The Impacts of Marine Heatwaves on Economic Fisheries in Adjacent Sea Regions Around Japan Under Global Warming
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Catch Data and SSTs
2.3. Marine Heatwaves
2.4. Variation Trend Analysis
2.5. Response Pattern Detection
3. Results
3.1. Physical Environment Under Climate Change
3.2. Variations in Economic Fish in Adjacent Sea Regions Around Japan
3.3. Response of the Tsushima Group to Climate Variability
3.4. Response of the Pacific Group to Climate Variability
4. Discussion
4.1. Variability in Warm Groups Under Continuous Warming SSTs
4.2. Variations in Typical Warm Species
4.3. Response of Cold Groups to Environmental Changes
4.4. Precautionary Fisheries Management Under Climate Change
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MHW | Marine Heat Wave |
GFA | Gradient Forest Analysis |
TGAM | Threshold Generalized Additive Model |
SST | Sea Surface Temperature |
KA | Kuroshio Area |
TZ | Kuroshio–Oyashio Transition Zone |
OA | Oyashio Area |
JS | Sea of Japan |
ECS | East China Sea |
JW.PC | Principal Components of the Tsushima Warm group |
JC.PC | Principal Components of the Tsushima Cold group |
PW.PC | Principal Components of the Pacific Warm group |
PC.PC | Principal Components of the Pacific Cold group |
References
- Butchart, S.H.M.; Walpole, M.; Collen, B.; Van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global Biodiversity: Indicators of Recent Declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Brander, K. Climate and current anthropogenic impacts on fisheries. Clim. Change 2013, 119, 9–21. [Google Scholar] [CrossRef]
- Issifu, I.; Alava, J.J.; Lam, V.W.Y.; Sumaila, U.R. Impact of Ocean Warming, Overfishing and Mercury on European Fisheries: A Risk Assessment and Policy Solution Framework. Front. Mar. Sci. 2022, 8, 770805. [Google Scholar] [CrossRef]
- Salinger, M.J. A brief introduction to the issue of climate and marine fisheries. Clim. Change 2013, 119, 23–35. [Google Scholar] [CrossRef]
- Belkin, I.M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 2009, 81, 207–213. [Google Scholar] [CrossRef]
- Hobday, A.J.; Oliver, E.C.J.; Gupta, A.S.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Holbrook, N.J.; Moore, P.J.; Thomsen, M.S.; Wernberg, T.; et al. Categorizing and naming marine heatwaves. Oceanography 2018, 31, 162–173. [Google Scholar] [CrossRef]
- Cheung, W.W.L.; Lam, V.W.Y.; Sarmiento, J.L.; Kearney, K.; Watson, R.; Pauly, D. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 2009, 10, 235–251. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Bruno, J.F. The impact of climate change on the world’s marine ecosystems. Science 2010, 328, 1523–1528. [Google Scholar] [CrossRef]
- Hobday, A.J.; Arrizabalaga, H.; Evans, K.; Nicol, S.; Young, J.W.; Weng, K.C. Impacts of climate change on marine top predators: Advances and future challenges. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 113, 1–8. [Google Scholar] [CrossRef]
- Ma, S.; Liu, D.; Tian, Y.; Fu, C.; Li, J.; Ju, P.; Sun, P.; Ye, Z.; Liu, Y.; Watanabe, Y. Critical transitions and ecological resilience of large marine ecosystems in the Northwestern Pacific in response to global warming. Glob. Change Biol. 2021, 27, 5310–5328. [Google Scholar] [CrossRef]
- Free, C.M.; Thorson, J.T.; Pinsky, M.L.; Oken, K.L.; Wiedenmann, J.; Jensen, O.P. Impacts of historical warming on marine fisheries production. Science 2019, 363, 979–983. [Google Scholar] [CrossRef]
- Stramma, L.; Schmidtko, S.; Levin, L.A.; Johnson, G.C. Ocean oxygen minima expansions and their biological impacts. Deep Sea Res. Part I Oceanogr. Res. Pap. 2010, 57, 587–595. [Google Scholar] [CrossRef]
- Evans, W.; Hales, B.; Strutton, P.G.; Shearman, R.K.; Barth, J.A. Failure to bloom: Intense upwelling results in negligible phytoplankton response and prolonged CO2 outgassing over the Oregon shelf. J. Geophys. Res. Ocean. 2015, 120, 1446–1461. [Google Scholar] [CrossRef]
- Benthuysen, J.A.; Tonin, H.; Brinkman, R.; Herzfeld, M.; Steinberg, C. Intrusive upwelling in the central Great Barrier Reef. J. Geophys. Res. 2016, 121, 8395–8416. [Google Scholar] [CrossRef]
- Wernberg, T.; Smale, D.A.; Tuya, F.; Thomsen, M.S.; Langlois, T.J.; de Bettignies, T.; Bennett, S.; Rousseaux, C.S. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 2013, 3, 78–82. [Google Scholar] [CrossRef]
- Di Lorenzo, E.; Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heat-wave. Nat. Clim. Change 2016, 6, 1042–1047. [Google Scholar] [CrossRef]
- Firth, L.B.; Knights, A.M.; Bell, S.S. Air temperature and winter mortality: Implications for the persistence of the invasive mussel, Perna viridis in the intertidal zone of the south-eastern United States. J. Exp. Mar. Biol. Ecol. 2011, 400, 250–256. [Google Scholar] [CrossRef]
- Garrabou, J.; Coma, R.; Bensoussan, N.; Bally, M.; Chevaldonn, P.; Cigliano, M.; Diaz, D.; Harmelin, J.G.; Gambi, M.C.; Kersting, D.K.; et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 2009, 15, 1090–1103. [Google Scholar] [CrossRef]
- Wernberg, T.; Bennett, S.; Babcock, R.C.; de Bettignies, T.; Cure, K.; Depczynski, M.; Dufois, F.; Fromont, J.; Fulton, C.J.; Hovey, R.K.; et al. Climate-driven regime shift of a temperate marine ecosystem. Science 2016, 353, 169–172. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Benthuysen, J.A.; Bindoff, N.L.; Hobday, A.J.; Holbrook, N.J.; Mundy, C.N.; Perkins-Kirkpatrick, S.E. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 2017, 8, 1610. [Google Scholar] [CrossRef]
- Salinger, J.; Hobday, A.J.; Matear, R.J.; O’Kane, T.J.; Risbey, J.S.; Dunstan, P.; Eveson, J.P.; Fulton, E.A.; Feng, M.; Plaganyi, E.E.; et al. Decadal-scale forecasting of climate drivers for marine applications. Adv. Mar. Biol. 2016, 74, 1–68. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, X.; Wang, H.; Liu, S.; He, Y. Spatial-temporal characteristics and controlling factors of global marine heatwaves in the past 40 years. Mar. Forecast. 2023, 40, 90–101. [Google Scholar] [CrossRef]
- Cavole, L.M.; Demko, A.M.; Diner, R.E.; Giddings, A.; Koester, I.; Pagniello, C.M.L.S.; Paulsen, M.; Ramirez-Valdez, A.; Schwenck, S.M.; Yen, N.K.; et al. Biological impacts of the 2013–2015 warm-water anomaly in the northeast pacific: Winners, losers, and the future. Oceanography 2016, 29, 273–285. [Google Scholar] [CrossRef]
- Ding, Q.; Chen, X.; Li, G.; Fang, Z. Catch Statistics and the Sustainable Utilization of Northwest Pacific Ocean Fishery Resources. Resour. Sci. 2013, 35, 2032–2040. [Google Scholar]
- Nielsen, J.M.; Rogers, L.A.; Brodeur, R.D.; Thompson, A.R.; Auth, T.D.; Deary, A.L.; Duffy, A.J.T.; Galbraith, M.; Koslow, J.A.; Perry, R.I. Responses of ichthyoplankton assemblages to the recent marine heatwave and previous climate fluctuations in several Northeast Pacific marine ecosystems. Glob. Change Biol. 2021, 27, 506–520. [Google Scholar] [CrossRef] [PubMed]
- Gårdmark, A.; Huss, M. Individual variation and interactions explain food web responses to global warming. Phil. Trans. R. Soc. B 2020, 375, 20190449. [Google Scholar] [CrossRef]
- Tian, Y.; Fu, C.; Yatsu, A.; Watanabe, Y.; Liu, Y.; Li, J.; Liu, D.; Pang, Y.; Cheng, J.; Ho, C.-H.; et al. Long-term variability in the fish assemblage around Japan over the last century and early warning signals of regime shifts. Fish Fish. 2023, 2, 675–694. [Google Scholar] [CrossRef]
- Tian, Y.; Uchikawa, K.; Ueda, Y.; Cheng, J. Comparison of fluctuations in fish communities and trophic structures of ecosystems from three currents around japan: Synchronies and differences. ICES J. Mar. Sci. 2014, 71, 19–34. [Google Scholar] [CrossRef]
- Yatsu, A. Review of population dynamics and management of small pelagic fishes around the Japanese archipelago. Fish. Sci. 2019, 85, 611–639. [Google Scholar] [CrossRef]
- Kun Jung, H.; Rahman, S.M.; Kang, C.K.; Park, S.Y.; Heon Lee, S.; Je Park, H.; Kim, H.W.; Il Lee, C. The influence of climate regime shifts on the marine environment and ecosystems in the East Asian Marginal Seas and their mechanisms. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 143, 110–120. [Google Scholar] [CrossRef]
- Hare, S.R.; Mantua, N.J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progr. Oceanogr. 2000, 47, 103–145. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, J. Two marine heatwave (mhw) variants under a basinwide mhw conditioning mode in the north pacific and their Atlantic associations. J. Clim. 2023, 36, 8657–8674. [Google Scholar] [CrossRef]
- Du, Y.; Feng, M.; Xu, Z.; Yin, B.; Hobday, A.J. Summer marine heatwaves in the Kuroshio-Oyashio extension region. Remote Sens. 2022, 14, 2980. [Google Scholar] [CrossRef]
- Noh, E.; Kim, J.; Jun, S.; Pak, G.; Kim, J.; Kim, H. Atmospheric pathway of marine heatwaves over the northwestern pacific. Sci. Rep. 2023, 13, 22821. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, J.; Zheng, F.; Li, F. The synergistic effect of the summer NAO and northwest pacific SST on extreme heat events in the central–eastern China. Clim. Dyn. 2023, 61, 4283–4300. [Google Scholar] [CrossRef]
- Spalding, M.D.; Fox, H.E.; Allen, G.R.; Davidson, N.; Ferdaña, Z.A.; Finlayson, M.; Halpern, B.S.; Jorge, M.A.; Lombana, A.; Lourie, S.A.; et al. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience 2007, 57, 573–583. [Google Scholar] [CrossRef]
- Ma, S.; Cheng, J.; Li, J.; Liu, Y.; Wan, R.; Tian, Y. Interannual to decadal variability in the catches of small pelagic fishes from China Seas and its responses to climatic regime shifts. Deep Sea Res. Part II Top. Stud. Oceanogr. 2019, 159, 112–129. [Google Scholar] [CrossRef]
- Smit, A.J.; Oliver, E.C.J.; Schlegel, R.W. RmarineHeatWaves: Package for the Calculation of Marine Heat Waves; R Package Version 0.17.0.; University of the Western Cape: Cape Town, South Africa, 2018; Available online: https://github.com/ajsmit/RmarineHeatWaves (accessed on 3 July 2024).
- Revelle, W. Package ‘psych’—Procedures for Psychological, Psychometric, and Personality Research. 2017. Available online: https://cran.r-project.org/web/packages/psych/index.html (accessed on 21 January 2021).
- Rodionov, S.N. Use of prewhitening in climate regime shift detection. Geophys. Res. Lett. 2006, 33, L12707. [Google Scholar] [CrossRef]
- Achim, Z.; Gabor, G. Zoo: S3 Infrastructure for Regular and Irregular Time Series. J. Stat. Softw. 2005, 14, 1–27. [Google Scholar] [CrossRef]
- Ellis, N.; Smith, S.J.; Pitcher, C.R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 2012, 93, 156–168. [Google Scholar] [CrossRef]
- Fu, C.; Xu, Y.; Bundy, A.; Grüss, A.; Coll, M.; Heymans, J.J.; Fulton, E.A.; Shannon, L.; Halouani, G.; Velez, L.; et al. Making ecological indicators management ready: Assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecol. Indic. 2019, 105, 16–28. [Google Scholar] [CrossRef]
- Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models; Chapman Hall: London, UK; New York, NY, USA, 1990. [Google Scholar]
- Ciannelli, L.; Chan, K.S.; Bailey, K.M.; Stenseth, N.C. Nonadditive effects of the environment on the survival of a large marine fish population. Ecology 2004, 85, 3418–3427. [Google Scholar] [CrossRef]
- Casini, M.; Hjelm, J.; Molinero, J.C.; Lovgren, J.; Cardinale, M.; Bartolino, V.; Belgrano, A.; Kornilovs, G. Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 197–202. [Google Scholar] [CrossRef]
- Puerta, P.; Ciannelli, L.; Rykaczewski, R.R.; Opiekun, M.; Litzow, M.A. Do Gulf of Alaska fish and crustacean populations show synchronous non-stationary responses to climate? Prog. Oceanogr. 2019, 175, 161–170. [Google Scholar] [CrossRef]
- Kang, Y.S.; Jung, S.; Zuenko, Y.; Choi, I.; Dolganova, N. Regional differences in the response of mesozooplankton to oceanographic regime shifts in the northeast Asian marginal seas. Prog. Oceanogr. 2012, 97–100, 120–134. [Google Scholar] [CrossRef]
- Wang, L.; Hua, C.; Zhu, Q.; Li, F. Review on the response of small pelagic fishery resources in the North Pacific to climate-ocean changes. J. Fish. Sci. China 2020, 27, 1379–1392. [Google Scholar]
- Liu, D.; Tian, Y.; Ma, S.; Li, J.; Sun, P.; Ye, Z.; Fu, C.; Lan, K.; Zhou, S. Long-Term Variability of Piscivorous Fish in China Seas Under Climate Change with Implication for Fisheries Management. Front. Mar. Sci. 2021, 8, 581952. [Google Scholar] [CrossRef]
- Litzow, M.A.; Mueter, F.J.; Hobday, A.J. Reassessing regime shifts in the North Pacific: Incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability. Glob. Change Biol. 2014, 20, 38–50. [Google Scholar] [CrossRef]
- Yang, T.; Liu, X.; Han, Z. Predicting the Effects of Climate Change on the Suitable Habitat of Japanese Spanish Mackerel (Scomberomorus niphonius) Based on the Species Distribution Model. Front. Mar. Sci. 2022, 9, 927790. [Google Scholar] [CrossRef]
- Tian, Y.; Kidokoro, H.; Watanabe, T.; Iguchi, N. The late 1980s regime shift in the ecosystem of Tsushima warm current in the Japan/East Sea: Evidence from historical data and possible mechanisms. Prog. Oceanog. 2008, 77, 127–145. [Google Scholar] [CrossRef]
- Itoh, S.; Yasuda, I.; Nishikawa, H.; Sasaki, H.; Sasai, Y. Transport and environmental temperature variability of eggs and larvae of the Japanese anchovy (Engraulis japonicus) and Japanese sardine (Sardinops melanostictus) in the western north pacific estimated via numerical particle-tracking experiments. Fish. Oceanogr. 2009, 18, 118–133. [Google Scholar] [CrossRef]
- Nishikawa, H.; Yasuda, I.; Itoh, S. Impact of winter-to-spring environmental variability along the Kuroshio jet on the recruitment of Japanese sardine (Sardinops melanostictus). Fish. Oceanogr. 2011, 20, 570–582. [Google Scholar] [CrossRef]
- Takasuka, A.; Oozeki, Y.; Kubota, H.; Lluch-Cota, S.E. Contrasting spawning temperature optima: Why are anchovy and sardine regime shifts synchronous across the North Pacific? Prog. Oceanogr. 2008, 77, 225–232. [Google Scholar] [CrossRef]
- Nakayama, S.; Takasuka, A.; Ichinokawa, M.; Okamura, H. Climate change and interspecific interactions drive species alternations between anchovy and sardine in the western North Pacific: Detection of causality by convergent cross mapping. Fish. Oceanogr. 2018, 27, 312–322. [Google Scholar] [CrossRef]
- Lewis, S.A.; Stortini, C.H.; Boyce, D.G.; Stanley, R.R.E. Climate change, species thermal emergence, and conservation design: A case study in the Canadian northwest Atlantic. Facets 2023, 8, 1–16. [Google Scholar] [CrossRef]
- Chaikin, S.; Dubiner, S.; Belmaker, J.; MacNeil, A. Cold-water species deepen to escape warm water temperatures. Glob. Ecol. Biogeogr. 2022, 31, 75–88. [Google Scholar] [CrossRef]
- Franco, B.C.; Defeo, O.; Piola, A.R.; Barreiro, M.; Yang, H.; Ortega, L.; Gianelli, I.; Castello, J.P.; Vera, C.S.; Buratti, C.C.; et al. Climate change impacts on the atmospheric circulation, ocean, and fisheries in the southwest South Atlantic Ocean: A review. Clim. Change 2020, 162, 2359–2377. [Google Scholar] [CrossRef]
- Morato, T.; González, I.J.; Dominguez, C.C.; Wei, C.; Davies, A.; Sweetman, A.K.; Taranto, G.H.; Beazley, L.; García, A.A.; Grehan, A.; et al. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Glob. Change Biol. 2020, 26, 2181–2202. [Google Scholar] [CrossRef]
- Hidalgo, M.; Rouyer, T.; Molinero, J.C.; Massutí, E.; Moranta, J.; Guijarro, B.; Stenseth, N.C. Synergistic effects of fishing-induced demographic changes and climate variation on fish population dynamics. Mar. Ecol. Prog. Ser. 2011, 426, 1–12. [Google Scholar] [CrossRef]
- Kleisner, K.M.; Fogarty, M.J.; McGee, S.; Hare, J.A.; Moret, S.; Perretti, C.T.; Saba, V.S. Marine species distribution shifts on the U.S. Northeast Continental Shelf under continued ocean warming. Prog. Oceanogr. 2017, 153, 24–36. [Google Scholar] [CrossRef]
- Kawauchi, Y.; Yagi, Y.; Yano, T.; Fujiwara, K. Multi-decadal distribution changes of commercially important demersal species in the central-western Sea of Japan based on a multi-species spatiotemporal model. Reg. Stud. Mar. Sci. 2023, 61, 102899. [Google Scholar] [CrossRef]
- Kakehi, S.; Narimatsu, Y.; Okamura, Y.; Yagura, A.; Ito, S. Bottom temperature warming and its impact on demersal fish off the Pacific coast of northeastern Japan. Mar. Ecol. Prog. Ser. 2021, 677, 177–196. [Google Scholar] [CrossRef]
- Li, L.; Zhao, L.; Fu, J.; Sun, B.; Liu, C. Predicting the habitat suitability for populations of Pacific cod under different climate change scenarios considering intraspecific genetic variation. Ecol. Indic. 2022, 142, 109248. [Google Scholar] [CrossRef]
- Ichinokawa, M.; Okamura, H.; Kurota, H. The status of Japanese fisheries relative to fisheries around the world. ICES J. Mar. Sci. 2017, 74, 1277–1287. [Google Scholar] [CrossRef]
- Hakala, S.; Watari, S.; Uehara, S.; Akatsuka, Y.; Methot, R.; Oozeki, Y. Governance and science implementation in fisheries management in Japan as it compares to the United States. Mar. Policy 2023, 155, 105670. [Google Scholar] [CrossRef]
- Sumaila, U.R.; Cheung, W.W.L.; Lam, V.W.Y.; Pauly, D.; Herrick, S. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 2011, 1, 449–456. [Google Scholar] [CrossRef]
- Kayashima, T. A new step toward sustainable fisheries in Japan: The 2018 Amendments to the 1949 Fisheries Act and the Fisheries Cooperative Associations. Act. Mar. Policy 2025, 178, 106710. [Google Scholar] [CrossRef]
- Xing, Q.; Yu, H.; Liu, Y.; Li, J.; Tian, Y.; Bakun, A.; Cao, C.; Tian, H.; Li, W. Application of a fish habitat model considering mesoscale oceanographic features in evaluating climatic impact on distribution and abundance of Pacific saury (Cololabis saira). Prog. Oceanogr. 2022, 201, 102743. [Google Scholar] [CrossRef]
- Watanabe, Y.; Zenitani, H.; Kimra, R. Population decline of the Japanese sardine Sardinops melanostictus owing to recruitment failures. Can. J. Fish. Aquat. Sci. 1995, 52, 1609–1616. [Google Scholar] [CrossRef]
- Noto, M.; Yasuda, I. Population decline of the Japanese sardine, Sardinops melanostictus, in relation to sea surface temperature in the Kuroshio Extension. Can. J. Fish. Aquat. Sci. 1999, 56, 973–983. [Google Scholar] [CrossRef]
- Blöcker, A.M.; Gutte, H.M.; Bender, R.L.; Otto, S.A.; Sguotti, C.; Möllmann, C. Regime shift dynamics, tipping points and the success of fisheries management. Sci. Rep. 2023, 13, 289. [Google Scholar] [CrossRef] [PubMed]
- Stabeno, P.J.; Kachel, N.B.; Moore, S.E.; Napp, J.M.; Sigler, M.; Yamaguchi, A.; Zerbini, A.N. Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 65–70, 31–45. [Google Scholar] [CrossRef]
- Tian, Y.; Kidokoro, H.; Fujino, T. Interannual-decadal variability of demersal fish assemblages in the Tsushima Warm Current region of the Japan Sea: Impacts of climate regime shifts and trawl fisheries with implications for ecosystem-based management. Fish Res. 2011, 112, 140–153. [Google Scholar] [CrossRef]
Common Name of Species/Taxa | Scientific Name | Thermal Adaptability | Haibitat | |
---|---|---|---|---|
warm group | Japanese sardine | Sardinops melanostictus | Subtropical | pelagic; migratory |
Japanese jack mackerel | Trachurus japonicus | Tropical | pelagic; migratory | |
Chub mackerel | Scomber japonicus | Subtropical | pelagic; migratory | |
Blue mackerel | Scomber australasicus | Subtropical | pelagic; migratory | |
Red-eye round herring | Etrumeus teres | Subtropical | pelagic; migratory | |
Japanese anchovy | Engraulis japonics | Warm-temperate | pelagic; migratory | |
Japanese scad | Decapterus maruadsi | Tropical | pelagic; reef-associated | |
Japanese Spanish mackerel | Scomberomorus niphonius | Warm-temperate | pelagic; migratory | |
Japanese common squid | Todarodes pacificus | Warm-temperate | pelagic; migratory | |
Squid | e.g., Heterololigo bleekeri | Warm-temperate | pelagic; migratory | |
Uroteuthis edulis | ||||
Amberjack | e.g., Seriola lalandi | Subtropical | benthopelagic | |
Seriola quinqueradiata | demersal; migratory | |||
Deep-sea smelt | Glossanodon semifasciatus | Warm-temperate | benthopelagic | |
Yellow goosefish | Lophius litulon | Warm-temperate | bathydemersal | |
Splendid alfonsino | Beryx splendens | Subtropical | benthopelagic | |
Red seabream | Pagrus major | Subtropical | demersal; migratory | |
Yellowback seabream | Dentex tumifrons | Subtropical | demersal | |
Largehead hairtail | Trichiurus japonicus | Subtropical | benthopelagic | |
Lizardfish | e.g., Saurida elongata | Warm-temperate | demersal | |
Daggertooth pike conger | Muraenesox cinereus | Subtropical | demersal; migratory | |
Pomfret | e.g., Pampus argenteus | Subtropical | benthopelagic; migratory | |
Psenopsis anomala | Tropical | benthopelagic | ||
cold group | Pacific herring | Clupea pallasii | Cold-temperate | pelagic; non-migratory |
Pacific sandlance | Ammodytes personatus | Cold-temperate | demersal; migratory | |
Alaska pollock | Gadus chalcogrammus | Polar | benthopelagic; non-migratory | |
Pacific cod | Gadus macrocephalus | Boreal | demersal; migratory | |
Atka mackerel | Pleurogrammus azonus | Cold-temperate | demersal; migratory | |
Broadbanded thornyhead | Sebastolobus macrochir | Cold-temperate | bathydemersal | |
Japanese sandfish | Arctoscopus japonicus | Boreal | bathydemersal | |
Bastard halibut | Paralichthys olivaceus | Subtropical | demersal; migratory | |
Shotted halibut | Eopsetta grigorjewi | Subtropical | demersal | |
Sôhachi | Hippoglossoides pinetorum | Cold-temperate | demersal | |
Flathead flounder | Hippoglossoides dubius | Cold-temperate | demersal; migratory | |
Yellow striped flounder | Pleuronectes herzensteini | Cold-temperate | demersal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Chen, X.; Liu, B. The Impacts of Marine Heatwaves on Economic Fisheries in Adjacent Sea Regions Around Japan Under Global Warming. Fishes 2025, 10, 299. https://doi.org/10.3390/fishes10070299
Liu D, Chen X, Liu B. The Impacts of Marine Heatwaves on Economic Fisheries in Adjacent Sea Regions Around Japan Under Global Warming. Fishes. 2025; 10(7):299. https://doi.org/10.3390/fishes10070299
Chicago/Turabian StyleLiu, Dan, Xinjun Chen, and Bilin Liu. 2025. "The Impacts of Marine Heatwaves on Economic Fisheries in Adjacent Sea Regions Around Japan Under Global Warming" Fishes 10, no. 7: 299. https://doi.org/10.3390/fishes10070299
APA StyleLiu, D., Chen, X., & Liu, B. (2025). The Impacts of Marine Heatwaves on Economic Fisheries in Adjacent Sea Regions Around Japan Under Global Warming. Fishes, 10(7), 299. https://doi.org/10.3390/fishes10070299