Inter- and Intra-Estuarine Comparison of the Feeding Ecology of Keystone Fish Species in the Elbe and Odra Estuaries
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection of Sample Material
2.3. Analysis of Fish Diet
2.4. Calculation of Parameters in Feeding Ecology
2.5. Statistical Analysis
3. Results
3.1. Food Composition and Diet Breadth
3.2. Spatio-Temporal Variability of Food Composition Within the Estuaries
3.2.1. Pikeperch
3.2.2. Smelt
3.2.3. Ruffe
3.2.4. Flounder
3.3. Dietary Overlap in the Elbe and Odra Estuaries
4. Discussion
4.1. Spatial Feeding Variability
4.2. Temporal Feeding Dynamics
4.3. Dietary Overlap
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magath, V.; Abraham, R.; Helbing, U.; Thiel, R. Link between estuarine fish abundances and prey choice of the great cormorant Phalacrocorax carbo (Aves, Phalacrocoracidae). Hydrobiologia 2016, 763, 313–327. [Google Scholar]
- Courrat, A.; Lobry, J.; Nicolas, D.; Laffargue, P.; Amara, R.; Lepage, M.; Girardin, M.; Le Pape, O. Anthropogenic disturbance on nursery function of estuarine areas for marine species. Estuar. Coast. Shelf Sci. 2009, 81, 179–190. [Google Scholar] [CrossRef]
- Deegan, L.A.; Garritt, R.H. Evidence for spatial variability in estuarine food webs. Mar. Ecol. Prog. Ser. 1997, 147, 31–47. [Google Scholar]
- Hughes, M.G.; Harris, P.T.; Hubble, T.C.T. Dynamics of the turbidity maximum zone in a micro-tidal estuary: Hawkesbury River, Australia. Sedimentology 1998, 45, 397–410. [Google Scholar]
- Whitfield, A.K.; Elliott, M. Fishes as indicators of environmental and ecological changes within estuaries: A review of progress and some suggestions for the future. J. Fish Biol. 2002, 61, 229–250. [Google Scholar] [CrossRef]
- Borja, A.; Franco, J.; Valencia, V.; Bald, J.; Muxika, I.; Belzunce, M.J.; Solaun, O. Implementation of the European water framework directive from the Basque country (northern Spain): A methodological approach. Mar. Pollut. Bull. 2004, 48, 209–218. [Google Scholar]
- Elliott, M.; Whitfield, A.K. Challenging paradigms in estuarine ecology and management. Estuar. Coast. Shelf Sci. 2011, 94, 306–314. [Google Scholar]
- Day, J.W.; Crump, B.C.; Kemp, W.M.; Yáñez-Arancibia, A. Estuarine Ecology; Wiley: Hoboken, NJ, USA, 2013; p. 564. [Google Scholar]
- Blaber, S. Fishes and fisheries in tropical estuaries: The last 10 years. Estuar. Coast. Shelf Sci. 2013, 135, 57–65. [Google Scholar]
- Marshall, S.; Elliott, M. Environmental Influences on the Fish Assemblage of the Humber Estuary, U.K. Estuar. Coast. Shelf Sci. 1998, 46, 175–184. [Google Scholar]
- Dolbeth, M.; Martinho, F.; Viegas, I.; Cabral, H.; Pardal, M.A. Estuarine production of resident and nursery fish species: Conditioning by drought events? Estuar. Coast. Shelf Sci. 2008, 78, 51–60. [Google Scholar] [CrossRef]
- Fowler, M.S. The form of direct interspecific competition modifies secondary extinction patterns in multi-trophic food webs. Oikos 2013, 122, 1730–1738. [Google Scholar]
- Cattrijsse, A.; Codling, I.; Conides, A.; Duhamel, S.; Gibson, R.N.; Hostens, K.; Mathieson, S.; McLusky, D.S. Estuarine Development/Habitat Restoration and Re-Creation and their Role in Estuarine Management for the Benefit of Aquatic Resources. In Fishes in Estuaries; Elliott, M., Hemingway, K., Eds.; 2002; pp. 266–321. [Google Scholar] [CrossRef]
- Gillanders, B.; Kingsford, M. Impact of Changes in Flow of Freshwater on Estuarine and Open Coastal Habitats and the Associated Organisms. Oceanogr. Mar. Biol. 2002, 40, 233–309. [Google Scholar]
- Polte, P.; Gröhsler, T.; Kotterba, P.; von Nordheim, L.; Moll, D.; Santos, J.; Rodriguez-Tress, P.; Zablotski, Y.; Zimmermann, C. Reduced Reproductive Success of Western Baltic Herring (Clupea harengus) as a Response to Warming Winters. Front. Mar. Sci. 2021, 8, 589242. [Google Scholar]
- Gibson, J. Estuarine Sedimentation and Erosion Within a Fjord-Head Delta: Squamish River, British Columbia. Master’s Thesis, Simon Fraser University, Burnaby, BC, Canada, 1994. [Google Scholar]
- Able, K.W.; Manderson, J.P.; Studholme, A.L. Habitat quality for shallow water fishes in an urban estuary: The effects of man-made structures on growth. Mar. Ecol. Prog. Ser. 1999, 187, 227–235. [Google Scholar]
- Cabral, H.N.; Costa, M.J.; Salgado, J.P. Does the Tagus estuary fish community reflect environmental changes? Clim. Res. 2001, 18, 119–126. [Google Scholar]
- Gilliers, C.; Le Pape, O.; Désaunay, Y.; Morin, J.; Guérault, D.; Amara, R. Are growth and density quantitative indicators of essential fish habitat quality? An application to the common sole Solea solea nursery grounds. Estuar. Coast. Shelf Sci. 2006, 69, 96–106. [Google Scholar]
- Le Pape, O.; Gilliers, C.; Riou, P.; Morin, J.; Amara, R.; Désaunay, Y. Convergent signs of degradation in both the capacity and the quality of an essential fish habitat: State of the Seine estuary (France) flatfish nurseries. Hydrobiologia 2007, 588, 225–229. [Google Scholar]
- Thiel, R. Die Fischfauna europäischer Ästuare. Eine Strukturanalyse mit Schwerpunkt Tideelbe. Abh. Des Naturwissenschaftlichen Ver. Hambg. 2011, 43, 1–157. [Google Scholar]
- Theilen, J.; Sarrazin, V.; Hauten, E.; Koll, R.; Möllmann, C.; Fabrizius, A.; Thiel, R. Environmental factors shaping fish fauna structure in a temperate mesotidal estuary: Periodic insights from the Elbe estuary across four decades. Estuar. Coast. Shelf Sci. 2025, 318, 109208. [Google Scholar]
- Scholle, J.; Schuchardt, B. Analyse längerfristiger Daten zur Abundanz verschiedener Altersklassen des Stints (Osmerus eperlanus) im Elbästuar—Teil 2: Mögliche Einflussfaktoren. Im Auftrag der Stiftung Lebensraum Elbe. 2020. Available online: https://www.stiftung-lebensraum-elbe.de/fbfiles/Gutachten/Stiftung-Lebensraum-Elbe-Stint-Einflussfaktoren-final.pdf (accessed on 23 October 2024).
- FGG-Elbe. Data Portal of the FGG-Elbe: 2024. Available online: www.fgg-elbe.de (accessed on 15 February 2024).
- Voss, M.; Dippner, J.; Humborg, C.; Hürdler, J.; Korth, F.; Neumann, T.; Schernewski, G.; Venohr, M. History and scenarios of future development of Baltic Sea eutrophication. Estuar. Coast. Shelf Sci. 2011, 92, 307–322. [Google Scholar]
- Möllmann, C.; Cormon, X.; Funk, S.; Otto, S.A.; Schmidt, J.O.; Schwermer, H.; Sguotti, C.; Voss, R.; Quaas, M. Tipping point realized in cod fishery. Sci. Rep. 2021, 11, 14259. [Google Scholar] [CrossRef] [PubMed]
- Moll, D.; Asmus, H.; Blöcker, A.; Böttcher, U.; Conradt, J.; Färber, L.; Funk, N.; Funk, S.; Gutte, H.; Hinrichsen, H.; et al. A climate vulnerability assessment of the fish community in the Western Baltic Sea. Sci. Rep. 2024, 14, 16184. [Google Scholar] [CrossRef] [PubMed]
- Shokri, M.; Lezzi, L.; Basset, A. The seasonal response of metabolic rate to projected climate change scenarios in aquatic amphipods. J. Therm. Biol. 2024, 124, 103941. [Google Scholar] [CrossRef] [PubMed]
- Möller, H. Fischbestände und Fischkrankheiten in der Unterelbe 1984–1986; Verlag Heino Möller: Kiel, Germany, 1988. [Google Scholar]
- Thiel, R.; Sepúlveda, A.; Kafemann, R.; Nellen, W. Environmental factors as forces structuring the fish community of the Elbe Estuary. J. Fish Biol. 1995, 46, 47–69. [Google Scholar] [CrossRef]
- Thiel, R.; Cabral, H.; Costa, M.J. Composition, temporal changes and ecological guild classification of the ichthyofaunas of large European estuaries—A comparison between the Tagus (Portugal) and the Elbe (Germany). J. Appl. Ichthyol. 2003, 19, 330–342. [Google Scholar] [CrossRef]
- Eick, D.; Thiel, R. Fish assemblage patterns in the Elbe estuary: Guild composition, spatial and temporal structure, and influence of environmental factors. Mar. Biodivers. 2014, 44, 559–580. [Google Scholar] [CrossRef]
- Lorenz, T. Aufkommen, Verteilung und Wachstum von Fischlarven und Jungfischen im Kleinen Stettiner Haff unter besonderer Berücksichtigung der wirtschaftlich wichtigen Arten Pikeperch (Stizostedion lucioperca (L.)) und Flussbarsch (Perca fluviatilis L.). Fisch Umw. 2001, 2001, 21–45. [Google Scholar]
- Thiel, R.; Winkler, H.M.; Neumann, R.; Bruns, B.; Heischkel, J.; Riel, P.; Lill, D.; Löser, N.; Huckstorf, V.; Weigelt, R.; et al. Erfassung von FFH-Anhang II-Fischarten in der Deutschen AWZ von Nord- und Ostsee (ANFIOS). Final Report of a BfN-Funded Project. 2007. Available online: https://www.vliz.be/imisdocs/publications/67276.pdf (accessed on 19 November 2024).
- Thiel, R.; Potter, I.C. The ichthyofaunal composition of the Elbe Estuary: An analysis in space and time. Mar. Biol. 2001, 138, 603–616. [Google Scholar] [CrossRef]
- Pein, J.; Staneva, J.; Mayer, B.; Palmer, M.D.; Schrum, C. A framework for estuarine future sea-level scenarios: Response of the industrialised Elbe estuary to projected mean sea level rise and internal variability. Front. Mar. Sci. 2023, 10, 1102485. [Google Scholar] [CrossRef]
- Boehlich, M.J.; Strotmann, T. The Elbe estuary. Die Küste 2008, 74, 288–306. [Google Scholar]
- Medvedev, I.; Rabinovich, A.; Kulikov, E. Tidal oscillations in the Baltic Sea. Oceanology 2013, 53, 526–538. [Google Scholar] [CrossRef]
- Gruszka, P. The River Odra Estuary as a Gateway for Alien Species Immigration to the Baltic Sea Basin. Acta Hydrochim. Hydrobiol. 1999, 27, 374–382. [Google Scholar] [CrossRef]
- Schernewski, G.; Neumann, T.; Opitz, D.; Venohr, M. Long-term eutrophication history and ecosystem changes in a large Baltic river basin—Estuarine system. Transitional Waters Bull. 2011, 5, 21–49. [Google Scholar]
- Debus, L.; Winkler, H.M. Hinweise zur computergestützten Auswertung von Nahrungsanalysen. Rostock. Meeresbiol. Beiträge 1996, 4, 97–110. [Google Scholar]
- Thiel, R. Spatial gradients of food consumption and production of juvenile fish in the lower River Elbe. River Syst. 2001, 12, 441–462. [Google Scholar] [CrossRef]
- Fricke, R. Deutsche Meeresfische. Bestimmungsbuch. Deutscher Jugendbund für Naturbeobachtung: Frankfurt, Germany, 1987. [Google Scholar]
- Whitehead, P.J.P. (Ed.) Fishes of the North-Eastern Atlantic and the Mediterranean: Poissons de l’Atlantique du Nord-Est et de la Méditerranée; UNESCO: Paris, France, 1984. [Google Scholar]
- Whitehead, P.J.P. Fishes of the North-Eastern Atlantic and the Mediterranean: Poissons de l’Atlantique du Nord-Est et de la Mediterranee; UNESCO: Paris, France, 1986; Volume 2. [Google Scholar]
- Whitehead, P.J.P. Fishes of the North-Eastern Atlantic and the Mediterranean: Poissons de l’Atlantique du Nord-Est et de la Mediterranee; UNESCO: Paris, France, 1986; Volume 3. [Google Scholar]
- Mehner, T. Untersuchungen am Achsenskelett einheimischer Teleostier. Unpublished. Diploma Thesis, University of Rostock, Rostock, Germany, 1989. [Google Scholar]
- Leopold, M.F.; van Damme, C.J.G.; Philippart, C.J.M.; Winter, C.J.N. Otoliths of North Sea Fish: Fish Identification Key by Means of Otoliths and Other Hard Parts; ETI, University of Amsterdam: Amsterdam, The Netherlands, 2001; Available online: https://otoliths-northsea.linnaeus.naturalis.nl/linnaeus_ng/app/views/introduction/topic.php?id=3327&epi=87 (accessed on 15 June 2022).
- Knebelsberger, T.; Thiel, R. Identification of gobies (Teleostei: Perciformes: Gobiidae) from the North and Baltic Seas combining morphological analysis and DNA barcoding. Zool. J. Linn. Soc. 2014, 172, 831–845. [Google Scholar] [CrossRef]
- Thiel, R.; Knebelsberger, T. How reliably can northeast Atlantic sand lances of the genera Ammodytes and Hyperoplus be distinguished? A comparative application of morphological and molecular methods. ZooKeys 2016, 617, 139–164. [Google Scholar] [CrossRef]
- Camphuysen, C.J.; Henderson, P.A. North Sea Fish and Their Remains; Velilla, E., Leopold, M.F., Kühn, S., Somes, J.R., Eds.; Royal Netherlands Institute for Sea Research & Pisces Conservation Ltd.: Texel, The Netherlands, 2017. [Google Scholar]
- Bose, A.P.H.; McCallum, E.S.; Raymond, K.; Marentette, J.R.; Balshine, S. Growth and otolith morphology vary with alternative reproductive tactics and contaminant exposure in the round goby Neogobius melanostomus. J. Fish Biol. 2018, 93, 674–684. [Google Scholar] [CrossRef]
- Mamaev, B.M. Opredelitel Nazekomych po Licinkam; Posobie dlja Ucitel ej; Moscow State University Press: Moskova, Russia, 1972; 400p. (In Russian) [Google Scholar]
- Ruttner-Kolisko, A. Rotatoria. In Das Zooplankton der Binnengewässer Teil 1; Die Binnengewässer 26/1; Schweizerbart: Stuttgart, Germany, 1972; 294p. [Google Scholar]
- Vourinen, I.; Rajasilta, M. Soumen murtovesialueen eläinplankton. Määrityopas. Turun yliopiston Saaristomeren tutimuslaitos: Turku, Finland, 1978; 63p. (In Finnish) [Google Scholar]
- Kutikova, L.A.; Stragobogatov, J.I. Opredelitel Presnovodnych Bespozvonocnych Evropejckoj Casti SSSR; Gidrometeoizdat: Leningrad, Russia, 1977; 512p. (In Russian) [Google Scholar]
- Arndt, H. Untersuchungen zur Population der Zooplankter eines inneren Küstengewässers der Ostsee. Ph.D. Thesis, University of Rostock, Rostock, Germany, 1985; 170p. [Google Scholar]
- Jagnow, B.; Gosselck, F. Bestimmungsschlüssel für die Gehäuseschnecken und Muscheln der Ostsee. Mitteilungen aus dem Museum für Naturkunde in Berlin. Zool. Mus. Inst. Spez. Zool. 1987, 63, 191–268. [Google Scholar]
- Köhn, J.; Gosselck, F. Bestimmungsschlüssel der Malakostraken der Ostsee. Mitteilungen aus dem Museum für Naturkunde in Berlin. Zool. Mus. Inst. Spez. Zool. 1989, 65, 3–114. [Google Scholar]
- Teleš, I.V.; Heerkloss, R. Atlas of estuarine zooplankton of the southern and eastern Baltic Sea. In Schriftenreihe Naturwissenschaftliche Forschungsergebnisse; Kovač: Hamburg, Germany, 2004; Volume 72. [Google Scholar]
- Glöer, P. Süsswassermollusken: Ein Bestimmungsschlüssel für die Bundesrepublik Deutschland (14. Neuearbeitete Aufl.); Deutscher Jugendbund für Naturbeobachtung: Hamburg, Germany, 2015. [Google Scholar]
- Hyslop, E.J. Stomach contents analysis—A review of methods and their application. J. Fish Biol. 1980, 17, 411–429. [Google Scholar]
- Hart, R.K.; Calver, M.C.; Dickman, C. The index of relative importance: An alternative approach to reducing bias in descriptive studies of animal diets. Wildl. Res. 2002, 29, 415–421. [Google Scholar]
- George, E.L.; Hadley, W.F. Food and Habitat Partitioning Between Rock Bass (Ambloplites rupestris) and Smallmouth Bass (Micropterus dolomieui) Young of the Year. Trans. Am. Fish. Soc. 1979, 108, 253–261. [Google Scholar] [CrossRef]
- Levins, R. Evolution in changing environments: Some theoretical explorations. In Monographs in Population Biology; Princeton University Press: Princeton, NJ, USA, 1968; Volume 2. [Google Scholar]
- Schoener, T.W. Nonsynchronous Spatial Overlap of Lizards in Patchy Habitats. Ecology 1970, 51, 408–418. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, B.; Simpson, G.; Solymos, P.; Stevens, H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.6-10, 2, 1–2. 2024. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 22 January 2025).
- Kafemann, R.; Thiel, R. Wachstum und Ernährung des Pikeperchs (Stizostedion lucioperca (L.)) in norddeutschen Brackgewässern. Verhandlungen Ges. Ichthyol. 1998, 1, 87–108. [Google Scholar]
- Koll, R.; Theilen, J.; Hauten, E.; Woodhouse, J.N.; Thiel, R.; Möllmann, C.; Fabrizius, A. Network-based integration of omics, physiological and environmental data in real-world Elbe estuarine Pikeperch. Sci. Total Environ. 2024, 942, 173656. [Google Scholar]
- van Densen, W. Piscivory and the development of bimodality in the size distribution of O+ pikeperch (Stizostedion lucioperca L.). J. Appl. Ichthyol. 1985, 3, 119–131. [Google Scholar]
- Sepulveda, A.; Thiel, R.; Nellen, W. Distribution patterns and production of early life stages of European smelt, Osmerus eperlanus L., from the Elbe River. In Proceedings of the ICES Annual Science Conference, Dublin, Ireland, 23 September 1993. [Google Scholar]
- Devreker, D.; Souissi, S.; Forget-Leray, J.; Leboulenger, F. Effects of salinity and temperature on the post-embryonic development of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: A laboratory study. J. Plankton Res. 2007, 29 (Suppl. 1), i117–i133. [Google Scholar]
- Devreker, D.; Souissi, S.; Winkler, G.; Forget-Leray, J.; Leboulenger, F. Effects of salinity, temperature and individual variability on the reproduction of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: A laboratory study. J. Exp. Mar. Biol. Ecol. 2009, 368, 113–123. [Google Scholar] [CrossRef]
- Biederbick, J.; Möllmann, C.; Hauten, E.; Russnak, V.; Lahajnar, N.; Hansen, T.; Dierking, J.; Koppelmann, R. Spatial and temporal patterns of zooplankton trophic interactions and carbon sources in the eutrophic Elbe estuary (Germany). ICES J. Mar. Sci. 2024, fsae189. [Google Scholar] [CrossRef]
- Hauten, E. Stable Isotope Ecology of Fishes in the Elbe Estuary. 2024. Available online: https://ediss.sub.uni-hamburg.de/handle/ediss/11342 (accessed on 22 January 2025).
- Martens, N.; Russnak, V.; Woodhouse, J.; Grossart, H.-P.; Schaum, C.-E. Metabarcoding reveals potentially mixotrophic flagellates and picophytoplankton as key groups of phytoplankton in the Elbe estuary. Environ. Res. 2024, 252, 119126. [Google Scholar] [CrossRef] [PubMed]
- Taal, I.; Saks, L.; Nedolgova, S.; Verliin, A.; Kesler, M.; Jürgens, K.; Svirgsden, R.; Vetemaa, M.; Saat, T. Diet composition of smelt O smerus eperlanus (Linnaeus) in brackish near-shore ecosystem (Eru Bay, Baltic Sea). Ecol. Freshw. Fish 2014, 23, 121–128. [Google Scholar] [CrossRef]
- Lankov, A.; Ojaveer, H.; Simm, M.; Põllupüü, M.; Möllmann, C. Feeding ecology of pelagic fish species in the Gulf of Riga (Baltic Sea): The importance of changes in the zooplankton community. J. Fish Biol. 2010, 77, 2268–2284. [Google Scholar] [CrossRef] [PubMed]
- Bagarrão, R.; Fidalgo Costa, P.; Baptista, T.; Pombo, A. Reproduction and growth of polychaete Hediste diversicolor (OF Müller, 1776) under different environmental conditions. Front. Mar. Sci. 2014, 1. [Google Scholar] [CrossRef]
- Hölker, F.; Thiel, R. Biology of Ruffe (Gymnocephalus cernuus (L.))—A Review of Selected Aspects from European Literature. J. Great Lakes Res. 1998, 24, 186–204. [Google Scholar] [CrossRef]
- Jamet, J.-L.; Lair, N. An example of diel feeding cycle of two percids, perch (Perca fluviatilis) and ruffe (Gymnocephalus cernuus) in eutrophic Lake Aydat (France). Ann. Sci. Nat. Zool. Biol. Anim. 1991, 12, 99–105. [Google Scholar]
- Kangur, K.; Kangur, A. Feeding of ruffe (Gymnocephalus cernuus) in relation to the abundance of benthic organisms in Lake Vŏtsjärv (Estonia). Ann. Zool. Fenn. 1996, 33, 473–480. [Google Scholar]
- Bos, A. Aspects of the Life History of the European Flounder (Pleuronectes flesus L. 1758) in the Tidal River Elbe; Dissertation.de–Verlag im Internet GmbH: Berlin, Germany, 2000; 129p. [Google Scholar]
- Zettler, M.L.; Gosselck, F. Benthic assessment of marine areas of particular ecological importance within the German Baltic Sea EEZ. In Progress in Marine Conservation in Europe; von Nordheim, H., Boedeker, D., Krause, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 141–156. [Google Scholar]
- Drenkelfort, C. Verbreitung und Nahrungsökologie der 0-Gruppen-Flundern (Pleuronectes flesus (L.)) in der Tide-Elbe. Ph.D. Thesis, Universität Hamburg, Hamburg, Germany, 1994; 73p. [Google Scholar]
- Nellen, W. Der Fischbestand und Die Fische- Der Fischbestand und die Fischerreiwirtschaft in der Schlei. Biologie, Wachstum, Nahrung und Fangerträge der häufigsten Fischarten. Schr. Naturw. Ver. Schleswig-Holst. 1968, 38, 5–50. [Google Scholar]
- Maes, J. The Structure of the Fish Community of the Zeeschelde Estuary. Ph.D. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium, 2000; p. 143. [Google Scholar]
- Marschall, S. The Structure and Functioning of the Fish Assemblage of the Humber Estuary, UK. Ph.D. Thesis, University of Hull, Hull, UK, 1995; p. 212. [Google Scholar]
- Moore, J.W.; Moore, I.A. The basis of food selection in flounders, Platichthys flesus (L.), in the Severn Estuary. J. Fish Biol. 1976, 9, 139–156. [Google Scholar] [CrossRef]
- Costa, M.J.; Bruxelas, A. The structure of fish communities in the Tagus Estuary, Portugal, and its role as a nursery for commercial fish species. Sci. Mar. 1989, 53, 561–566. [Google Scholar]
- Aarnio, K.; Bonsdorff, E.; Rosenback, N. Food and feeding habits of juvenile flounder Platichthys flesus (L.), abd turbot Scophthalmus maximus L. in the åland archipelago, northern Baltic Sea. J. Sea Res. 1996, 36, 311–320. [Google Scholar]
- Haase, K.; Orio, A.; Pawlak, J.; Pachur, M.; Casini, M. Diet of dominant demersal fish species in the Baltic Sea: Is flounder stealing benthic food from cod? Mar. Ecol. Prog. Ser. 2020, 645, 159–170. [Google Scholar]
- Pein, J.; Staneva, J. Eutrophication hotspots, nitrogen fluxes and climate impacts in estuarine ecosystems: A model study of the Odra estuary system. Ocean. Dyn. 2024, 74, 335–354. [Google Scholar] [CrossRef]
- Winkler, H.M. Untersuchungen zur Fischerei und Biologie des Pikeperchs (Stizostedion lucioperca L.) in Einem Hocheutrophen Brackigen Küstengewässer der Westlichen Ostsee. Ph.D. Thesis, University of Rostock, Rostock, Germany, 1980. [Google Scholar]
- Buijse, A.D.; Houthuijzen, R.P. Piscivory, Growth, and Size-Selective Mortality of Age 0 Pikeperch (Stizostedion lucioperca). Can. J. Fish. Aquat. Sci. 1992, 49, 894–902. [Google Scholar] [CrossRef]
- Zander, C.D. Prey selection of the shallow water fish Pomatoschistus minutus (Gobiidae, Teleostei) in the SW Baltic. Helgoländer Meeresunters. 1990, 44, 147–157. [Google Scholar] [CrossRef]
- Ladiges, W. Über die Bedeutung der Copepoden als Fischnahrung im Unterelbegebiet. Z. Fisch. Deren Hilfswiss. 1935, 33, 1–84. [Google Scholar]
- Möllmann, C.; Köster, F.; Kornilovs, G.; Sidrevics, L. Long-term trends in abundance of cladocerans in the Central Baltic Sea. Mar. Biol. 2002, 141, 343–352. [Google Scholar]
- Teichert, N.; Lizé, A.; Tabouret, H.; Roussel, J.-M.; Bareille, G.; Trancart, T.; Acou, A.; Virag, L.; Pécheyran, C.; Carpentier, A.; et al. European flounder foraging movements in an estuarine nursery seascape inferred from otolith microchemistry and stable isotopes. Mar. Environ. Res. 2022, 182, 105797. [Google Scholar]
- Volkoff, H.; Rønnestad, I. Effects of temperature on feeding and digestive processes in fish. Temperature 2020, 7, 307–320. [Google Scholar] [CrossRef]
- Steidle, L.; Vennell, R. Phytoplankton retention mechanisms in estuaries: A case study of the Elbe estuary. Nonlinear Process. Geophys. 2024, 31, 151–164. [Google Scholar]
- Getz, E.; Eckert, C. Effects of Salinity on Species Richness and Community Composition in a Hypersaline Estuary. Estuaries Coasts 2023, 46, 2175–2189. [Google Scholar] [CrossRef]
- Costalago, D.; Navarro, J.; Álvarez-Calleja, I.; Palomera, I. Ontogenetic and seasonal changes in the feeding habits and trophic levels of two small pelagic fish species. Mar. Ecol. Prog. Ser. 2012, 460, 169–181. [Google Scholar] [CrossRef]
- Kellnreitner, F.; Pockberger, M.; Asmus, H. Seasonal variation of assemblage and feeding guild structure of fish species in a boreal tidal basin. Estuar. Coast. Shelf Sci. 2012, 108, 97–108. [Google Scholar] [CrossRef]
- Lillelund, K. Untersuchungen über die Biologie und Populationsdynamik des Stintes Osmerus eperlanus eperlanus [Linnaeus 1758], der ElbeArch. f. Fischereiwiss. 12.1961.
- Eby, L.; Crowder, L.B.; McClellan, C.; Peterson, C.H.; Powers, M. Habitat degradation from intermittent hypoxia: Impacts on demersal fishes. Mar. Ecol. Prog. Ser. 2005, 291, 249–262. [Google Scholar] [CrossRef]
- Pichavant, K.; Person-Le-Ruyet, J.; Le Bayon, N.; Severe, A.; Le Roux, A.; Boeuf, G. Comparative effects of long-term hypoxia on growth, feeding and oxygen consumption in juvenile turbot and European sea bass. J. Fish Biol. 2001, 59, 875–883. [Google Scholar]
- Chabot, D.; Claireaux, G. Environmental hypoxia as a metabolic constraint on fish: The case of Atlantic cod, Gadus morhua. Mar. Pollut. Bull. 2008, 57, 287–294. [Google Scholar]
- Riedel-Lorjé, J.C.; Gaumert, T. 100 Jahre Elbe-Forschung. Hydrobiologische Situation und Fischbestand 1842–1943 unter dem Einfluß von Stromverbau und Sieleinleitungen. Arch. Hydrobiol./Suppl. 1982, 61, 317–376. [Google Scholar]
- Möller, H.; Scholz, U. Avoidance of oxygen-poor zones by fish in the Elbe River. J. Appl. Ichthyol. 1991, 7, 176–182. [Google Scholar] [CrossRef]
- Hecht, T.; van der Lingen, C.D. Turbidity-induced changes in feeding strategies of fish in estuaries. S. Afr. J. Zool. 1992, 27, 95–107. [Google Scholar] [CrossRef]
- Ward, J.V.; Zimmermann, H.J.; Clinke, L.D. Lotic zoobenthos of the Colorado system. In The Ecology of River Systems; Davies, B.R., Walker, K.F., Eds.; Dr. W. Junk: Dordrecht, The Netherlands, 1986; pp. 403–422. [Google Scholar]
- Matthews, W.J.; Hill, L.G. Habitat Partitioning in the Fish Community of a Southwestern River. Southwest. Nat. 1980, 25, 51. [Google Scholar] [CrossRef]
- Galat, D.L.; Vucinich, N. Food Partitioning between Young of the Year of Two Sympatric Tui Chub Morphs. Trans. Am. Fish. Soc. 1983, 112, 486–497. [Google Scholar]
- Muth, R.; Snyder, D.E. Diets of young Colorado squawfish and other small fish in backwaters of the Green River, Colorado and Utah. West. N. Am. Nat. 1995, 55, 95–104. [Google Scholar]
- Wallace, R.K. An Assessment of Diet-Overlap Indexes. Trans. Am. Fish. Soc. 1981, 110, 72–76. [Google Scholar]
- Minder, M.; Arsenault, E.R.; Pyron, M.; Otgonganbat, A.; Mendsaikhan, B. Dietary overlap and selectivity among mountain steppe river fish in the United States and Mongolia. Ecol. Evol. 2023, 13, e10132. [Google Scholar] [CrossRef]
- Amieva-Mau, S. Feeding ecology and growth of juvenile zander Sander lucioperca (Linnaeus, 1758) in the Elbe and Odra estuaries. Master’s Thesis, Universität Hamburg, Hamburg, Germany, 2022. [Google Scholar]
- Monteiro, J.; Ovelheiro, A.; Ventaneira, A.; Vieira, V.; Teodósio C., M.; Leitão, F. Variability in Carcinus maenas Fecundity Along Lagoons and Estuaries of the Portuguese Coast. Estuaries Coasts 2022, 45. [Google Scholar]
- Czerniejewski, P. Mating behavior of the chinese mitten crab (Eriocheir sinensis, H. Milne Edwards, 1853) in the Odra Estuary: Preliminary results. Balt. Coast. Zone 2012, 1689–1696. [Google Scholar]
- Storz, S. Comparison of feeding ecology and growth of ruffe Gymnocephalus cernua (Linnaeus, 1758) in the Elbe and Odra estuaries. Master’s Thesis, Universität Hamburg, Hamburg, Germany, 2023. [Google Scholar]
- Dietrich, R. Populationsökologie der Plattfische (Familie Pleuronectidae) im Küsten- und Ästuarbereich des Weißen Meeres. Ph.D. Thesis, Universität Rostock, Rostock, Germany, 2008; 160p. [Google Scholar]
- Barnes, H.; Barnes, M. Some parameters of growth in the common intertidal barnacle, Balanus balanoides (L.). J. Mar. Biol. Assoc. United Kingd. 1959, 38, 581–587. [Google Scholar]
- Froese, R.; Pauly, D. FishBase. World Wide Web Electronic Publication. 2023. Available online: www.fishbase.org (accessed on 10 October 2023).
Pikeperch | Smelt | Ruffe | Flounder | |
---|---|---|---|---|
Diet breadth (B) | 4.9 | 5.6 | 3.2 | 6.8 |
MESOZOOPLANKTON | 11.77 | 34.36 | ||
COPEPODA | 9.82 | 34.36 | ||
Eurytemora affinis | 4.77 | 16.59 | ||
Calanoida indet. | 17.77 | |||
Cyclopoida | 0.20 | |||
Copepoda—eggs | 2.16 | |||
Copepoda—spermatophores | 0.75 | |||
Copepoda indet. | 1.94 | |||
CLADOCERA | 1.95 | |||
Daphnia galatea | 0.78 | |||
Daphnia longispina | 0.56 | |||
Daphnia spp. | 0.50 | |||
Bosmina longirostris | 0.11 | |||
Cladocera indet. | 0.08 | |||
MAKROZOOPLANKTON and | 51.56 | 70.60 | 91.62 | 34.58 |
mainly HYPOZOOBENTHOS MYSIDA | 23.65 | 19.40 | 23.11 | 17.01 |
Neomysis integer | 23.06 | 15.82 | 21.19 | 17.01 |
Mesopodopsis slabberi | 0.59 | 3.58 | 1.92 | |
AMPHIPODA | 13.03 | 38.84 | 49.57 | 10.93 |
Gammarus spp. | 13.03 | 35.61 | 48.43 | 10.93 |
Corophium volutator | 3.23 | 1.14 | ||
INVERTEBRATE EGGS | 0.76 | 2.89 | ||
DECAPODA | 14.88 | 11.60 | 18.94 | 3.75 |
Crangon crangon | 5.13 | 6.21 | 13.15 | 3.75 |
Palaemon longirostris | 9.75 | 4.67 | 4.49 | |
Eriocheir sinensis | 0.72 | 1.30 | ||
ENDOZOOBENTHOS and mainly EPIZOOBENTHOS | 1.30 | 1.85 | 24.67 | |
BIVALVIA | 0.20 | 0.59 | ||
Mya sp. | 0.59 | |||
Pisidium spp. | 0.20 | |||
ISOPODA | 0.46 | 0.17 | 8.00 | |
Idotea balthica | 6.56 | |||
Idotea emarginata | 0.07 | 0.17 | ||
Idotea granulosa | 0.09 | |||
Sphaeroma sp. | 1.44 | |||
Isopoda indet. | 0.30 | |||
ANNELIDA | 0.72 | 2.19 | ||
Hediste diversicolor | 0.48 | |||
Annelida indet. | 0.24 | |||
Tubificidae | 2.19 | |||
INSECTA | 0.12 | 1.48 | 13.89 | |
Chaoborus sp. | 0.07 | |||
Chironomidae | 0.05 | 0.63 | 13.89 | |
Insecta indet. | 0.85 | |||
NEKTON (Fish) | 48.42 | 16.27 | 6.50 | 6.34 |
Osmerus eperlanus | 34.13 | 11.79 | 6.50 | |
Clupea harengus | 6.27 | 3.27 | ||
Sprattus sprattus | 1.49 | |||
Clupeidae | 0.56 | |||
Gymnocephalus cernua | 2.99 | 0.52 | ||
Sander lucioperca | 0.05 | |||
Pomatoschistus microps | 0.06 | |||
Pomatoschistus minutus | 1.49 | 0.58 | 1.44 | |
Merlangius merlangus | 0.65 | |||
Platichthys flesus | 1.49 | |||
Fish Eggs | 4.25 |
Pikeperch | Smelt | Ruffe | Flounder | |
---|---|---|---|---|
Diet breadth (B) | 4.9 | 3.0 | 4.2 | 6.5 |
MESOZOOPLANKTON | 2.15 | |||
CLADOCERA | 2.15 | |||
Daphnia longispina | 2.15 | |||
MAKROZOOPLANKTON and mainly HYPOZOOBENTHOS | 41.70 | 69.50 | 24.80 | 15.31 |
MYSIDA | 15.27 | 53.03 | 2.64 | 2.46 |
Neomysis integer | 15.27 | 53.03 | 2.64 | 2.46 |
AMPHIPODA | 7.68 | 2.07 | 19.5 | 4.54 |
Gammarus spp. | 7.68 | 2.07 | 11.95 | 4.54 |
Corophium volutator | 7.55 | |||
INVERTEBRATE EGGS | 0.49 | |||
DECAPODA | 18.75 | 13.91 | 2.66 | 8.31 |
Crangon crangon | 18.09 | 13.91 | 1.30 | 4.02 |
Palaemon longirostris | 0.66 | |||
Eriocheir sinensis | 1.36 | |||
Carcinus maenas | 4.29 | |||
ENDOZOOBENTHOS and mainly EPIZOOBENTHOS | 3.40 | 7.44 | 72.82 | 84.72 |
GASTROPODA | 0.43 | 0.36 | 2.32 | 11.71 |
Potamopyrgus jenkinsi | 0.43 | |||
Hydrobiidae | 0.36 | 2.32 | 11.71 | |
BIVALVIA | 0.74 | 0.40 | 2.70 | 48.03 |
Mya arenaria | 0.74 | |||
Mya sp. | 30.91 | |||
Mytilus edulis | 7.95 | |||
Cerastoderma edule | 8.85 | |||
Mysella bidentata | 0.40 | |||
Limecola balthica | 0.32 | |||
Bivalvia indet. | 2.70 | |||
THECOSTRACA | 0.53 | |||
ISOPODA | 1.49 | 1.56 | 3.77 | |
Idotea balthica | 0.40 | 3.77 | ||
Idotea granulosa | 1.16 | |||
Idotea chelipes | 1.49 | |||
ANNELIDA | 1.75 | 5.19 | 25.50 | 13.58 |
Hediste diversicolor | 1.75 | 5.19 | 25.50 | 13.58 |
INSECTA | 0.48 | 40.74 | 7.10 | |
Chironomidae | 0.48 | 39.85 | 7.10 | |
Insecta indet. | 0.89 | |||
NEKTON (Fish) | 54.89 | 23.07 | 0.28 | |
Osmerus eperlanus | 0.28 | |||
Clupea harengus | 1.75 | |||
Gymnocephalus cernua | 0.58 | |||
Pomatoschistus minutus | 14.30 | |||
Pomatoschistus spp. | 17.15 | 8.77 | ||
Neogobius melanostomus | 0.97 | |||
Alburnus alburnus | 0.76 | |||
Rutilus rutilus | 33.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theilen, J.; Storz, S.; Amieva-Mau, S.; Dohr, J.; Hauten, E.; Koll, R.; Möllmann, C.; Fabrizius, A.; Thiel, R. Inter- and Intra-Estuarine Comparison of the Feeding Ecology of Keystone Fish Species in the Elbe and Odra Estuaries. Fishes 2025, 10, 161. https://doi.org/10.3390/fishes10040161
Theilen J, Storz S, Amieva-Mau S, Dohr J, Hauten E, Koll R, Möllmann C, Fabrizius A, Thiel R. Inter- and Intra-Estuarine Comparison of the Feeding Ecology of Keystone Fish Species in the Elbe and Odra Estuaries. Fishes. 2025; 10(4):161. https://doi.org/10.3390/fishes10040161
Chicago/Turabian StyleTheilen, Jesse, Sarah Storz, Sofía Amieva-Mau, Jessica Dohr, Elena Hauten, Raphael Koll, Christian Möllmann, Andrej Fabrizius, and Ralf Thiel. 2025. "Inter- and Intra-Estuarine Comparison of the Feeding Ecology of Keystone Fish Species in the Elbe and Odra Estuaries" Fishes 10, no. 4: 161. https://doi.org/10.3390/fishes10040161
APA StyleTheilen, J., Storz, S., Amieva-Mau, S., Dohr, J., Hauten, E., Koll, R., Möllmann, C., Fabrizius, A., & Thiel, R. (2025). Inter- and Intra-Estuarine Comparison of the Feeding Ecology of Keystone Fish Species in the Elbe and Odra Estuaries. Fishes, 10(4), 161. https://doi.org/10.3390/fishes10040161