Rutin Inhibits Histamine-Induced Cytotoxicity of Zebrafish Liver Cells via Enhancing Antioxidant and Anti-Inflammatory Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
- 0: 0 μM rutin;
- 0 + H: 0 μM rutin + 29.5 mM histamine;
- 0.1 + H: 0.1 μM rutin + 29.5 mM histamine;
- 1 + H: 1 μM rutin + 29.5 mM histamine;
- 10 + H: 10 μM rutin + 29.5 mM histamine;
- 100 + H: 100 μM rutin + 29.5 mM histamine.
2.2. Morphological Observation and Survival Rate Detection of ZFL
2.3. Detection of Mitochondrial Membrane Potential
2.4. Detection of Peroxide Levels
2.5. Detection of Antioxidant Indicators
2.6. Detection of Protein Expression in Antioxidant Pathways and Inflammatory Pathways
2.7. Statistical Analysis
3. Results
3.1. Effect of Rutin on the Survival Rate of ZFL After Histamine Stimulation
3.2. Effect of Rutin on the Morphological Changes of ZFL After Histamine Stimulation
3.3. Effect of Rutin on the Mitochondrial Membrane Potential of ZFL After Histamine Stimulation
3.4. Effect of Rutin on Peroxide Levels of ZFL After Histamine Stimulation
3.5. Effect of Rutin on Antioxidant Enzyme Levels of ZFL After Histamine Stimulation
3.6. Expression of Key Proteins in Antioxidant and Inflammatory Pathways
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ROS | Reactive oxygen species |
ZFL | Zebrafish liver cells |
TEM | Transmission electron microscopy |
MDA | Malondialdehyde |
SOD | Superoxide dismutase |
CAT | Catalase |
T-AOC | Total antioxidant capacity |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
GPx4 | Glutathione peroxidase 4 |
HO-1 | Heme oxygenase-1 |
NF-κB p65 | Nuclear factor kappa-B p65 |
TNF-α | Tumor necrosis factor-α |
IL-1β | Interleukin-1β |
GST | Glutathione S-transferase |
ARE | Antioxidant response elements |
IκB | Inhibitory κB kinase |
References
- Ma, D.; Cai, P.; Zhai, S.; Chen, X. Effect of dietary histamine on growth performance, digestive enzyme activities and antioxidant indices in intestine of juvenile American eels (Anguilla rostrata). Feed Res. 2020, 2, 42–45. [Google Scholar] [CrossRef]
- Taylor, S.L.; Stratton, J.E.; Nordlee, J.A. Histamine poisoning (scombroid fish poisoning): An allergy like intoxication. Clin. Toxicol. 1989, 27, 225–240. [Google Scholar] [CrossRef]
- Maintz, L.; Novak, N. Histamine and histamine intolerance. Am. J. Clin. Nutr. 2007, 85, 1185–1196. [Google Scholar] [CrossRef]
- Wang, Y.T.; Fang, F.D.; Liu, X.J. Targeting histamine in metabolic syndrome: Insights and therapeutic potential. Life Sci. 2024, 358, 123172. [Google Scholar] [CrossRef] [PubMed]
- Shiozaki, K.; Nakano, T.; Yamaguchi, T.; Sato, A. Metabolism of exogenous histamine in rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 2003, 29, 289–295. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Yang, H.L.; Hu, L.H.; Yang, W.; Ai, C.; Sun, Y.Z. Autochthonous probiotics alleviate the adverse effects of dietary histamine in juvenile grouper (Epinephelus coioides). Front. Microbiol. 2021, 12, 79271. [Google Scholar] [CrossRef]
- Li, W.; Liu, B.; Liu, Z.; Yin, Y.; Xu, G.; Han, M.; Xie, L. Effect of dietary histamine on intestinal morphology, inflammatory status, and gut microbiota in yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immun. 2021, 117, 95–103. [Google Scholar] [CrossRef]
- Lin, C.; Yan, P.; Lou, Z.; Shi, X.; Zhao, Q.; Li, E. Effects of histamine on the neuroendocrine-immune regulatory network in the Pacific white shrimp, Litopenaeus vannamei. Aquaculture 2022, 554, 738156. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J.; Zhao, L.; Fan, P.; Wu, X.; Cheng, Y.; Zeng, C. Effects of elevated ambient histamine level on survival, growth, sexual maturity and tissue histamine accumulation of the mysis Neomysis awatschensis and Neomysis japonica Nakazawa. Aquac. Int. 2012, 20, 347–356. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Y.; Cheng, W.; Li, W.; Chen, J.; Xie, L.; Xu, G. Effect of dietary histamine levels on growth performance and body pigmentation of Pelteobagrus fulvidraco. Freshw. Fish 2017, 47, 79–84. [Google Scholar]
- Cheng, Y.B.; Li, W.; Han, M.L.; Xu, G.H.; Xie, L.W.; Yin, Y.L.; Liang, J.Q. The enterohepatic protection of Pelteobagrus fulvidraco adding Lactobacillus reuteri induced by histamine. Acta Hydrobiol. Sin. 2019, 43, 94–101. [Google Scholar] [CrossRef]
- Shiozaki, K.; Nakano, T.; Yamaguchi, T.; Sato, M.; Sato, N. The protective effect of stevia extract on the gastric mucosa of rainbow trout Oncorhynchus mykiss (Walbaum) fed dietary histamine. Aquac. Res. 2004, 35, 1421–1428. [Google Scholar] [CrossRef]
- Lu, W.Q.; He, Y.Z.; Liang, Y.; Chen, X.H.; Zhai, S.W. Effects of grape seed proanthocyanidins supplementation on parameters related to liver health of American eels (Anguilla rostrata) exposed to dietary histamine stress. Feed Ind. 2020, 41, 56–60. [Google Scholar] [CrossRef]
- Matsuo, N.; Yamada, K.; Yamashita, K.; Shoji, K.; Mori, M.; Sugano, M. Inhibitory effect of tea polyphenols on histamine and leukotriene B4 release from rat peritoneal exudate cells. Vitr. Cell Dev. Biol. Anim. 1996, 32, 340–344. [Google Scholar] [CrossRef]
- Hung, L.D.; Hori, K.; Nang, H.Q.; Kha, T.; Hoa, L.T. Seasonal changes in growth rate, carrageenan yield and lectin content in the red alga Kappaphycus alvarezii cultivated in Camranh Bay, Vietnam. J. Appl. Phycol. 2009, 21, 265–272. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, K.W.; Kim, D.Y.; Park, H.H.; Kwon, I.B.; Lee, H.J. Optimal recovery of high-purity rutin crystals from the whole plant of Fagopyrum esculentum Moench (buckwheat) by extraction, fractionation, and recrystallization. Bioresour. Technol. 2005, 96, 170–912. [Google Scholar] [CrossRef]
- Afanas’ev, I.B.; Ostrachovitch, E.A.; Abramova, N.E.; Korkina, L.G. Different antioxidant activities of bioflavonoid rutin in normal and iron-overloading rats. Biochem. Pharmacol. 1995, 50, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. LWT-Food Sci. Technol. 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, H.; Poolsawat, L.; Rahman, M.M.; Xu, X.Y.; Jiang, X.R.; Li, X.Q.; Tan, H.X.; Leng, X.J. Flavonoid-enriched diets improved the growth and flesh quality of grass carp (Ctenopharyngodon idellus) based on metabolomics. Aquacult. Nutr. 2021, 27, 2514–2528. [Google Scholar] [CrossRef]
- Zhang, C.M.; Wang, S. Molecular mechanisms of neuroprotective effect of rutin. Front. Pharmacol. 2025, 16, 1599167. [Google Scholar] [CrossRef]
- Kobayashi, M.; Yamamoto, M. Nrf2–Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzym. Regul. 2006, 46, 113–140. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P.; Aggarwal, A. NF-kB transcription factor: A key player in the generation of immune response. Curr. Sci. Bangal. 2006, 90, 519–531. [Google Scholar]
- Hu, Y.; Jia, K.; Zhou, Y.T.; Chen, L.X.; Wang, F.; Yi, X.K.; Huang, Y.; Ge, Y.R.; Chen, X.M.; Liao, D.L.; et al. Rutin hydrate relieves neuroinflammation in zebrafish models: Involvement of NF-κB pathway as a central network. Fish Shellfish Immunol. 2023, 141, 109062. [Google Scholar] [CrossRef]
- Liu, A.P.; Lu, X.; Ji, Z.H.; Dong, L.X.; Jiang, J.Y.; Tian, J.; Wen, H.; Xu, Z.; Xu, G.H.; Jiang, M. Preliminary Study to Assess the Impact of Dietary Rutin on Growth, Antioxidant Capacity, and Intestinal Health of Yellow Catfish, Pelteobagrus fulvidraco. Animals 2023, 13, 3386. [Google Scholar] [CrossRef]
- Cheng, K.; Huang, Y.Q.; Wang, C.F. 1,25(OH)2D3 Inhibited Ferroptosis in Zebrafish Liver Cells (ZFL) by Regulating Keap1-Nrf2-GPx4 and NF-κB-hepcidin Axis. Int. J. Mol. Sci. 2020, 22, 11334. [Google Scholar] [CrossRef]
- Muvhulawa, N.; Dludla, P.V.; Ziqubu, K.; Mthembu, S.X.H.; Mthiyane, F.; Nkambule, B.B.; Mazibuko-Mbeje, S.E. Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature. Pharm. Res. 2022, 178, 106163. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Liu, K.; Zhu, Q.; Deng, H.; Le, Y.; Ouyang, W.; Yan, X.; Zhou, W.; Tong, J. Brain-penetration and neuron-targeting DNA nanoflowers Co-delivering miR- 124 and rutin for synergistic therapy of Alzheimer’s disease. Small 2022, 18, 2107534. [Google Scholar] [CrossRef]
- Li, F.; Zhang, L.; Zhang, X.X.; Fang, Q.M.; Xu, Y.S.; Wang, H. Rutin alleviates Pb-induced oxidative stress, inflammation and cell death via activating Nrf2/ARE system in SH-SY5Y cells. Neuro 2024, 104, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.H.; Wang, H.; Liu, B.; Shi, W.H.; Shi, J.Z.; Zhang, Z.; Xing, J.P. Rutin attenuates H2O2-induced oxidation damage and apoptosis in Leydig cells by activating PI3K/Akt signal pathways. Biomed. Pharmacother. 2017, 88, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Dubey, V.; Meena, A.; Siddiqui, L.; Maurya, A.K.; Luqman, S. Rutin restricts hydrogen peroxide-induced alterations by up-regulating the redox-system: An in vitro, in vivo and in silico study. Eur. J. Pharmacol. 2018, 835, 115–125. [Google Scholar] [CrossRef]
- Polster, B.M.; Fiskum, G. Mitochondrial mechanisms of neural cell apoptosis. J. Neurochem. 2004, 90, 1281–1289. [Google Scholar] [CrossRef]
- Ishikawa, K.; Takenaga, K.; Akimoto, M.; Koshikawa, N.; Yamaguchi, A.; Imanishi, H.; Nakada, K.; Honma, Y.; Hayashi, J.I. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 2008, 320, 661–664. [Google Scholar] [CrossRef]
- Suleiman, M.S.; Halestrap, A.P.; Griffiths, E.J. Mitochondria: A target for myocardial protection. Pharmacol. Ther. 2001, 89, 29–46. [Google Scholar] [CrossRef]
- Huang, W.W.; Zhou, X.Y. Anti-histamine effects of dipotassium glycyrrhizinate on lung fibroblasts, implicating its therapeutic mechanism for pulmonary fibrosis. J. Pharm. Pharmacol. 2022, 74, 1241–1250. [Google Scholar] [CrossRef]
- Danial, N.N.; Korsmeyer, S.J. Cell death: Critical control points. Cell 2004, 116, 205–219. [Google Scholar] [CrossRef]
- Freitas, P.A.; Oliveira, K.A.; Magalhães, L.A.; Neves, R.D.; Maia, C.S.; Silveira, L.; Lima, T.T.; Vasconcelos, R.P.; Brito, L.C.; Torres–Leal, F.L.; et al. Improvement of 2,2’-azobis(2-methylpropionamidine) dihydrochloride-induced hepatic redox imbalance in Swiss mice and hepG2 cells by rutin. J. Med. Food 2022, 25, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qian, Y.; Zhang, M.; Qiao, W. Repairing of rutin to the toxicity of combined F-53B and chromium pollution on the biofilm formed by Pseudomonas aeruginosa. J. Environ. Sci. 2023, 127, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Hanasaki, Y.; Ogawa, S.; Fukui, S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med. 1994, 16, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxid. Med. Cell. Longev. 2018, 2018, 6241017. [Google Scholar] [CrossRef]
- Zaghloul, R.A.; Abdelghany, A.M.; Samra, Y.A. Rutin and selenium nanoparticles protected against STZ-induced diabetic nephropathy in rats through downregulating Jak-2/Stat3 pathway and upregulating Nrf-2/HO-1 pathway. Eur. J. Pharm. 2022, 933, 175289. [Google Scholar] [CrossRef]
- Adefegha, S.A.; Leal, D.B.R.; de Oliveira, J.S.; Manzoni, A.G.; Bremm, J.M. Modulation of reactive oxygen species production, apoptosis and cell cycle in pleural exudate cells of carrageenan-induced acute inflammation in rats by rutin. Food Funct. 2017, 8, 4459–4468. [Google Scholar] [CrossRef]
- Singh, S.; Singh, D.K.; Meena, A.; Dubey, V.; Masood, N.; Luqman, S. Rutin protects t-butyl hydroperoxide-induced oxidative impairment via modulating the Nrf2 and iNOS activity. Phytomedicine 2019, 55, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Pês, T.S.; Saccol, E.M.; Ourique, G.M.; Londero, E.P.; Gressler, L.T.; Finamor, I.A.; Rotili, D.A.; Golombieski, J.I.; Glanzner, W.G.; Llesuy, S.F.; et al. Effect of diets enriched with rutin on blood parameters, oxidative biomarkers and pituitary hormone expression in silver catfish (Rhamdia quelen). Fish Physiol. Biochem. 2016, 42, 321–333. [Google Scholar] [CrossRef]
- Liu, S.J.; Tian, F.; Qi, D.L.; Qi, H.F.; Wang, Y.; Xu, S.X.; Zhao, K. Physiological, metabolomic, and transcriptomic reveal metabolic pathway alterations in Gymnocypris przewalskii due to cold exposure. BMC Genom. 2023, 24, 545. [Google Scholar] [CrossRef]
- Oluranti, O.I.; Alabi, B.A.; Michael, O.S.; Ojo, A.O.; Fatokun, B.P. Rutin prevents cardiac oxidative stress and inflammation induced by bisphenol A and dibutyl phthalate exposure via NRF-2/NF-kappaB pathway. Life Sci. 2021, 284, 119878. [Google Scholar] [CrossRef]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharm. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef]
- Lai, X.; Zhang, Y.; Wu, J.; Shen, M.; Yin, S.; Yan, J. Rutin attenuates oxidative stress Via PHB2-mediated mitophagy in MPP (+)-Induced SH-SY5Y cells. Neurotox. Res. 2023, 41, 242–255. [Google Scholar] [CrossRef]
- Caglayan, C.; Kandemir, F.M.; Darendelioglu, E.; Yildirim, S.; Kucukler, S.; Dortbudak, M.B. Rutin ameliorates mercuric chloride-induced hepatotoxicity in rats via interfering with oxidativestress, inflammation and apoptosis. J. Trace. Elem. Med. Biol. 2019, 56, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Baldissera, M.D.; Souza, C.F.; Viana, A.R.; da Silva, A.S.; Baldisserotto, B. Protective role of rutin dietary supplementation mediated by purinergic signaling in spleen of silver catfish Rhamdia quelen exposed to organophosphate pesticide trichlorfon. Comp. Biochem. Physiol. C 2021, 244, 109006. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Chi, X.; Jin, Y.; Wang, Y.; Huang, P.; Wu, S.; Xia, Z.; Cai, J. Dexmedetomidine inhibits TLR4/NF-kB activation and reduces acute kidney injury after orthotopic autologous liver transplantation in rats. Sci. Rep. 2015, 5, 16849. [Google Scholar] [CrossRef] [PubMed]
- Park, H.H.; Lee, S.; Son, H.Y.; Park, S.B.; Kim, M.S.; Choi, E.J.; Singh, T.S.K.; Ha, J.H.; Lee, M.G.; Kim, J.E. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch. Pharm. Res. 2008, 31, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- He, Q.Y.; Hao, H.; Zhao, K.K. Investigating the anti-inflammatory effects of rutin in carbon tetrachloride-induced hepatotoxicity: Role of TLR4/MyD88/NFκB signaling pathway modulation. Pharmacogn. Mag. 2024, 20, 107–115. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, Z.X.; Fan, L.M.; Meng, S.L.; Song, C.; Qiu, L.P.; Xu, P.; Chen, J.Z. Dietary supplementation with rutin has pro-anti-inflammatory effects in the liver of juvenile GIFT tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2017, 64, 49–55. [Google Scholar] [CrossRef]
- Poli, G.; Leonarduzzi, G.; Biasi, F.; Chiarpotto, E. Oxidative stress and cell signalling. Curr. Med. Chem. 2004, 11, 1163–1182. [Google Scholar] [CrossRef]
- Yerra, G.V.; Negi, G.; Sharma, S.S.; Kumar, A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol. 2013, 1, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Vijay, M.; Sivagami, G.; Thayalan, K.; Nalini, N. Radiosensitizing potential of rutin against human colon adenocarcinoma HT-29 cells. Bratisl Lek Listy. 2016, 117, 171–178. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, K.; Liu, A.; Peng, D.; Dong, L.; Liu, Y.; Tian, J.; Wen, H.; Luo, Y.; Guo, Z.; Jiang, M. Rutin Inhibits Histamine-Induced Cytotoxicity of Zebrafish Liver Cells via Enhancing Antioxidant and Anti-Inflammatory Properties. Fishes 2025, 10, 408. https://doi.org/10.3390/fishes10080408
Cheng K, Liu A, Peng D, Dong L, Liu Y, Tian J, Wen H, Luo Y, Guo Z, Jiang M. Rutin Inhibits Histamine-Induced Cytotoxicity of Zebrafish Liver Cells via Enhancing Antioxidant and Anti-Inflammatory Properties. Fishes. 2025; 10(8):408. https://doi.org/10.3390/fishes10080408
Chicago/Turabian StyleCheng, Ke, Apeng Liu, Di Peng, Lixue Dong, Yangyang Liu, Juan Tian, Hua Wen, Yongju Luo, Zhongbao Guo, and Ming Jiang. 2025. "Rutin Inhibits Histamine-Induced Cytotoxicity of Zebrafish Liver Cells via Enhancing Antioxidant and Anti-Inflammatory Properties" Fishes 10, no. 8: 408. https://doi.org/10.3390/fishes10080408
APA StyleCheng, K., Liu, A., Peng, D., Dong, L., Liu, Y., Tian, J., Wen, H., Luo, Y., Guo, Z., & Jiang, M. (2025). Rutin Inhibits Histamine-Induced Cytotoxicity of Zebrafish Liver Cells via Enhancing Antioxidant and Anti-Inflammatory Properties. Fishes, 10(8), 408. https://doi.org/10.3390/fishes10080408