Stable Isotope Analysis of Two Filter-Feeding Sharks in the Northwestern Pacific Ocean
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Life History Stages
2.3. Pretreatment of SIA
2.4. Stable Isotope and Trophic Position Analysis
2.4.1. Stable Isotope
2.4.2. Trophic Position
2.5. Data Analysis
3. Results
3.1. SIA for M. pelagios and R. typus: Interspecific Comparison
3.2. SIA for M. pelagios and R. typus: Intraspecific Comparison
3.2.1. M. pelagios
3.2.2. R. typus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaudo, J.J.; Heithaus, M.R. Dietary niche overlap in a nearshore elasmobranch mesopredator community. Mar. Ecol. Prog. 2011, 425, 247–260. [Google Scholar] [CrossRef]
- Barría, C.; Coll, M.; Navarro, J. Unravelling the ecological role and trophic relationships of uncommon and threatened elasmobranchs in the western Mediterranean Sea. Mar. Ecol. Prog. 2015, 539, 225–240. [Google Scholar] [CrossRef]
- Shipley, O.N.; Murchie, K.J.; Frisk, M.G.; O’Shea, O.R.; Winchester, M.M.; Brooks, E.J.; Pearson, J.; Power, M. Trophic niche dynamics of three nearshore benthic predators in The Bahamas. Hydrobiologia 2018, 813, 177–188. [Google Scholar] [CrossRef]
- Holden, M.J. Elasmobranchs. In Fish Population Dynamics; Gulland, J.A., Ed.; John Wiley & Sons Ltd: New York, NY, USA, 1977; pp. 187–215. [Google Scholar]
- King, J.R.; McFarlane, G.A. Marine fish life history strategies: Applications to fishery management. Fish. Manag. Ecol. 2003, 10, 249–264. [Google Scholar] [CrossRef]
- Davidson, L.N.; Krawchuk, M.A.; Dulvy, N.K. Why have global shark and ray landings declined: Improved management or overfishing? Fish Fish. 2016, 17, 438–458. [Google Scholar] [CrossRef]
- Pacoureau, N.; Rigby, C.L.; Kyne, P.M.; Sherley, R.B.; Winker, H.; Carlson, J.K.; Fordham, S.V.; Barreto, R.; Fernando, D.; Francis, M.P.; et al. Half a century of global decline in oceanic sharks and rays. Nature 2021, 589, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Crowder, L.; Norse, E. Essential ecological insights for marine ecosystem-based management and marine spatial planning. Mar. Policy 2008, 32, 772–778. [Google Scholar] [CrossRef]
- McLeod, K.L.; Leslie, H.M. Ecosystem Based Management for the Oceans; Island Press: Washington, DC, USA, 2009; 392p. [Google Scholar]
- Hyslop, E.J. Stomach contents analysis—A review of methods and their application. J. Fish Biol. 1980, 17, 411–429. [Google Scholar] [CrossRef]
- Lessa, R.P.; Almeida, Z. Feeding habits of the bonnethead shark, Sphyrna tiburo, from northern Brazil. Cybium 1998, 22, 383–394. [Google Scholar]
- Joyce, W.N.; Campana, S.E.; Natanson, L.J.; Kohler, N.E.; Pratt, H.L., Jr.; Jensen, C.F. Analysis of stomach contents of the porbeagle shark (Lamna nasus Bonnaterre) in the northwest Atlantic. ICES J. Mar. Sci. 2002, 59, 1263–1269. [Google Scholar] [CrossRef]
- Braccini, J.M. Feeding ecology of two high-order predators from south-eastern Australia: The coastal broadnose and the deepwater sharpnose sevengill sharks. Mar. Ecol. Prog. 2008, 371, 273–284. [Google Scholar] [CrossRef]
- Whitehead, D.A.; Murillo-Cisneros, D.; Elorriaga-Verplancken, F.R.; Hacohen-Domené, A.; De La Parra, R.; Gonzalez-Armas, R.; Galvan-Magaña, F. Stable isotope assessment of whale sharks across two ocean basins: Gulf of California and the Mexican Caribbean. J. Exp. Mar. Biol. Ecol. 2020, 527, 151359. [Google Scholar] [CrossRef]
- Feddern, M.L.; Holtgrieve, G.W.; Ward, E.J. Stable isotope signatures in historic harbor seal bone link food web-assimilated carbon and nitrogen resources to a century of environmental change. Glob. Change Biol. 2021, 27, 2328–2342. [Google Scholar] [CrossRef]
- Dedden, A.V.; Rogers, T.L. Stable isotope oscillations in whale baleen are linked to climate cycles, which may reflect changes in feeding for humpback and Southern right whales in the Southern Hemisphere. Front. Mar. Sci. 2022, 9, 832075. [Google Scholar] [CrossRef]
- Jones, J.B.; Bustamante, P.; Guillou, G.; Arkhipkin, A.I. Using stable isotope chronologies within squid gladii (Doryteuthis gahi) to evaluate dietary differences by fishing region and season. Mar. Ecol. Prog. 2023, 703, 95–108. [Google Scholar] [CrossRef]
- Peterson, B.J.; Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 1987, 18, 293–320. [Google Scholar] [CrossRef]
- DeNiro, M.J.; Epstein, S. Carbon isotopic evidence for different feeding patterns in two hyrax species occupying the same habitat. Science 1978, 201, 906–908. [Google Scholar] [CrossRef]
- DeNiro, M.J.; Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta. 1981, 45, 341–351. [Google Scholar] [CrossRef]
- France, R.L. Carbon-13 enrichment in benthic compared to planktonic algae—Foodweb implications. Mar. Ecol. Prog. Ser. 1995, 124, 307–312. [Google Scholar] [CrossRef]
- Thomas, C.J.; Cahoon, L.B. Stable isotope analyses differentiate between different trophic pathways supporting rocky-reef fishes. Mar. Ecol. Prog. Ser. 1993, 95, 19–24. [Google Scholar] [CrossRef]
- French, G.C.A.; Rizzuto, S.; Stürup, M.; Inger, R.; Barker, S.; van Wyk, J.H.; Towner, A.V.; Hughes, W.H.O. Sex, size and isotopes: Cryptic trophic ecology of an apex predator, the white shark Carcharodon carcharias. Mar. Biol. 2018, 165, 102. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Rosado, M.A.; Galván-Magaña, F.; Torres-Rojas, Y.E.; Delgado-Huertas, A.; Aguiñiga-García, S. Use of δ15N and δ13C in reconstructing the ontogenetic feeding habits of silky shark (Carcharhinus falciformis): Reassessing their trophic role in the Eastern Tropical Pacific Ocean. Environ. Biol. Fishes 2023, 106, 657–671. [Google Scholar] [CrossRef]
- Matich, P.; Heithaus, M.R.; Layman, C.A. Size-based variation in intertissue comparisons of stable carbon and nitrogen isotopic signatures of bull sharks (Carcharhinus leucas) and tiger sharks (Galeocerdo cuvier). Can. J. Fish. Aquat. Sci. 2010, 67, 877–885. [Google Scholar] [CrossRef]
- Hernández-Aguilar, S.B.; Escobar-Sánchez, O.; Galván-Magaña, F.; Abitia-Cárdenas, L.A. Trophic ecology of the blue shark (Prionace glauca) based on stable isotopes (δ13C and δ15N) and stomach content. J. Mar. Biol. Assoc. UK 2016, 96, 1403–1410. [Google Scholar] [CrossRef]
- Estupiñán-Montaño, C.; Tamburin, E.; Delgado-Huertas, A. Stable isotope evidence for movements of hammerhead sharks Sphyrna lewini, connecting two natural protected areas in the Colombian Pacific. Mar. Biodivers. 2021, 51, 74. [Google Scholar] [CrossRef]
- Fossi, M.C.; Coppola, D.; Baini, M.; Giannetti, M.; Guerranti, C.; Marsili, L.; Panti, C.; de Sabata, E.; Clò, S. Large filter feeding marine organisms as indicators of microplastic in the pelagic environment: The case studies of the Mediterranean basking shark (Cetorhinus maximus) and fin whale (Balaenoptera physalus). Mar. Environ. Res. 2014, 100, 17–24. [Google Scholar] [CrossRef]
- Croll, D.A.; Dewar, H.; Dulvy, N.K.; Fernando, D.; Francis, M.P.; Galván-Magaña, F.; Hall, M.; Heinrichs, S.; Marshall, A.; Mccauley, D.; et al. Vulnerabilities and fisheries impacts: The uncertain future of manta and devil rays. Aquat. Conserv. Mar. Freshw. 2016, 26, 562–575. [Google Scholar] [CrossRef]
- Germanov, E.S.; Marshall, A.D.; Hendrawan, I.G.; Admiraal, R.; Rohner, C.A.; Argeswara, J.; Wulandari, R.; Himawan, M.R.; Loneragan, N.R. Microplastics on the menu: Plastics pollute Indonesian manta ray and whale shark feeding grounds. Front. Mar. Sci. 2019, 6, 487857. [Google Scholar] [CrossRef]
- Compagno, L.J.V. Sharks of the World: An Annotated and Illustrated Catalogue of Shark Species Know to Date; FAO Species Catalogue for Fishery Purposes; No. 1, Vol. 2. Bullhead, Mackerel and Carpet Sharks (Heterodontiformes, Lamniformes and Orectolobiformes); FAO: Rome, Italy, 2001; 269p. [Google Scholar]
- Chen, C.T.; Liu, K.M.; Joung, S.J. Preliminary report on Taiwan’s whale shark fishery. In Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 IUCN SSC.; Fowler, S.L., Reed, T.M., Dipper, F.A., Eds.; Shark Specialist Group, IUCN: Gland, Switzerland, 2002; pp. 162–167. [Google Scholar]
- Hsu, H.H.; Joung, S.J.; Hueter, R.E.; Liu, K.M. Age and growth of the whale shark (Rhincodon typus) in the north-western Pacific. Mar. Freshw. Res. 2014, 65, 1145–1154. [Google Scholar] [CrossRef]
- Ong, J.J.; Meekan, M.G.; Hsu, H.H.; Fanning, L.P.; Campana, S.E. Annual bands in vertebrae validated by bomb radiocarbon assays provide estimates of age and growth of whale sharks. Front. Mar. Sci. 2020, 7, 188. [Google Scholar] [CrossRef]
- Clark, E.; Nelson, D.R. Young whale sharks, Rhincodon typus, feeding on a copepod bloom near La Paz, Mexico. Environ. Biol. Fishes 1997, 50, 63–73. [Google Scholar] [CrossRef]
- Nelson, J.D.; Eckert, S.A. Foraging ecology of whale sharks (Rhincodon typus) within Bahía de Los Angeles, Baja California Norte, México. Fish. Res. 2007, 84, 47–64. [Google Scholar] [CrossRef]
- Borrell, A.; Aguilar, A.; Gazo, M.; Kumarran, R.P.; Cardona, L. Stable isotope profiles in whale shark (Rhincodon typus) suggest segregation and dissimilarities in the diet depending on sex and size. Environ. Biol. Fishes 2011, 92, 559–567. [Google Scholar] [CrossRef]
- Marcus, L.; Virtue, P.; Nichols, P.D.; Ferreira, L.C.; Pethybridge, H.; Meekan, M. Stable isotope analysis of dermal tissue reveals foraging behavior of whale sharks at Ningaloo Reef, Western Australia. Front. Mar. Sci. 2019, 6, 546. [Google Scholar] [CrossRef]
- Prebble, C.; Mary, E. Residency and Trophic Ecology of Juvenile Whale Sharks (Rhincodon typus) in the Western Indian Ocean. Ph.D. Thesis, University of Southampton, Southampton, UK, 2018; 170p. [Google Scholar]
- Boldrocchi, G.; Omar, M.; Azzola, A.; Bettinetti, R. The ecology of the whale shark in Djibouti. Aquat. Ecol. 2020, 54, 535–551. [Google Scholar] [CrossRef]
- Wyatt, A.S.; Matsumoto, R.; Chikaraishi, Y.; Miyairi, Y.; Yokoyama, Y.; Sato, K.; Ohkouchi, N.; Nagata, T. Enhancing insights into foraging specialization in the world’s largest fish using a multi-tissue, multi-isotope approach. Ecol. Monogr. 2019, 89, e01339. [Google Scholar] [CrossRef]
- Taylor, L.R.; Compagno, L.J.V.; Struhsaker, P.J. Megamouth—A new species, genus, and family of lamnoid shark (Megachasma pelagios, family Megachasmidae) from the Hawaiian Islands. Proc. Calif. Acad. Sci. 1983, 43, 87–110. [Google Scholar]
- Yu, C.J.; Joung, S.J.; Hsu, H.H.; Lin, C.Y.; Hsieh, T.C.; Liu, K.M.; Yamaguchi, A. Spatial–temporal distribution of megamouth shark, Megachasma pelagios, inferred from over 250 individuals recorded in the three oceans. Animals 2021, 11, 2947. [Google Scholar] [CrossRef]
- Castro, J.I.; Clark, E.; Yano, K.; Nakaya, K. The Gross anatomy of the female reproductive tract and associated organs of the Fukuoka megamouth shark (Megachasma pelagios). In Biology of the Magamouth Shark; Yano, K., Morrissey, J.F., Yabumoto, Y., Nakaya, K., Eds.; Tokai University Press: Tokyo, Japan, 1997; pp. 115–119. [Google Scholar]
- Nakaya, K. Biology of the megamouth shark, Megachasma pelagios (Lamniformes: Megachasmidae). In Proceedings of an International Symposium, into the Unknown, Researching Mysterious Deep-Sea Animals; Okinawa Churaumi Aquarium: Okinawa, Japan, 2010; pp. 69–83. [Google Scholar]
- Nelson, D.R.; McKibben, J.N.; Strong, W.R.; Lowe, C.G.; Sisneros, J.A.; Schroeder, D.M.; Lavenberg, R.J. An acoustic tracking of a megamouth shark, Megachasma pelagios: A crepuscular vertical migrator. Environ. Biol. Fishes 1997, 49, 389–399. [Google Scholar] [CrossRef]
- Clerkin, P.J.; Arostegui, M.C.; Chiang, W.C.; Lin, S.J.; Miller, C.D.; Braun, C.D. First telemetry insights into the movements and vertical habitat use of megamouth shark (Megachasma pelagios) in the northwest Pacific. Deep Sea Res. Part I Oceanogr. Res. Pap. 2024, 212, 104385. [Google Scholar] [CrossRef]
- Duchatelet, L.; Moris, V.C.; Tomita, T.; Mahillon, J.; Sato, K.; Behets, C.; Mallefet, J. The megamouth shark, Megachasma pelagios, is not a luminous species. PLoS ONE. 2020, 15, e0242196. [Google Scholar] [CrossRef] [PubMed]
- Yano, K.; Toda, M.; Uchida, S.; Yasuzumi, F. Gross anatomy of the viscera and stomach contents of a megamouth shark, Megachasma pelagios, from Hakata Bay, Japan, with a comparison of the intestinal structure of other planktivorous elasmobranchs. In Biology of the Magamouth Shark; Yano, K., Morrissey, J.F., Yabumoto, Y., Nakaya, K., Eds.; Tokai University Press: Tokyo, Japan, 1997; pp. 105–113. [Google Scholar]
- Sawamoto, S.; Matsumoto, R. Stomach contents of a megamouth shark Megachasma pelagios from the Kuroshio Extension: Evidence for feeding on a euphausiid swarm. Plankton Benthos Res. 2012, 7, 203–206. [Google Scholar] [CrossRef]
- de Moura, J.F.; Merico, A.; Montone, R.C.; Silva, J.; Seixas, T.G.; de Oliveira Godoy, J.M.; Pierre, T.D.; Hauser-Davis, R.A.; Di Beneditto, A.P.M.; Reis, E.C.; et al. Assessment of trace elements, POPs, 210Po and stable isotopes (15N and 13C) in a rare filter-feeding shark: The megamouth. Mar. Pollut. Bull. 2015, 95, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.H.; Joung, S.J.; Liu, K.M. Fisheries, management and conservation of the whale shark Rhincodon typus in Taiwan. J. Fish. Boil. 2012, 80, 1595–1607. [Google Scholar] [CrossRef]
- Kyne, P.M.; Liu, K.M.; Simpfendorfer, C. Megachasma pelagios. In the IUCN Red List of Threatened Species; IUCN Press: Gland, Switzerland, 2019; p. e.T39338A124402302. [Google Scholar] [CrossRef]
- Arrington, D.A.; Winemiller, K.O. Preservation effects on stable isotope analysis of fish muscle. Trans. Am. 2002, 131, 337–342. [Google Scholar] [CrossRef]
- Post, D.M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 2002, 83, 703–718. [Google Scholar] [CrossRef]
- Ho, P.C.; Okuda, N.; Yeh, C.F.; Wang, P.L.; Gong, G.C.; Hsieh, C.H. Carbon and nitrogen isoscape of particulate organic matter in the East China Sea. Prog. Oceanogr. 2021, 197, 102667. [Google Scholar] [CrossRef]
- Minagawa, M.; Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Et Cosmochim. Acta 1984, 48, 1135–1140. [Google Scholar] [CrossRef]
- Jackson, A.L.; Inger, R.; Parnell, A.C.; Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 2011, 80, 595–602. [Google Scholar] [CrossRef]
- Post, D.M.; Layman, C.A.; Arrington, D.A.; Takimoto, G.; Quattrochi, J.; Montana, C.G. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 2007, 152, 179–189. [Google Scholar] [CrossRef]
- Rowat, D.; Brooks, K.; March, A.; McCarten, C.; Jouannet, D.; Riley, L.; Jeffreys, G.; Perri, M.; Vely, M.; Pardigon, B. Long-term membership of whale sharks (Rhincodon typus) in coastal aggregations in Seychelles and Djibouti. Mar. Freshw. Res. 2011, 62, 621–627. [Google Scholar] [CrossRef]
- Rohner, C.A.; Richardson, A.J.; Prebble, C.E.; Marshall, A.D.; Bennett, M.B.; Weeks, S.J.; Cliff, G.; Wintner, S.P.; Pierce, S.J. Laser photogrammetry improves size and demographic estimates for whale sharks. PeerJ 2015, 3, e886. [Google Scholar] [CrossRef] [PubMed]
- MacNeil, M.A.; Skomal, G.B.; Fisk, A.T. Stable isotopes from multiple tissues reveal diet switching in sharks. Mar. Ecol. Prog. 2005, 302, 199–206. [Google Scholar] [CrossRef]
- Marcus, L.; Virtue, P.; Nichols, P.D.; Meekan, M.G.; Pethybridge, H. Effects of sample treatment on the analysis of stable isotopes of carbon and nitrogen in zooplankton, micronekton and a filter-feeding shark. Mar. Biol. 2017, 164, 124. [Google Scholar] [CrossRef]
- Javornik, J.; Hopkins, I.I.I.J.B.; Zavadlav, S.; Levanič, T.; Lojen, S.; Polak, T.; Jerina, K. Effects of ethanol storage and lipids on stable isotope values in a large mammalian omnivore. J. Mammal. 2019, 100, 150–157. [Google Scholar] [CrossRef]
- Hussey, N.E.; MacNeil, M.A.; Olin, J.A.; McMeans, B.C.; Kinney, M.J.; Chapman, D.D.; Fisk, A.T. Stable isotopes and elasmobranchs: Tissue types, methods, applications and assumptions. J. Fish Biol. 2012, 80, 1449–1484. [Google Scholar] [CrossRef]
- Hussey, N.E.; Olin, J.A.; Kinney, M.J.; McMeans, B.C.; Fisk, A.T. Lipid extraction effects on stable isotope values (δ13C and δ15N) of elasmobranch muscle tissue. J. Exp. Mar. Bio. Ecol. 2012, 434, 7–15. [Google Scholar] [CrossRef]
- Carlisle, A.B.; Litvin, S.Y.; Madigan, D.J.; Lyons, K.; Bigman, J.S.; Ibarra, M.; Bizzarro, J.J. Interactive effects of urea and lipid content confound stable isotope analysis in elasmobranch fishes. Can. J. Fish. Aquat. Sci. 2017, 74, 419–428. [Google Scholar] [CrossRef]
- Abrantes, K.; Sheaves, M. Use of a δ13C–δ15N relationship to determine animal trophic positions in a tropical Australian estuarine wetland. Austral. Ecol. 2010, 35, 96–103. [Google Scholar] [CrossRef]
- Nakaya, K.; Matsumoto, R.; Suda, K. Feeding strategy of the megamouth shark Megachasma pelagios (Lamniformes: Megachasmidae). J. Fish. Biol. 2008, 73, 17–34. [Google Scholar] [CrossRef]
- Rohner, C.A.; Armstrong, A.J.; Pierce, S.J.; Prebble, C.E.; Cagua, E.F.; Cochran, J.E.; Berumen, M.L.; Richardson, A.J. Whale sharks target dense prey patches of sergestid shrimp off Tanzania. J. Plankton Res. 2015, 37, 352–362. [Google Scholar] [CrossRef] [PubMed]
- D’Antonio, B.; Barry, C.; Beck, A. Whale shark (Rhincodon typus) observed gulping on the seafloor at Ningaloo reef aggregation site. Mar. Freshw. Behav. Physiol. 2024, 57, 51–55. [Google Scholar] [CrossRef]
- Thums, M.; Meekan, M.; Stevens, J.; Wilson, S.; Polovina, J. Evidence for behavioural thermoregulation by the world’s largest fish. J. R. Soc. 2013, 10, 20120477. [Google Scholar] [CrossRef]
- Heyman, W.D.; Graham, R.T.; Kjerfve, B.; Johannes, R.E. Whale sharks Rhincodon typus aggregate to feed on fish spawn in Belize. Mar. Ecol. Prog. Ser. 2001, 215, 275–282. [Google Scholar] [CrossRef]
- Motta, P.J.; Maslanka, M.; Hueter, R.E.; Davis, R.L.; De la Parra, R.; Mulvany, S.L.; Habegger, M.L.; Strother, J.A.; Mara, K.R.; Gardiner, J.M.; et al. Feeding anatomy, filter-feeding rate, and diet of whale sharks Rhincodon typus during surface ram filter feeding off the Yucatan Peninsula, Mexico. Zoology 2010, 113, 199–212. [Google Scholar] [CrossRef]
- Sequeira, A.M.; Mellin, C.; Fordham, D.A.; Meekan, M.G.; Bradshaw, C.J. Predicting current and future global distributions of whale sharks. Glob. Change Biol. 2014, 20, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Cade, D.E.; Levenson, J.J.; Cooper, R.; de la Parra, R.; Webb, D.H.; Dove, A.D. Whale sharks increase swimming effort while filter feeding, but appear to maintain high foraging efficiencies. J. Exp. Biol. 2020, 223, jeb224402. [Google Scholar] [CrossRef]
- Ebert, D.A.; Dando, M.; Fowler, S. Sharks of the World: A Complete Guide; Princeton University Press: Princeton, NJ, USA, 2021; p. 607. [Google Scholar]
- Kock, A.; O’Riain, M.J.; Mauff, K.; Meÿer, M.; Kotze, D.; Griffiths, C. Residency, habitat use and sexual segregation of white sharks, Carcharodon carcharias in False Bay, South Africa. PLoS ONE 2013, 8, e55048. [Google Scholar] [CrossRef]
- Werry, J.M.; Clua, E. Sex-based spatial segregation of adult bull sharks, Carcharhinus leucas, in the New Caledonian great lagoon. Aquat. Living Resour. 2013, 26, 281–288. [Google Scholar] [CrossRef]
- Keeney, D.B.; Heupel, M.R.; Hueter, R.E.; Heist, E.J. Microsatellite and mitochondrial DNA analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea. Mol. Ecol. 2005, 14, 1911–1923. [Google Scholar] [CrossRef]
- Knip, D.M.; Heupel, M.R.; Simpfendorfer, C.A. Habitat use and spatial segregation of adult spottail sharks Carcharhinus sorrah in tropical nearshore waters. J. Fish Biol. 2012, 80, 767–784. [Google Scholar] [CrossRef] [PubMed]
- Chikaraishi, Y.; Ogawa, N.O.; Kashiyama, Y.; Takano, Y.; Suga, H.; Tomitani, A.; Miyashita, H.; Kitazato, H.; Ohkouchi, N. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 2009, 7, 740–750. [Google Scholar] [CrossRef]
- Hoen, D.K.; Kim, S.L.; Hussey, N.E.; Wallsgrove, N.J.; Drazen, J.C.; Popp, B.N. Amino acid 15N trophic enrichment factors of four large carnivorous fishes. J. Exp. Mar. Bio. Ecol. 2014, 453, 76–83. [Google Scholar] [CrossRef]
- Pinnegar, J.K.; Polunin, N.V.C. Differential fractionation of δ13C and δ15N among fish tissues: Implications for the study of trophic interactions. Funct. Ecol. 1999, 13, 225–231. [Google Scholar] [CrossRef]
- Vanderklift, M.A.; Ponsard, S. Sources of variation in consumer-diet δ 15 N enrichment: A meta-analysis. Oecologia 2003, 136, 169–182. [Google Scholar] [CrossRef]
- Dale, J.J.; Wallsgrove, N.J.; Popp, B.N.; Holland, K.N. Nursery habitat use and foraging ecology of the brown stingray Dasyatis lata determined from stomach contents, bulk and amino acid stable isotopes. Mar. Ecol. Prog. 2011, 433, 221–236. [Google Scholar] [CrossRef]
- Mucientes, G.R.; Queiroz, N.; Sousa, L.L.; Tarroso, P.; Sims, D.W. Sexual segregation of pelagic sharks and the potential threat from fisheries. Biol. Lett. 2009, 5, 156–159. [Google Scholar] [CrossRef]
- Ketchum, J.T.; Galván-Magaña, F.; Klimley, A.P. Segregation and foraging ecology of whale sharks, Rhincodon typus, in the southwestern Gulf of California. Environ. Biol. Fishes 2013, 96, 779–795. [Google Scholar] [CrossRef]
- Nielsen, J.; Christiansen, J.S.; Grønkjær, P.; Bushnell, P.; Steffensen, J.F.; Kiilerich, H.O.; Præbel, K.; Hedeholm, R. Greenland shark (Somniosus microcephalus) stomach contents and stable isotope values reveal an ontogenetic dietary shift. Front. Mar. Sci. 2019, 6, 125. [Google Scholar] [CrossRef]
- Estupiñán-Montaño, C.; Galván-Magaña, F.; Sánchez-González, A.; Elorriaga-Verplancken, F.R.; Delgado-Huertas, A.; Páez-Rosas, D. Dietary ontogeny of the blue shark, Prionace glauca, based on the analysis of δ13C and δ15N in vertebrae. Mar. Biol. 2019, 166, 101. [Google Scholar] [CrossRef]
- Wolfson, F.H. Records of seven juveniles of the whale shark Rhiniodon typus. J. Fish. Biol. 1983, 22, 647–655. [Google Scholar] [CrossRef]
- Kukuyev, E.I. The new finds in recently born individuals of the whale shark Rhiniodon typus (Rhiniodontidae) in the Atlantic Ocean. J. Ichthyol. 1995, 36, 203–205. [Google Scholar]
- Rowat, D.; Gore, M.A.; Baloch, B.B.; Islam, Z.; Ahmed, E.; Ali, Q.M.; Culloch, R.M.; Hameed, S.; Hasnain, S.A.; Hussain, B.; et al. New records of neonatal whale shark (Rhincodon typus) from the Northern Indian Ocean. Environ. Biol. Fishes 2008, 82, 215–219. [Google Scholar] [CrossRef]
- Garrick, J.A.F. Additional information on the morphology of an embryo whale shark. Proc. US Natl. Mus. 1964, 115, 10. [Google Scholar] [CrossRef]
- Taylor, J.G. Seasonal occurrence, distribution and movements of the whale shark, Rhincodon typus, at Ningaloo reef, Western Australia. Mar. Freshw. Res. 1996, 47, 637–642. [Google Scholar] [CrossRef]
- Duffy, C.A.J. Distribution, seasonality, lengths, and feeding behaviour of whale sharks (Rhincodon typus) observed in New Zealand waters. N. Z. J. Mar. Freshw. Res. 2002, 36, 565–570. [Google Scholar] [CrossRef]
Species | Groups | n | δ13C (‰) | δ15N (‰) | TP | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean ± SD | Min | Max | Mean ± SD | Min | Max | Mean ± SD | |||
M. pelagios | all | 91 | −18.14 | −14.99 | −17.20 ± 0.69 | 6.83 | 11.67 | 9.04 ± 0.90 | 1.97 | 3.39 | 2.62 ± 0.27 |
female | 54 | −18.14 | −14.99 | −17.14 ± 0.67 | 6.83 | 11.67 | 9.19 ± 0.87 | 1.97 | 3.39 | 2.66 ± 0.26 | |
male | 37 | −18.46 | −15.62 | −17.27 ± 0.71 | 6.92 | 11.05 | 8.84 ± 0.91 | 1.99 | 3.21 | 2.55 ± 0.27 | |
group I | 19 | −18.27 | −14.99 | −17.12 ± 0.69 | 7.54 | 11.67 | 9.45 ± 0.86 | 2.17 | 3.39 | 2.74 ± 0.29 | |
group II | 39 | −18.46 | −15.77 | −17.26 ± 0.62 | 7.36 | 11.05 | 9.09 ± 0.92 | 2.12 | 3.21 | 2.63 ± 0.26 | |
group III | 33 | −18.36 | −15.28 | −17.18 ± 0.65 | 6.84 | 10.14 | 8.76 ± 1.03 | 1.99 | 2.94 | 2.55 ± 0.26 | |
R. typus | all | 90 | −18.89 | −13.68 | −15.67 ± 0.78 | 5.17 | 13.01 | 9.02 ± 1.79 | 2.2 | 4.5 | 3.33 ± 0.53 |
female | 32 | −16.77 | −13.68 | −15.50 ± 0.61 | 5.17 | 11.91 | 9.33 ± 1.66 | 2.2 | 4.18 | 3.36 ± 0.49 | |
male | 58 | −18.89 | −14.36 | −15.70 ± 0.85 | 5.52 | 13.01 | 8.85 ± 1.83 | 2.3 | 4.5 | 3.28 ± 0.54 | |
group I | 33 | −17.12 | −14.73 | −15.57 ± 0.60 | 5.17 | 13.01 | 9.12 ± 2.25 | 2.2 | 4.5 | 3.36 ± 0.66 | |
group II | 47 | −18.89 | −14.69 | −15.75 ± 0.79 | 5.75 | 12.02 | 8.81 ± 1.43 | 2.37 | 4.21 | 3.27 ± 0.42 | |
group III | 10 | −17.87 | −13.68 | −15.29 ± 1.04 | 6.54 | 11.07 | 9.68 ± 1.34 | 2.60 | 3.93 | 3.52 ± 0.39 |
Species | Groups | TA | SEA | SEAc |
---|---|---|---|---|
M. pelagios | female | 9.00 | 1.85 | 1.88 |
male | 7.74 | 2.05 | 2.11 | |
group I ♀ | 5.91 | 2.92 | 3.17 | |
group I ♂ | 1.37 | 1.22 | 1.63 | |
group II ♀ | 4.33 | 1.25 | 1.30 | |
group II ♂ | 5.31 | 2.02 | 2.19 | |
group III ♀ | 5.15 | 1.86 | 2.00 | |
group III ♂ | 4.56 | 1.83 | 1.94 | |
R. typus | female | 10.87 | 2.64 | 2.72 |
male | 19.77 | 4.41 | 4.49 | |
group I ♀ | 5.87 | 2.71 | 3.01 | |
group I ♂ | 7.59 | 3.10 | 3.25 | |
group II ♀ | 4.27 | 1.69 | 1.80 | |
group II ♂ | 15.76 | 4.12 | 4.27 | |
group III ♀ | 0.82 | 0.94 | 1.41 | |
group III ♂ | 7.72 | 5.53 | 6.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.-J.; Joung, S.-J.; Hsu, H.-H.; Liu, K.-M.; Yamaguchi, A. Stable Isotope Analysis of Two Filter-Feeding Sharks in the Northwestern Pacific Ocean. Fishes 2025, 10, 249. https://doi.org/10.3390/fishes10060249
Yu C-J, Joung S-J, Hsu H-H, Liu K-M, Yamaguchi A. Stable Isotope Analysis of Two Filter-Feeding Sharks in the Northwestern Pacific Ocean. Fishes. 2025; 10(6):249. https://doi.org/10.3390/fishes10060249
Chicago/Turabian StyleYu, Chi-Ju, Shoou-Jeng Joung, Hua-Hsun Hsu, Kwang-Ming Liu, and Atsuko Yamaguchi. 2025. "Stable Isotope Analysis of Two Filter-Feeding Sharks in the Northwestern Pacific Ocean" Fishes 10, no. 6: 249. https://doi.org/10.3390/fishes10060249
APA StyleYu, C.-J., Joung, S.-J., Hsu, H.-H., Liu, K.-M., & Yamaguchi, A. (2025). Stable Isotope Analysis of Two Filter-Feeding Sharks in the Northwestern Pacific Ocean. Fishes, 10(6), 249. https://doi.org/10.3390/fishes10060249