Evolutionary Loss of Acid-Secreting Stomach and Endoskeletal Ossification: A Phosphorus Perspective
Abstract
1. Introduction
2. Stomach for Want of P?
3. Is Stomach Necessary?
4. Alternative Perspective: Bioavailability of Dietary P
5. External Fertilization Elicited Vertebral Calcification
6. What About Land Animals?
7. External Fertilization Without Skeletal Ossification
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spallanzani, L. Dissertations Relative to the Natural History of Animals and Vegetables; Volume 1; Murray, J., Ed.; Indiana University Library: Bloomington, IN, USA, 1784; p. 391, (translated from Italian). [Google Scholar]
- Gillespie, A.L. The Natural History of Digestion; Walter Scott Ltd.: London, UK, 1898; p. 427. [Google Scholar]
- Castro LF, C.; Gonçalves, O.; Mazan, S.; Tay, B.H.; Venkatesh, B.; Wilson, J.M. Recurrent gene loss correlates with the evolution of stomach phenotypes in gnathostome history. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132669. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Pipil, S.; Ota, C.; Kusakabe, M.; Watanabe, T.; Nagashima, A.; Chen, A.-P.; Islam, Z.; Hayashi, N.; Wong, M.K.-S.; et al. Convergent gene losses and pseudogenizations in multiple lineages of stomachless fishes. Commun. Biol. 2024, 7, 408. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Castro, L.F.C. Morphological diversity of the gastrointestinal tract in fishes. Fish Physiol. 2011, 30, 1–55. [Google Scholar]
- Peacock, M. Phosphate metabolism in health and disease. Calcif. Tissue Int. 2021, 108, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Harvey, H.W. The Chemistry and Fertility of Sea Waters; Cambridge University Press: London, UK, 1956; p. 240. [Google Scholar]
- Livingstone, D.A. Chemical Composition of Rivers and Lakes (Vol. 440); US Government Printing Office: Washington, DC, USA, 1963; p. 64.
- Penczak, T. Phosphorus, nitrogen, and carbon cycling by fish populations in two small lowland rivers in Poland. Hydrobiologia 1985, 120, 159–165. [Google Scholar] [CrossRef]
- MEXT. Standard Tables of Food Composition in Japan, 7th ed.; Japanese Ministry of Education, Culture, Sports, Science and Technology: Tokyo, Japan, 2015.
- Sugiura, S.H. Phosphorus in Fish Nutrition; Bookway Academic Publishing: Hyogo, Japan, 2018; p. 420. [Google Scholar]
- Sugiura, S.H.; Hardy, R.W.; Roberts, R.J. The pathology of phosphorus deficiency in fish–a review. J. Fish Dis. 2004, 27, 255–265. [Google Scholar] [CrossRef]
- Sugiura, S.H.; Roy, P.K.; Ferraris, R.P. Dietary acidification enhances phosphorus digestibility but decreases H+/K+-ATPase expression in rainbow trout. J. Exp. Biol. 2006, 209, 3719–3728. [Google Scholar] [CrossRef]
- Sugiura, S.H. Digestion and absorption of dietary phosphorus in fish. Fishes 2024, 9, 324. [Google Scholar] [CrossRef]
- Koelz, H.R. Gastric acid in vertebrates. Scand. J. Gastroenterol. Suppl. 1992, 193, 2–6. [Google Scholar] [CrossRef]
- Papastamatiou, Y.P.; Lowe, C.G. Postprandial response of gastric pH in leopard sharks (Triakis semifasciata) and its use to study foraging ecology. J. Exp. Biol. 2004, 207, 225–232. [Google Scholar] [CrossRef]
- Botella, H.; Valenzuela-Ríos, J.I.; Martínez-Pérez, C. Tooth replacement rates in early chondrichthyans: A qualitative approach. Lethaia 2009, 42, 365–376. [Google Scholar] [CrossRef]
- Papastamatiou, Y.P.; Purkis, S.J.; Holland, K.N. The response of gastric pH and motility to fasting and feeding in free swimming blacktip reef sharks, Carcharhinus melanopterus. J. Exp. Mar. Bio. Ecol. 2007, 345, 129–140. [Google Scholar] [CrossRef]
- Sullivan, M.X. The Physiology of the Digestive Tract of Elasmobranchs (Bureau of Fisheries Document No. 625); US Government Printing Office: Washington, DC, USA, 1907; p. 27.
- Sugiura, S.H.; McDaniel, N.K.; Ferraris, R.P. In vivo fractional Pi absorption and NaPi-II mRNA expression in rainbow trout are upregulated by dietary P restriction. Am. J. Physiol. 2003, 285, R770–R781. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, S.H.; Dong, F.M.; Hardy, R.W. Effects of dietary supplements on the availability of minerals in fish meal; preliminary observations. Aquaculture 1998, 160, 283–303. [Google Scholar] [CrossRef]
- Barrett, K.E.; Barman, S.M.; Yuan, J.; Brooks, H.L. Ganong’s Review of Medical Physiology; Mcgraw Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Payne, A.I. Gut pH and digestive strategies in estuarine grey mullet (Mugilidae) and tilapia (Cichlidae). J. Fish Biol. 1978, 13, 627–629. [Google Scholar] [CrossRef]
- Lobel, P.S. Trophic biology of herbivorous reef fishes: Alimentary pH and digestive capabilities. J. Fish Biol. 1981, 19, 365–397. [Google Scholar] [CrossRef]
- Guh, Y.J.; Lin, C.H.; Hwang, P.P. Osmoregulation in zebrafish: Ion transport mechanisms and functional regulation. EXCLI J. 2015, 14, 627–659. [Google Scholar]
- Garg, V.; Narang, P.; Taneja, R. Antacids revisited: Review on contemporary facts and relevance for self-management. Int. J. Med. Res. 2022, 50, 1–22. [Google Scholar] [CrossRef]
- Washington, N. Antacids and Anti Reflux Agents; CRC Press: Boca Raton, FL, USA, 1991; p. 320. [Google Scholar]
- Kopic, S.; Murek, M.; Geibel, J.P. Revisiting the parietal cell. Am. J. Physiol. 2010, 298, C1–C10. [Google Scholar] [CrossRef]
- Schubert, M.L. Gastric secretion. Curr. Opin. Gastroen. 2010, 26, 598–603. [Google Scholar] [CrossRef]
- Paton, D.N.; Dunlop, J.C.; Aitchison, R.S. Contributions to the study of the metabolism of phosphorus in the animal body. J. Physiol. 1900, 25, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.M.; Podoliak, H.A.; Brockway, D.R.; Vaughn, R.R. Metabolism of Water and Food Phosphorus by Brook Trout. Cortland Hatchery Report No. 26 for the Year 1957; New York State Conservation Department: Albany, NY, USA, 1958; pp. 39–67.
- Phillips, A.M.; Podoliak, H.A.; Dumas, R.F.; Thoesen, R.W. Metabolism of Dissolved Phosphorus by Trout; Metabolism of Dietary Phosphorus by Brook Trout. Cortland Hatchery Report No. 27 for the Year 1958; New York State Conservation Department: Albany, NY, USA, 1959; pp. 19–57.
- Phillips, A.M.; Podoliak, H.A.; Livingston, D.L.; Dumas, R.F.; Thoesen, R.W. Effect of Regular Feeding on the Utilization of Dietary Phosphorus by Brook Trout. Cortland Hatchery Report No. 28 for the Year 1959; New York State Conservation Department: Albany, NY, USA, 1960; pp. 46–55.
- Nakamura, Y. Effects of dietary phosphorus and calcium contents on the absorption of phosphorus in the digestive tract of carp. Bull. Jpn. Soc. Sci. Fish. 1982, 48, 409–413. [Google Scholar] [CrossRef]
- Salusky, I.B. A new era in phosphate biner therapy: What are the options? Kidney Int. 2006, 70, S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Schucker, J.J.; Ward, K.E. Hyperphosphatemia and phosphate binders. Am. J. Health-Syst. Ph. 2005, 62, 2355–2361. [Google Scholar] [CrossRef] [PubMed]
- Laining, A.; Ishikawa, M.; Kyaw, K.; Gao, J.; Binh, N.T.; Koshio, S.; Yamaguchi, S.; Yokoyama, S.; Koyama, J. Dietary calcium/phosphorus ratio influences the efficacy of microbial phytase on growth, mineral digestibility and vertebral mineralization in juvenile tiger puffer, Takifugu rubripes. Aquacult. Nutr. 2011, 17, 267–277. [Google Scholar] [CrossRef]
- Rees, L.; Shroff, R. The demise of calcium-based phosphate binders-is this appropriate for children? Pediatr. Nephrol. 2015, 30, 2061–2071. [Google Scholar] [CrossRef]
- Sheikh, M.S.; Maguire, J.A.; Emmett, M.; Santa Ana, C.A.; Nicar, M.J.; Schiller, L.R.; Fordtran, J.S. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study. J. Clin. Investig. 1989, 83, 66–73. [Google Scholar] [CrossRef]
- Takahashi, N.; Shoji, T.; Matsubara, K.; Hitomi, H.; Hashimoto, M.; Kiyomoto, H.; Koichi, U.; Shigehiro, M.; Mamoru, H.; Tsutomu, I.; et al. Effect of histamine H2-receptor antagonist on the phosphorus-binding abilities of calcium carbonate and calcium lactate in hemodialysis patients. J. Am. Soc. Nephrol. 1999, 10, 1090–1094. [Google Scholar] [CrossRef]
- Bemis, W.E.; Lauder, G.V. Morphology and function of the feeding apparatus of the lungfish, Lepidosiren paradoxa (Dipnoi). J. Morphol. 1986, 187, 81–108. [Google Scholar] [CrossRef]
- Roman, J.M.; Chierichetti, M.A.; Barbini, S.A.; Scenna, L.B. Feeding habits of the cockfish, Callorhinchus callorynchus (Holocephali: Callorhinchidae) from off northern Argentina. Neotrop. Ichthyol. 2020, 18, e180126. [Google Scholar] [CrossRef]
- Yúfera, M.; Darias, M.J. Changes in the gastrointestinal pH from larvae to adult in Senegal sole (Solea senegalensis). Aquaculture 2007, 267, 94–99. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Sundby, A.; Holm, H. Characteristics of digestive processes in Atlantic salmon (Salmo salar). Enzyme pH optima, chyme pH, and enzyme activities. Aquaculture 2015, 449, 27–36. [Google Scholar]
- Usher, M.L.; Talbot, C.; Eddy, F.B. Effects of transfer to seawater on digestion and gut function in Atlantic salmon smolts (Salmo salar L.). Aquaculture 1990, 90, 85–96. [Google Scholar] [CrossRef]
- Smith, J.A.; Ross, W.D. (Eds.) The Works of Aristotle (Volume 4, 5); Clarendon Press: Oxford, UK, 1910, 1912. [Google Scholar]
- Levitan, D.R. Sperm limitation, sperm competition and sexual selection in external fertilizers. In Sperm Competition and Sexual Selection; Birkhead, T.R., Møller, A.P., Eds.; Academic Press: San Diego, CA, USA, 1998; pp. 173–215. [Google Scholar]
- Taguchi, T.; Yamaoka, A.; Tanaka, H.; Kawamura, K.; Sugiura, S. Effects of low-phosphorus feed on fish performance, fish quality and effluent phosphorus concentration in maturing Biwa salmon Oncorhynchus masou rhodurus. Aquacult. Sci. 2012, 60, 19–31. [Google Scholar]
- Meischer. Biochemical studies on the Rhine salmon. Arch. Exp. Path. Pharm. 1896, 37, 100, (cited in Chemistry of Food and Nutrition, 2nd ed.; Sherman, H.C., Ed.; The Macmillan Company: New York, NY, USA, 1919; p. 246). [Google Scholar]
- Paton, D.N. The physiology of the salmon in fresh water. J. Physiol. 1898, 22, 333–356. [Google Scholar]
- Milroy, T.H. Changes in the chemical composition of the herring during the reproductive period. Biochem. J. 1908, 3, 366–390. [Google Scholar] [CrossRef]
- Bruce, J.R. Changes in the chemical composition of the tissues of the herring in relation to age and maturity. Biochem. J. 1924, 18, 469–485. [Google Scholar] [CrossRef]
- Vinogradov, A.P. The Elementary Chemical Composition of Marine Organisms (No. 2); Sears Foundation for Marine Research; Yale University: New Haven, CT, USA, 1953. [Google Scholar]
- Ogino, C.; Yasuda, S. Changes in inorganic constituents of developing rainbow trout eggs. Bull. Jpn. Soc. Sci. Fish. 1962, 28, 788–791. [Google Scholar] [CrossRef]
- Persson, P.; Johannsson, S.H.; Takagi, Y.; Björnsson, B.T. Estradiol-17β and nutritional status affect calcium balance, scale and bone resorption, and bone formation in rainbow trout, Oncorhynchus mykiss. J. Comp. Physiol. B 1997, 167, 468–473. [Google Scholar] [CrossRef]
- Persson, P.; Takagi, Y.; Björnsson, B.T. Tartrate resistant acid phosphatase as a marker for scale resorption in rainbow trout, Oncorhynchus mykiss: Effects of estradiol-17β treatment and refeeding. Fish Physiol. Biochem. 1995, 14, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Persson, P.; Sundell, K.; Björnsson, B.T.; Lundqvist, H. Calcium metabolism and osmoregulation during sexual maturation of river running Atlantic salmon. J. Fish Biol. 1998, 52, 334–349. [Google Scholar] [CrossRef]
- Persson, P.; Björnsson, B.T.; Takagi, Y. Characterization of morphology and physiological actions of scale osteoclasts in the rainbow trout. J. Fish Biol. 1999, 54, 669–684. [Google Scholar] [CrossRef]
- Yamada, Y.; Okamura, A.; Tanaka, S.; Utoh, T.; Horie, N.; Mikawa, N.; Oka, H.P. The roles of bone and muscle as phosphorus reservoirs during the sexual maturation of female Japanese eels, Anguilla japonica Temminck and Schlegel (Anguilliformes). Fish Physiol. Biochem. 2002, 24, 327–334. [Google Scholar] [CrossRef]
- Witten, P.E.; Hall, B.K. Seasonal changes in the lower jaw skeleton in male Atlantic salmon (Salmo salar L.): Remodelling and regression of the kype after spawning. J. Anat. 2003, 203, 435–450. [Google Scholar]
- Lopez, E.; Mac Intyre, I.; Martelly, E.; Lallier, F.; Vidal, B. Paradoxical effect of 1.25 dihydroxycholecalciferol on osteoblastic and osteoclastic activity in the skeleton of the eel Anguilla anguilla L. Calcif. Tissue Int. 1980, 32, 83–87. [Google Scholar] [CrossRef]
- Kacem, A.; Gustafsson, S.; Meunier, F.J. Demineralization of the vertebral skeleton in Atlantic salmon Salmo salar L. during spawning migration. Comp. Biochem. Phys. A 2000, 125, 479–484. [Google Scholar] [CrossRef]
- Kacem, A.; Meunier, F.J. Halastatic demineralization in the vertebrae of Atlantic salmon, during their spawning migration. J. Fish Biol. 2003, 63, 1122–1130. [Google Scholar] [CrossRef]
- Doherty, A.H.; Ghalambor, C.K.; Donahue, S.W. Evolutionary physiology of bone: Bone metabolism in changing environments. Physiology 2015, 30, 17–29. [Google Scholar] [CrossRef]
- Ruben, J.A.; Bennett, A.A. The evolution of bone. Evolution 1987, 41, 1187–1197. [Google Scholar] [CrossRef]
- Wagner, D.O.; Aspenberg, P. Where did bone come from? An overview of its evolution. Acta Orthop. 2011, 82, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.E.; Watabe, N. Studies on the biology of fish bone—I. Bone resorption after scale removal. Comp. Biochem. Physiol. A 1978, 60, 207–211. [Google Scholar] [CrossRef]
- Guerreiro, P.M.; Fuentes, J. Control of calcium balance in fish. In Fish Osmoregulation; Baldisserotto, B., Mancera, J.M., Kapoor, B.G., Eds.; Science Publishers: Enfield, NH, USA, 2007; Chapter 15; pp. 427–495. [Google Scholar]
- Loewen, T.N.; Carriere, B.; Reist, J.D.; Halden, N.M.; Anderson, W.G. Linking physiology and biomineralization processes to ecological inferences on the life history of fishes. Comp. Biochem. Phys. A 2016, 202, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Pinto, P.I.; Estêvão, M.D.; Andrade, A.; Santos, S.; Power, D.M. Tissue responsiveness to estradiol and genistein in the sea bass liver and scale. J. Steroid Biochem. Mol. Biol. 2016, 158, 127–137. [Google Scholar] [CrossRef]
- Carragher, J.F.; Sumpter, J.P. The mobilization of calcium from calcified tissues of rainbow trout (Oncorhynchus mykiss) induced to synthesize vitellogenin. Comp. Biochem. Phys. A 1991, 99, 169–172. [Google Scholar] [CrossRef]
- Guerreiro, P.M.; Renfro, J.L.; Power, D.M.; Canario, A.V. The parathyroid hormone family of peptides: Structure, tissue distribution, regulation, and potential functional roles in calcium and phosphate balance in fish. Am. J. Physiol. 2007, 292, R679–R696. [Google Scholar] [CrossRef]
- Mugiya, Y.; Watabe, N. Studies on fish scale formation and resorption-II. Effect of estradiol on calcium homeostasis and skeletal tissue resorption in the goldfish, Carassius auratus, and the killifish, Fundulus heteroclitus. Comp. Biochem. Phys. A 1977, 57, 197–202. [Google Scholar] [CrossRef]
- Pinto, P.I.; Estêvão, M.D.; Power, D.M. Effects of estrogens and estrogenic disrupting compounds on fish mineralized tissues. Mar. Drugs 2014, 12, 4474–4494. [Google Scholar] [CrossRef]
- Suzuki, N.; Danks, J.A.; Maruyama, Y.; Ikegame, M.; Sasayama, Y.; Hattori, A.; Nakamura, M.; Tabata, M.J.; Yamamoto, T.; Furuya, R.; et al. Parathyroid hormone 1 (1–34) acts on the scales and involves calcium metabolism in goldfish. Bone 2011, 48, 1186–1193. [Google Scholar] [CrossRef]
- Urasa, F.; Flik, G.; Wendelaar Bonga, S.E. Selective mobilization of phosphate from bone during ovarian development maturation in the teleost Oreochromis mossambicus. In Fish Culture: Proceedings of the 7th Conference of the ESCPB; Promociones Publicaciones Universitarias: Barcelona, Spain, 1985; p. A 1.9. [Google Scholar]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002; p. 439. [Google Scholar]
- Irving, J.T. Calcium and Phosphorus Metabolism; Academic Press, Inc.: New York, NY, USA, 1973; p. 246. [Google Scholar]
- Bino, G.; Kingsford, R.T.; Archer, M.; Connolly, J.H.; Day, J.; Dias, K.; Goldney, D.; Gongora, J.; Grant, T.; Griffiths, J.; et al. The platypus: Evolutionary history, biology, and an uncertain future. J. Mammal. 2019, 100, 308–327. [Google Scholar] [CrossRef]
- Hawke, T.; Bino, G.; Shackleton, M.E.; Ross, A.K.; Kingsford, R.T. Using DNA metabarcoding as a novel approach for analysis of platypus diet. Sci. Rep. 2022, 12, 2247. [Google Scholar] [CrossRef] [PubMed]
- Klamt, M.; Davis, J.A.; Thompson, R.M.; Marchant, R.; Grant, T.R. Trophic relationships of the platypus: Insights from stable isotope and cheek pouch dietary analyses. Mar. Freshw. Res. 2015, 67, 1196–1204. [Google Scholar] [CrossRef]
- Robertson, J.D. The function of the calciferous glands of earthworms. J. Exp. Biol. 1936, 13, 279–297. [Google Scholar] [CrossRef]
- Beasley, D.E.; Koltz, A.M.; Lambert, J.E.; Fierer, N.; Dunn, R.R. The evolution of stomach acidity and its relevance to the human microbiome. PLoS ONE 2015, 10, e0134116. [Google Scholar] [CrossRef]
- Matsubayashi, H.; Lagan, P.; Majalap, N.; Tangah, J.; Sukor, J.R.A.; Kitayama, K. Importance of natural licks for the mammals in Bornean inland tropical rain forests. Ecol. Res. 2007, 22, 742–748. [Google Scholar] [CrossRef]
- Matsuda, I.; Tuuga, A.; Bernard, H.; Sugau, J.; Hanya, G. Leaf selection by two Bornean colobine monkeys in relation to plant chemistry and abundance. Sci. Rep. 2013, 3, 1873. [Google Scholar] [CrossRef]
- Moe, S.R. Mineral content and wildlife use of soil licks in southwestern Nepal. Can. J. Zool. 1993, 71, 933–936. [Google Scholar] [CrossRef]
- Denton, D. Mineral appetite: An overview. In Thirst: Physiological and Psychological Aspects; Ramsey, D.J., Booth, D., Eds.; Springer: London, UK, 1991; pp. 131–146. [Google Scholar]
- Barrington, E.J.W. The alimentary canal and digestion. Physiol. Fishes 1957, 1, 109–161. [Google Scholar]
- Dierenfeld, E.S.; King, J. Digestibility and mineral availability of phoenix worms, Hermetia illucens, ingested by mountain chicken frogs, Leptodactylus fallax. J. Herpetol. Med. Surg. 2008, 18, 100–105. [Google Scholar] [CrossRef]
- Arratia, G.; Schultze, H.P.; Casciotta, J. Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology. J. Morphol. 2001, 250, 101–172. [Google Scholar] [CrossRef]
- Cote, S.; Carroll, R.; Cloutier, R.; Bar-Sagi, L. Vertebral development in the Devonian sarcopterygian fish Eusthenopteron foordi and the polarity of vertebral evolution in non-amniote tetrapods. J. Vertebr. Paleontol. 2002, 22, 487–502. [Google Scholar] [CrossRef]
- Long, J.A.; Clement, A.M. The postcranial anatomy of two Middle Devonian lungfishes (Osteichthyes, Dipnoi) from Mt. Howitt, Victoria, Australia. Mem. Mus. Vic. 2009, 66, 189–202. [Google Scholar] [CrossRef]
- Gray, N.M.; Kainec, K.; Madar, S.; Tomko, L.; Wolfe, S. Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans. Anat. Rec. 2007, 290, 638–653. [Google Scholar] [CrossRef] [PubMed]
- Reidenberg, J.S. Anatomical adaptations of aquatic mammals. Anat. Rec. 2007, 290, 507–513. [Google Scholar] [CrossRef]
- Angelini, F.; Ghiara, G. Reproductive modes and strategies in vertebrate evolution. Ital. J. Zool. 1984, 51, 121–203. [Google Scholar] [CrossRef]
- Long, J.A.; Mark-Kurik, E.; Johanson, Z.; Lee, M.S.; Young, G.C.; Min, Z.; Ahlberg, P.E.; Newman, M.; Jones, R.; den Blaauwen, J.; et al. Copulation in antiarch placoderms and the origin of gnathostome internal fertilization. Nature 2015, 517, 196–199. [Google Scholar] [CrossRef]
- Mosille, O.I.; Mmnoya, J.R. Reproductive biology of the East African lungfish (Protopterus aethiopicus) in Mwanza Gulf, Lake Victoria. Afr. J. Ecol. 1988, 26, 149–162. [Google Scholar] [CrossRef]
- Patzner, R.A. Gonads and reproduction in hagfishes. In The Biology of Hagfishes; Jørgensen, J.M., Lomholt, J.P., Weber, R.E., Malte, H., Eds.; Chapman & Hall: London, UK, 1998; pp. 378–395. [Google Scholar]
- Powell, M.L.; Kavanaugh, S.I.; Sower, S.A. Current knowledge of hagfish reproduction: Implications for fisheries management. Integr. Comp. Biol. 2005, 45, 158–165. [Google Scholar] [CrossRef]
- Sower, S.A.; Kawauchi, H. Reproduction in Agnathan Fishes: Lampreys and Hagfishes. In Hormones and Reproduction of Vertebrates; Norris, D.O., Lopez, K.H., Eds.; Academin Press: Cambridge, MA, USA, 2011; pp. 193–208. [Google Scholar]
- de Lima Bueno, M.; Garcia Tavares, Y.A.; Di Domenico, M.; Borges, M. Gametogenesis and weight change of body organs of the sea cucumber Holothuria (Halodeima) grisea (Aspidochirotida: Holothuriidae) in Southern Brazil. Rev. Biol. Trop. 2015, 63, 285–296. [Google Scholar]
- Harrington, L.H.; Walker, C.W.; Lesser, M.P. Stereological analysis of nutritive phagocytes and gametogenic cells during the annual reproductive cycle of the green sea urchin, Strongylocentrotus droebachiensis. Invertebr. Biol. 2007, 126, 202–209. [Google Scholar] [CrossRef]
- Walker, C.W.; Unuma, T.; Lesser, M.P. Gametogenesis and reproduction of sea urchins. In Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands, 2007; Volume 37, pp. 11–33. [Google Scholar]
Prey | Absorption 4 | No Acid Secretion 5 (pH 6–7) | Weakly Acidic Stomach 6 (pH 3–4) | Highly Acidic Stomach 7 (pH < 2) |
---|---|---|---|---|
Shellfishes 1 | Ca P | ± + | + + | ++ ± |
Fishes 2 | Ca P | 0 + | + + | ++ ++ |
Low Ca 3 | Ca P | + + | + + | + + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugiura, S.H. Evolutionary Loss of Acid-Secreting Stomach and Endoskeletal Ossification: A Phosphorus Perspective. Fishes 2025, 10, 48. https://doi.org/10.3390/fishes10020048
Sugiura SH. Evolutionary Loss of Acid-Secreting Stomach and Endoskeletal Ossification: A Phosphorus Perspective. Fishes. 2025; 10(2):48. https://doi.org/10.3390/fishes10020048
Chicago/Turabian StyleSugiura, Shozo H. 2025. "Evolutionary Loss of Acid-Secreting Stomach and Endoskeletal Ossification: A Phosphorus Perspective" Fishes 10, no. 2: 48. https://doi.org/10.3390/fishes10020048
APA StyleSugiura, S. H. (2025). Evolutionary Loss of Acid-Secreting Stomach and Endoskeletal Ossification: A Phosphorus Perspective. Fishes, 10(2), 48. https://doi.org/10.3390/fishes10020048