Nitrogen Budget and the Effects of Sea Grape (Caulerpa lentillifera) Density on the Water Quality and Growth Performance of Asian Seabass (Lates calcarifer) in a Polyculture System
Abstract
1. Introduction
2. Materials and Methods
2.1. Asian Seabass Fingerlings and Sea Grapes
2.2. Experimental Design
2.3. Feeding During the Experiment
2.4. Water Quality Measurement
2.5. Sea Grape Biomass
2.6. Nitrogen Budget Calculation
2.7. Fish Growth Performance
2.8. Statistical Analysis
3. Results
3.1. Water Quality Parameters
3.2. Biomass and Growth of Sea Grapes
3.3. Growth Performance of Asian Seabass
3.4. Nitrogen Budget
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mojjada, S.K.; Divu, D.N.; Sudhakaran, P.O.; Sundaram, S.L.P.; Menon, M.; Mojjada, R.K.; Tade, M.S.; Viswambharan, V.S.; Shree, J.; Subramanian, A.; et al. An integrated techno-economic decision-support fiscal forecast model for sea cage mariculture enterprises for Asian seabass production in Indian territorial waters. Aquaculture 2024, 580, 740351. [Google Scholar] [CrossRef]
- Razzak, M.; Sukhan, Z.; Alam, M.; Al-Amin, M.; Sikder, M.; Hossen, S. Optimization of stocking density of seabass (Lates calcalifer) in brackish-and freshwater earthen ponds under monoculture in south-west coastal zone of Bangladesh. Bangladesh J. Fish. Res. 2019, 31, 305–312. [Google Scholar]
- Viji, S.; Purushothaman, K.; Sridatta, P.S.R.; Jerry, D.R. Transcriptomic analysis of gill and kidney from Asian seabass (Lates calcarifer) acclimated to different salinities reveals pathways involved with euryhalinity. Genes 2020, 11, 733. [Google Scholar] [CrossRef] [PubMed]
- Domingos, J.A.; Goldsbury, J.A.; Gomes, G.B.; Smith, B.G.; Tomlinson, C.; Bade, T.; Sander, C.; Forrester, J.; Jerry, D.R. Genotype by environment interactions of harvest growth traits for barramundi (Lates calcarifer) commercially farmed in marine vs. freshwater conditions. Aquaculture 2021, 532, 735989. [Google Scholar] [CrossRef]
- Stathopoulou, P.; Berillis, P.; Valhos, N.; Nikouli, E.; Kormas, K.A.; Levizou, E.; Katsoulas, N.; Mente, E. Freshwater-adapted seabass Dicentrarchus labrax feeding frequency impact in a lettuce Lactuca sativa aquaponics system. PeerJ 2021, 9, e11522. [Google Scholar] [CrossRef]
- Muangrerk, C.; Uchuwittayakul, A.; Srisapoome, P. Identification, expression and antimicrobial functional analysis of interleukin-8 (IL-8) in response to streptococcus iniae and Flavobacterium covae in Asian seabass (Lates calcarifer Bloch, 1790). Animal 2024, 14, 475. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- Catacutan, M.R.; Coloso, R.M. Effect of dietary protein to energy ratios on growth, survival, and body composition of juvenile Asian seabass, Lates calcarifer. Aquaculture 1995, 131, 125–133. [Google Scholar] [CrossRef]
- Hua, K.; Bureau, D.P. Modelling digestible phosphorus and nitrogen waste output in fish and shrimp aquaculture. Aquaculture 2016, 464, 73–83. [Google Scholar] [CrossRef]
- Chen, D.; Tian, C.; Yuan, H.; Zhai, W.; Chang, Z. Nitrogen removal performance and microbial community structure of IMTA ponds (Apostistius japonicus-Penaeus japonicus-Ulva). Microb. Ecol. 2024, 87, 82. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, J.; Du, C.; Yang, Q.; Huang, J.; Wang, Z.; Xu, J.; Zhang, M. Relationship between Nitrogen Dynamics and Key Microbial Nitrogen-Cycling Genes in an Intensive Freshwater Aquaculture Pond. Microorganisms 2024, 12, 266. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Dong, M.; Lu, H.; Cai, Z.; Ge, M.; Xing, J.; Huang, H.; Huang, Y.; Sun, G.; Zhou, S.; et al. Explaining nitrogen turnover in sediments and water through variations in microbial community composition and potential function. Chemosphere 2023, 344, 140379. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.V.S.; Mantri, V.A. Indian seaweed resources and sustainable utilization: Scenario at the dawn of a new century. Curr. Sci. 2013, 91, 164–174. [Google Scholar]
- Chopin, T.; Robinson, S.M.C.; Troell, M.; Neori, A.; Bushmann, A.H.; Fang, J. Multitrophic integration for sustainable marine aquaculture. In The Encyclopedia Ecolological Engineering, 3rd ed.; Jørgensen, S.E., Fath, B.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 2463–2475. [Google Scholar] [CrossRef]
- Barrington, K.; Chopin, T.; Robinson, S. Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In Integrated Mariculture: A Global Review; Soto, D., Ed.; FAO Fisheries and Aquaculture Technical Paper 529; FAO: Rome, Italy, 2010; pp. 7–46. [Google Scholar]
- Chopin, T.; Cooper, J.A.; Reid, G.; Cross, S.; Moore, C. Open water integrated multi-trophic aquaculture: Environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Rev. Aquac. 2012, 4, 209–220. [Google Scholar] [CrossRef]
- Hughes, A.D.; Black, K.D. Going beyond the search for solutions: Understanding trade-offs in European integrated multi-trophic aquaculture development. Aquacult. Environ. Interact. 2016, 8, 191–199. [Google Scholar] [CrossRef]
- Buck, B.H.; Troell, M.F.; Krause, G.; Angel, D.L.; Grote, B.; Chopin, T. State of the art and challenges for offshore integrated multi-trophic aquaculture (IMTA). Front. Mar. Sci. 2018, 5, 165. [Google Scholar] [CrossRef]
- Famà, P.; Wysor, B.; Kooistra, W.H.C.F.; Zuccarello, G.C. Molecular phylogeny of the genus Caulerpa (Caulerpales, Chlorophyta) inferred from chloroplast tufA gene. J. Phycol. 2002, 38, 1040–1050. [Google Scholar] [CrossRef]
- Anh, N.T.N.; Murungu, A.K.; Khanh, L.V.; Hai, T.N. Polyculture of sea grape (Caulerpa lentillifera) with different stocking densities of whiteleg shrimp (Litopenaeus vannamei): Effects on water quality, shrimp performance and sea grape proximate composition. Algal Res. 2022, 67, 102845. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Y.; Liu, H.; Liu, S.; Qin, Y. Advances in cultivation, wastewater treatment application, bioactive components of Caulerpa lentillifera and their biotechnological applications. PeerJ 2019, 7, e6118. [Google Scholar] [CrossRef]
- Marungrueng, K.; Pavasant, P. Removal of basic dye (Astrazon Blue FGRL) using macroalga Caulerpa lentillifera. J. Environ. Manag. 2006, 78, 268–274. [Google Scholar] [CrossRef]
- Paul, N.A.; Nys, R.d. Promise and pitfalls of locally abundant seaweeds as biofilters for integrated aquaculture. Aquaculture 2008, 28, 49–55. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F.; Wang, Q.; Dong, S.; Tian, X. A comparative study of the nutrient uptake and growth capacities of seaweeds Caulerpa lentillifera and Gracilaria lichenoides. J. Appl. Phycol. 2016, 28, 3083–3089. [Google Scholar] [CrossRef]
- Saputra, N.R.; Sukoso, S.; Kartikaningsih, H. A solid waste pond tiger shrimp (Peneaus monodon) as fertilizer for Caulerpa lentillifera. J. Exp. Life Sci. 2017, 7, 17–21. [Google Scholar] [CrossRef]
- Dobson, G.T.; Duy, N.D.Q.; Paul, N.A.; Southgate, P.C. Assessing potential for integrating sea grape (Caulerpa lentillifera) culture with sandfish (Holothuria scabra) and Babylon snail (Babylonia areolata) co-culture. Aquaculture 2020, 522, 735153. [Google Scholar] [CrossRef]
- Ly, K.V.; Murungu, D.K.; Nguyen, D.P.; Nguyen, N.A.T. Effects of different densities of sea grape (Caulerpa lentillifera) on water quality, growth, and survival of the whiteleg shrimp (Litopenaeus vannamei) in a polyculture system. Fishes 2021, 6, 19. [Google Scholar] [CrossRef]
- Cotou, E.; Miliou, H.; Chatzoglou, E.; Schoina, E.; Politakis, N.; Kogiannou, D.; Fountoulaki, E.; Androni, A.; Konstantinopoulou, A.; Assimakopoulou, G.; et al. Growth performance and environmental quality indices and biomarkers in a co-culture of the European seabass with filter and deposit feeders: A case study of an IMTA system. Fishes 2024, 9, 69. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C.S. Pond Aquaculture Water Quality Management; Kluwer Academic Publishers: Boston, MA, USA, 1998. [Google Scholar] [CrossRef]
- Sukhsangchan, R.; Phaksopa, J.; Uchuwittayakul, A.; Chou, C.-C.; Srisapoome, P. Effect of zinc oxide nanoparticles (ZnO NPs) on growth, immune responses, and histopathological alterations in Asian seabass (Lates calcarifer, Bloch 1790) under low-salinity conditions. Animals 2024, 14, 2737. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Baird, R.B., Eaton, A.D., Rice, E.W., Eds.; American Public Health Association: Washington, DC, USA, 2017; Volume 10, ISBN 978-0-87553-287-5. [Google Scholar]
- APHA; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Shokita, S.; Kakazu, K.; Tomori, A.; Toma, T. Mariculture of seaweeds. In Aquaculture in Tropical Area; Midori Shobo Co., Ltd.: Tokyo, Japan, 1991; pp. 31–95. [Google Scholar]
- Chaitanawisuti, N.; Santhaweesuk, W.; Kritsanapuntu, S. Performance of the seaweeds Gracilaria salicornia and Caulerpa lentillifera as biofilters in a hatchery-scale recirculating aquaculture system for juvenile spotted babylons (Babylonia areolata). Aquac. Int. 2011, 19, 1139–1150. [Google Scholar] [CrossRef]
- Egea, I.; Estrada, Y.; Faura, C.; Egea-Fernández, J.M.; Bolarín, M.C.; Flores, F.B. Salt-tolerant alternative crops as sources of quality food to mitigate the negative impact of salinity on agricultural production. Front. Plant Sci. 2023, 14, 1092885. [Google Scholar] [CrossRef]
- Phillips, J.C.; Hurd, C.L. Nitrogen ecophysiology of intertidal seaweeds from New Zealand: N uptake, storage, and utilisation in relation to shore position and season. Mar. Ecol. Prog. Ser. 2003, 264, 31–48. [Google Scholar]
- Van Osch, S.; Hynes, S.; Freeman, S.; O’Higgins, T. Estimating the public’s preferences for sustainable aquaculture: A country comparison. Sustainability 2019, 11, 569. [Google Scholar] [CrossRef]
- Nathawat, N.S.; Kuhad, M.S.; Goswami, C.L.; Patel, A.L.; Kumar, R. Nitrogen-metabolizing enzymes: Effect of nitrogen sources and saline irrigation. J. Plant Nutr. 2005, 28, 1089–1101. [Google Scholar] [CrossRef]
- Burkholder, J.M.; Tomasko, D.A.; Touchette, B.W. Seagrasses and eutrophication. J. Exp. Mar. Biol. Ecol. 2007, 350, 46–72. [Google Scholar] [CrossRef]
Parameters/Treatments | T1 (Control) | T2 (A. Seabass + 100 g) | T3 (A. Seabass + 200 g) | T4 (A. Seabass + 400 g) | F | p-Value |
---|---|---|---|---|---|---|
DO (mg/L) | 7.08 ± 0.28 | 7.11 ± 0.28 | 7.09 ± 0.28 | 7.09 ± 0.28 | 0.04 | >0.05 ns |
temp (°C) | 31.63 ± 0.93 | 31.63 ± 0.88 | 31.68 ± 0.91 | 31.64 ± 0.85 | 0.02 | >0.05 ns |
Salinity (PPT) | 30.14 ± 0.89 | 30.13 ± 0.83 | 30.21 ± 0.87 | 30.16 ± 0.85 | 0.05 | >0.05 ns |
pH | 7.53 ± 0.50 | 7.60 ± 0.40 | 7.62 ± 0.39 | 7.66 ± 0.40 | 0.48 | >0.05 ns |
TAN (mg/L) | 1.20 ± 0.97 a | 0.76 ± 0.86 b | 0.71 ± 0.75 b | 0.63 ± 0.65 b | 2.92 | <0.05 |
NO2–N (mg/L) | 1.52 ± 1.37 a | 2.26 ± 1.22 b | 2.30 ± 1.16 b | 2.25 ± 1.11 b | 2.80 | <0.05 |
NO3–N (mg/L) | 1.30 ± 0.62 a | 1.83 ± 0.70 b | 1.75 ± 0.65 b | 1.79 ± 0.66 b | 4.22 | <0.05 |
ALK (mg/L) | 106.39 ± 16.73 | 104.28 ± 14.77 | 100.76 ± 13.73 | 99.39 ± 13.46 | 1.42 | >0.05 ns |
TSS (mg/L) | 0.09 ± 0.02 a | 0.07 ± 0.01 b | 0.07 ± 0.01 b | 0.05 ± 0.01 b | 31.96 | <0.05 |
Turbidity (NTU) | 7.69 ± 5.32 a | 3.12 ± 1.90 b | 2.58 ± 1.67 b | 2.40 ± 1.26 b | 20.87 | <0.05 |
TKN (mg N/L) | 13.16 ± 1.69 | 12.87 ± 2.27 | 11.92 ± 2.79 | 10.40 ± 2.00 | 1.80 | >0.05 ns |
Parameters/Treatments | T1 (Control) | T2 (A. Seabass + 100 g) | T3 (A. Seabass + 200 g) | T4 (A. Seabass + 400 g) | F | p-Value |
---|---|---|---|---|---|---|
Initial biomass (g) | – | 100 ± 0.00 | 200 ± 0.00 | 400 ± 0.00 | – | – |
Final biomass (g) | – | 161.40 ± 15.63 a | 240.23 ± 5.97 b | 504.30 ± 22.40 c | 297.098 | <0.05 |
BI (g) | – | 61.40 ± 17.47 a | 40.23 ± 6.67 a | 104.30 ± 25.04 b | 9.814 | <0.05 |
BI (%) | – | 61.40 ± 17.47 a | 20.12 ± 3.34 b | 26.08 ± 6.26 b | 12.600 | <0.05 |
RGR (% Day−1) | – | 2.05 ± 0.58 a | 0.67 ± 0.11 b | 0.87 ± 0.21 b | 12.590 | <0.05 |
Parameter/Treatments | T1 (Control) | T2 (A. Seabass + 100 g) | T3 (A. Seabass + 200 g) | T4 (A. Seabass + 400 g) | F | p-Value |
---|---|---|---|---|---|---|
IW (g fish) | 25.25 ± 3.90 | 24.65 ± 3.34 | 24.20 ± 3.24 | 23.55 ± 2.75 | 0.91 | >0.05 ns |
FW (g fish) | 37.97 ± 2.45 | 41.37 ± 1.89 | 38.57 ± 1.66 | 39.22 ± 4.20 | 0.88 | >0.05 ns |
WG (g fish) | 12.72 ± 1.56 | 16.42 ± 1.08 | 14.37 ± 0.43 | 15.67 ± 3.30 | 2.15 | >0.05 ns |
ADG (g day−1) | 0.42 ± 0.05 | 0.55 ± 0.04 | 0.48 ± 0.01 | 0.52 ± 0.11 | 2.04 | >0.05 ns |
SGRW (%g fish day−1) | 1.22 ± 0.07 | 1.30 ± 0.07 | 1.25 ± 0.01 | 1.25 ± 0.05 | 0.88 | >0.05 ns |
Survival (%) | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | - | - |
Production (g) | 759.33 ± 49.08 | 827.44 ± 37.87 | 771.33 ± 33.29 | 784.33 ± 83.94 | 0.88 | >0.05 ns |
FCR | 1.84 ± 0.05 | 1.77 ± 0.05 | 1.80 ± 0.04 | 1.81 ± 0.04 | 1.26 | >0.05 ns |
Parameter/Treatment | T1 (Control) | % | T2 (A. Seabass + 100 g) | % | T3 (A. Seabass + 200 g) | % | T4 (A. Seabass + 400 g) | % |
---|---|---|---|---|---|---|---|---|
Gain | ||||||||
Fish | 54.29 | 34.79 | 53 | 32.83 | 52.03 | 33.33 | 50.63 | 31.42 |
Feed | 101.58 | 65.09 | 106.47 | 65.95 | 100.94 | 64.66 | 103.22 | 64.05 |
Inflow | 0.19 | 0.12 | 0.19 | 0.12 | 0.19 | 0.12 | 0.19 | 0.12 |
Sea grapes | 0.00 | 0.00 | 1.78 | 1.10 | 2.96 | 1.90 | 7.12 | 4.42 |
Total | 156.06 | 100.00 | 161.44 | 100.00 | 156.12 | 100.00 | 161.16 | 100.00 |
Losses | ||||||||
Fish | 74.57 | 47.78 | 78.77 | 48.79 | 76.44 | 48.96 | 77.89 | 48.33 |
Outflow | 2.28 | 1.46 | 2.30 | 1.42 | 1.85 | 1.18 | 1.89 | 1.17 |
Sea grapes | 0.00 | 0.00 | 2.32 | 1.44 | 3.15 | 2.02 | 8.42 | 5.22 |
Others * | 79.21 | 50.76 | 78.05 | 48.35 | 74.68 | 47.83 | 72.96 | 45.27 |
Total | 156.06 | 100.00 | 161.44 | 100.00 | 156.12 | 100.00 | 161.16 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jongjaraunsuk, R.; Khaodon, K.; Rermdumri, S.; Intarachart, A.; Taparhudee, W. Nitrogen Budget and the Effects of Sea Grape (Caulerpa lentillifera) Density on the Water Quality and Growth Performance of Asian Seabass (Lates calcarifer) in a Polyculture System. Fishes 2025, 10, 163. https://doi.org/10.3390/fishes10040163
Jongjaraunsuk R, Khaodon K, Rermdumri S, Intarachart A, Taparhudee W. Nitrogen Budget and the Effects of Sea Grape (Caulerpa lentillifera) Density on the Water Quality and Growth Performance of Asian Seabass (Lates calcarifer) in a Polyculture System. Fishes. 2025; 10(4):163. https://doi.org/10.3390/fishes10040163
Chicago/Turabian StyleJongjaraunsuk, Roongparit, Kanokwan Khaodon, Saroj Rermdumri, Alongot Intarachart, and Wara Taparhudee. 2025. "Nitrogen Budget and the Effects of Sea Grape (Caulerpa lentillifera) Density on the Water Quality and Growth Performance of Asian Seabass (Lates calcarifer) in a Polyculture System" Fishes 10, no. 4: 163. https://doi.org/10.3390/fishes10040163
APA StyleJongjaraunsuk, R., Khaodon, K., Rermdumri, S., Intarachart, A., & Taparhudee, W. (2025). Nitrogen Budget and the Effects of Sea Grape (Caulerpa lentillifera) Density on the Water Quality and Growth Performance of Asian Seabass (Lates calcarifer) in a Polyculture System. Fishes, 10(4), 163. https://doi.org/10.3390/fishes10040163