can. J. Zool. 1968, 46, 663–667. [Google Scholar] [CrossRef]
- Palmer, R.E.; Klauda, R.J.; Jepson, M.A.; Perry, E.S. Acute sensitivity of early life stages of fathead minnow (Pimephales promelas) to acid and aluminum. Water Res. 1989, 23, 1039–1047. [Google Scholar] [CrossRef]
- Brunel, T.; Piet, G.J. Is age structure a relevant criterion for the health of fish stocks? ICES J. Mar. Sci. 2013, 70, 270–283. [Google Scholar] [CrossRef]
- Sturrock, A.M.; Hunter, E.; Milton, J.A.; Johnson, E.R.C.; Waring, C.P.; Trueman, C.N. Quantifying physiological influences on otolith microchemistry. Methods Ecol. Evol. 2015, 6, 806–816. [Google Scholar] [CrossRef]
- Merritt, R.W.; Cummins, K.W.; Berg, M.B. Trophic relationships of macroinvertebrates. In Methods in Stream Ecology; Hauer, F.R., Lamberti, G., Eds.; Academic Press: New York NY, USA, 2017; Volume 1, pp. 413–433. [Google Scholar]
- Cummins, K.W.; Merritt, R.W.; Berg, M.B. Ecology and distribution of aquatic insects. In An Introduction to the Aquatic Insects of North America; Kendall/Hull Publishing: Dubuque, IA, USA, 1996; Volume 3, pp. 74–86. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Team, R.D.C. R: A Language and Environment for Statistical Computing. 2010. Available online: https://www.r-project.org/ (accessed on 9 May 2025).
- Posit, P.B.C. RStudio: Integrated Development Environment for R, version 2024.09. 0 Build 375. Crunchbase: San Francisco, CA, USA, 2024.
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Wickham, H.; Chang, W.; Wickham, M.H. Package‘Ggplot2’: Create Elegant Data Visualisations Using the Grammar of Graphics. 2016. version 2. pp. 1–189. Available online: https://cran.r-project.org/web/packages/ggplot2/index.html (accessed on 9 May 2025).
- Pedersen, T.L. Patchwork: The Composer of Plots. CRAN: Contributed Packages. 2019. Available online: https://cran.r-project.org/web/packages/patchwork/index.html (accessed on 9 May 2025).
- Kassambara, A. Ggpubr:‘Ggplot2′ Based Publication Ready Plots, R package version 0.4.0. 2020. Available online: https://cran.r-project.org/web/packages/ggpubr/index.html (accessed on 9 May 2025).
- Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef]
- Kahle, D.; Wickham, H. Ggmap: Spatial Visualization with ggplot2. R J. 2013, 5, 144–146. [Google Scholar]
- Dunnington, D.; Thorne, B.; Hernangómez, D. Ggspatial: Spatial Data Annotation Layers for Ggplot2, version 1.1.7. 2023. Available online: https://cran.r-project.org/web/packages/ggspatial/ggspatial.pdf (accessed on 9 May 2025).
- Kaushal, S.S.; Mayer, P.M.; Likens, G.E.; Reimer, J.E.; Maas, C.M.; Rippy, M.A.; Grant, S.B.; Hart, I.; Utz, R.M.; Shatkay, R.R.; et al. Five state factors control progressive stages of freshwater salinization syndrome. Limnol. Oceanogr. Lett. 2023, 8, 190–211. [Google Scholar] [CrossRef] [PubMed]
- Poff, N.L.; Olden, J.D.; Merritt, D.M.; Pepin, D.M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl. Acad. Sci. USA 2007, 104, 5732–5737. [Google Scholar] [CrossRef] [PubMed]
- Vander Vorste, R.; Obedzinski, M.; Nossaman Pierce, S.; Carlson, S.M.; Grantham, T.E. Refuges and ecological traps: Extreme drought threatens persistence of an endangered fish in intermittent streams. Glob. Change Biol. 2020, 26, 3834–3845. [Google Scholar] [CrossRef]
- Tronstad, L.M.; Lindsteadt, A.; Hotaling, S. Integrating historical and contemporary data for narrow-foot hygrotus diving beetle (Hygrotus diversipes L., 1966): Perspectives studying invertebrates of management and conservation concern. West. N. Am. Nat. 2024, 84, 447–477. [Google Scholar] [CrossRef]
- Trombley, C.A.; Hardy, T.B.; Schwalb, A.N. Disturbance-driven changes in fish assemblages caused by a sudden increase in salinity in a perennial desert stream. Environ. Biol. Fishes 2018, 101, 791–798. [Google Scholar] [CrossRef]
- Iqbal, K.J.; Qureshi, N.A.; Ashraf, M.; Rehman, M.H.U.; Khan, N.; Javid, A.; Abbas, F.; Mushtaq, M.M.H.; Rasool, F.; Majeed, H. Effect of different salinity levels on growth and survival of Nile tilapia (Oreochromis niloticus). J. Anim. Plant Sci. 2012, 22, 919–922. [Google Scholar]
- Bucking, C.; Wood, C.M.; Grosell, M. Diet influences salinity preference of an estuarine fish, the killifish Fundulus heteroclitus. J. Exp. Biol. 2012, 215, 1965–1974. [Google Scholar] [CrossRef]
- Dendrinos, P.; Thorpe, J.P. Effects of reduced salinity on growth and body composition in the European bass Dicentrarchus labrax (L.). Aquaculture 1985, 49, 333–358. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milbrath, M.; Lindsteadt, A.; Tronstad, L. Evaluating How Growth and Diet of Native Freshwater Fishes Change in Response to Salinity and pH in a Semi-Arid Landscape. Fishes 2025, 10, 423. https://doi.org/10.3390/fishes10090423
Milbrath M, Lindsteadt A, Tronstad L. Evaluating How Growth and Diet of Native Freshwater Fishes Change in Response to Salinity and pH in a Semi-Arid Landscape. Fishes. 2025; 10(9):423. https://doi.org/10.3390/fishes10090423
Chicago/Turabian StyleMilbrath, Miles, Audrey Lindsteadt, and Lusha Tronstad. 2025. "Evaluating How Growth and Diet of Native Freshwater Fishes Change in Response to Salinity and pH in a Semi-Arid Landscape" Fishes 10, no. 9: 423. https://doi.org/10.3390/fishes10090423
APA StyleMilbrath, M., Lindsteadt, A., & Tronstad, L. (2025). Evaluating How Growth and Diet of Native Freshwater Fishes Change in Response to Salinity and pH in a Semi-Arid Landscape. Fishes, 10(9), 423. https://doi.org/10.3390/fishes10090423