Assessing Fish Growth Changes Under an Ecosystem Regime Shift: The Approach of Linear Mixed-Effects Modeling with Application to Lake Huron Lake Trout
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MDNR | Michigan Department of Natural Resources |
| NLH | Northern Lake Huron |
| SLH | Southern Lake Huron |
| AIC | Akaike Information Criterion |
| BIC | Bayesian Information Criterion |
References
- Ricker, W.E. Growth rate and models. In Fish Physiology; Hoar, W.S., Randall, D.J., Brett, J.R., Eds.; Academic Press: New York, NY, USA, 1979; Volume 8, pp. 677–743. [Google Scholar]
- Walters, C.J.; Post, J.R. Density-dependent growth and competitive asymmetries in size-structured fish populations: A theoretical model and recommendations for field experiments. Trans. Am. Fish. Soc. 1993, 122, 34–45. [Google Scholar] [CrossRef]
- He, J.X.; Stewart, D.J. A stage-explicit expression of the von Bertalanffy growth model for understanding age at first reproduction of Great Lakes fishes. Can. J. Fish. Aquat. Sci. 2002, 59, 250–261. [Google Scholar] [CrossRef]
- He, J.X.; Rudstam, L.G.; Forney, J.L.; VanDeValk, A.J.; Stewart, D.J. Long-term patterns in growth of Oneida Lake walleye: A multivariate and stage-explicit approach for applying the von Bertalanffy growth function. J. Fish Biol. 2005, 66, 1459–1470. [Google Scholar] [CrossRef]
- von Bertalanffy, L. A quantitative theory of organic growth (inquiries on growth laws. II). Hum. Biol. 1938, 10, 181–213. [Google Scholar]
- Gallucci, V.F.; Quinn, T.J., II. Reparameterizing, fitting and testing a simple growth model. Trans. Am. Fish. Soc. 1979, 108, 14–25. [Google Scholar] [CrossRef]
- Chen, Y.; Jackson, B.A.; Harvey, H.H. A comparison of von Bertalanffy and polynomial functions in modelling fish growth data. Can. J. Fish. Aquat. Sci. 1992, 49, 1228–1235. [Google Scholar] [CrossRef]
- Wang, Y.; Milton, D.A. On comparison of growth curves: How do we test whether growth rates differ? Fish. Bull. 2000, 98, 874–880. [Google Scholar]
- Knight, W. Asymptotic growth: An example of nonsense disguised as mathematics. J. Fish. Res. Board Can. 1968, 25, 1303–1306. [Google Scholar] [CrossRef]
- Knight, W. A formulation of the von Bertalanffy growth curve when the growth rate is roughly constant. J. Fish. Res. Board Can. 1969, 26, 3069–3072. [Google Scholar] [CrossRef]
- Roff, D.A. A motion for the retirement of the von Bertalanffy function. Can. J. Fish. Aquat. Sci. 1980, 37, 127–129. [Google Scholar] [CrossRef]
- Živkov, M.T.; Trichkova, T.A.; Raikova-Petrova, G.N. Biological reasons for the unsuitability of growth parameters and indices for comparing fish growth. Environ. Biol. Fish. 1999, 54, 67–76. [Google Scholar] [CrossRef]
- He, J.X. Growth stability after the collapse of alewives in Lake Huron and direct size-at-age comparisons between stocked and wild lake trout. J. Gt. Lakes Res. 2024, 50, 102315. [Google Scholar] [CrossRef]
- Clark, W.G.; Hare, S.R.; Parma, A.M.; Sullivan, P.J.; Trumble, R.J. Decadal changes in growth and recruitment of Pacific halibut (Hippoglossus stenolepis). Can. J. Fish. Aquat. Sci. 1999, 56, 242–252. [Google Scholar] [CrossRef]
- Han, P.; Li, J.; Dan, Y.; Liu, B.; Chen, X.; Fang, Z. Decadal Changes in the Annual Growth of Two Commercial Ommastrephid Species in the Pacific Ocean. Fishes 2022, 7, 280. [Google Scholar] [CrossRef]
- Riley, S.C.; Roseman, E.F.; Nichols, S.J.; O’Brien, T.P.; Kiley, C.S.; Schaeffer, J.S. Deepwater demersal fish community collapse in Lake Huron. Trans. Am. Fish. Soc. 2008, 137, 1879–1890. [Google Scholar] [CrossRef]
- Madenjian, C.P.; Rutherford, E.S.; Stow, C.A.; Roseman, E.F.; He, J.X. Trophic shift, not collapse. Environ. Sci. Technol. 2013, 47, 11915–11916. [Google Scholar] [CrossRef] [PubMed]
- He, J.X.; Bence, J.R. Modeling annual growth variation using a hierarchical Bayesian approach and the von Bertalanffy growth function, with application to lake trout in southern Lake Huron. Trans. Am. Fish. Soc. 2007, 136, 318–330. [Google Scholar] [CrossRef]
- He, J.X.; Bence, J.R. Systematic changes and random variations: Understanding lake trout (Salvelinus namaycush) growth dynamics in US waters of Lake Huron. J. Gt. Lakes Res. 2023, 49, 737–745. [Google Scholar] [CrossRef]
- He, J.X.; Bence, J.R.; Johnson, J.E.; Clapp, D.F.; Ebener, M.P. Modeling variation in mass-length relations and condition indices of lake trout and Chinook salmon in Lake Huron: A hierarchical Bayesian approach. Trans. Am. Fish. Soc. 2008, 137, 801–817. [Google Scholar] [CrossRef]
- He, J.X.; Bence, J.R.; Roseman, E.F.; Fielder, D.G.; Ebener, M.P. Using time-varying asymptotic length and body condition of top piscivores to indicate ecosystem regime shift in the main basin of Lake Huron: A Bayesian hierarchical modeling approach. Can. J. Fish. Aquat. Sci. 2016, 73, 1092–1103. [Google Scholar] [CrossRef]
- Riley, S.C.; He, J.X.; Johnson, J.E.; O’Brien, T.P.; Schaeffer, J.S. Evidence of widespread natural reproduction by lake trout Salvelinus namaycush in the Michigan Waters of Lake Huron. J. Gt. Lakes Res. 2007, 33, 917–921. [Google Scholar] [CrossRef]
- He, J.X.; Ebener, M.P.; Riley, S.C.; Cottrill, A.; Kowalski, A.; Koproski, S.; Mohr, L.; Johnson, J.E. Lake Trout Status in the Main Basin of Lake Huron, 1973–2010. N. Am. J. Fish. Manag. 2012, 32, 402–412. [Google Scholar] [CrossRef]
- Johnson, J.E.; He, J.X.; Fielder, D.G. Rehabilitation stocking of walleyes and lake trout: Restoration of reproducing stocks in Michigan waters of Lake Huron. N. Am. J. Fish. Aquac. 2015, 77, 396–408. [Google Scholar] [CrossRef]
- Hile, R. 1949. Trends in the lake trout fishery of Lake Huron through 1946. Trans. Am. Fish. Soc. 1949, 76, 121–147. [Google Scholar] [CrossRef]
- Walters, C.J.; Steer, G.; Spangler, G. Responses of lake trout (Salvelinus namaycush) to harvesting, stocking, and lamprey reduction. Can. J. Fish. Aquat. Sci. 1980, 37, 2133–2145. [Google Scholar] [CrossRef]
- Smith, S.H. Species succession and fishery exploitation in the Great Lakes. J. Fish. Res. Board Can. 1968, 25, 667–693. [Google Scholar] [CrossRef]
- Walters, C.; Kitchell, J.F. Cultivation/depensation effects on juvenile survival and recruitment: Implications for the theory of fishing. Can. J. Fish. Aquat. Sci. 2001, 58, 39–50. [Google Scholar] [CrossRef]
- Madenjian, C.P.; O’Gorman, R.; Bunnell, D.B.; Argyle, R.L.; Roseman, E.F.; Warner, D.M.; Stockwell, J.D.; Stapanian, M.A. Adverse effects of alewives on Laurentian Great Lakes fish communities. N. Am. J. Fish. Manag. 2008, 28, 263–282. [Google Scholar] [CrossRef]
- Fitzsimons, J.D.; Brown, S.; Brown, L.; Honeyfield, D.; He, J.; Johnson, J.E. Increase in lake trout reproduction in Lake Huron following the collapse of alewife: Relief from thiamine deficiency or larval predation? Aquat. Ecosyst. Health Manag. 2010, 13, 73–81. [Google Scholar] [CrossRef]
- DesJardine, R.L.; Gorenflo, T.K.; Payne, R.N.; Schrouder, J.D. Fish-Community Objectives for Lake Huron; Great Lakes Fishery Commission: Ann Arbor, MI, USA, 1995; Special Publication 95-1; 38p, Available online: https://www.glfc.org/pubs/SpecialPubs/Sp95_1.pdf (accessed on 5 October 2025).
- Eshenroder, R.L.; Payne, N.R.; Johnson, J.E.; Bowen, C.; Ebener, M.P. Lake trout rehabilitation in Lake Huron. J. Gt. Lakes Res. 1995, 21 (Suppl. 1), 108–127. [Google Scholar] [CrossRef]
- Ebener, M.P. A Lake Trout Rehabilitation Guide for Lake Huron; Great Lakes Fishery Commission: Ann Arbor, MI, USA, 1998; 48p, Available online: https://www.glfc.org/pubs/lake_committees/huron/LkTroutRepHuron.pdf (accessed on 5 October 2025).
- Nowicki, S.M.; Criger, L.A.; Hrodey, P.J.; Sullivan, W.P.; Neave, F.B.; He, J.X.; Gorenflo, T.K. A case history of sea lamprey (Petromyzon marinus) abundance and control in Lake Huron: 2000–2019. J. Gt. Lakes Res. 2021, 47 (Suppl. 1), 455–478. [Google Scholar] [CrossRef]
- He, J.X. Adult mortality and year-class strength of lake trout before and after alewife collapse in the main basin of Lake Huron. J. Gt. Lakes Res. 2024, 50, 102315. [Google Scholar] [CrossRef]
- He, J.X.; Bence, J.R.; Madenjian, C.P.; Pothoven, S.A.; Dobiesz, N.E.; Fielder, D.G.; Johnson, J.E.; Ebener, M.P.; Cottrill, A.R.; Mohr, L.C.; et al. Coupling age-structured stock assessment and fish bioenergetics models: A system of time-varying models for quantifying piscivory patterns during the rapid trophic shift in the main basin of Lake Huron. Can. J. Fish. Aquat. Sci. 2015, 72, 7–23. [Google Scholar] [CrossRef]
- Barbiero, R.P.; Lesht, B.M.; Warren, G.J.; Rudstam, L.G.; Watkins, J.M.; Reavie, E.D.; Kovalenko, K.E.; Karatayev, A.Y. A comparative examination of recent changes in nutrients and lower food web structure in Lake Michigan and Lake Huron. J. Gt. Lakes Res. 2018, 44, 573–589. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, S. Using hard-part increment data to estimate age and environmental effects. Can. J. Fish. Aquat. Sci. 1993, 50, 1229–1237. [Google Scholar] [CrossRef]
- Weisberg, S.; Spangler, G.; Richmond, L.S. Mixed effects models for fish growth. Can. J. Fish. Aquat. Sci. 2010, 67, 269–277. [Google Scholar] [CrossRef]
- Richards, F.J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–300. [Google Scholar] [CrossRef]
- Schnute, J. A versatile growth model with statistically stable parameters. Can. J. Fish. Aquat. Sci. 1981, 38, 1128–1140. [Google Scholar] [CrossRef]
- Lorenzen, K. Toward a new paradigm for growth modeling in fisheries stock assessments: Embracing plasticity and its consequences. Fish. Res. 2016, 180, 4–22. [Google Scholar] [CrossRef]
- Flinn, S.A.; Midway, S.R. Trends in Growth Modeling in Fisheries Science. Fishes 2021, 6, 1. [Google Scholar] [CrossRef]
- Cope, J.M.; Punt, A.E. Admitting ageing error when fitting growth curves: An example using the von Bertalanffy growth function with random effects. Can. J. Fish. Aquat. Sci. 2007, 64, 205–218. [Google Scholar] [CrossRef]
- Cadigan, N.G.; Campana, S.E. Hierarchical model-based estimation of population growth curves for redfish (Sebastes mentella and Sebastes fasciatus) off the Eastern coast of Canada. ICES J. Mar. Sci. 2016, 74, 687–697. [Google Scholar] [CrossRef]
- Shelton, A.O.; Mangel, M. Estimating von Bertalanffy parameters with individual and environmental variations in growth. J. Biol. Dyn. 2012, 6 (Suppl. 2), 3–30. [Google Scholar] [CrossRef]
- Vincenzi, S.; Jesensek, D.; Crivelli, A.J. Biological and statistical interpretation of size-at-age, mixed-effects models of growth. R. Soc. Open Sci. 2020, 7, 192146. [Google Scholar] [CrossRef]
- Correa, G.M.; Monnahan, C.C.; Sullivan, J.Y.; Thorson, J.T.; Punt, A.E. Modelling time-varying growth in state-space stock assessments. ICES J. Mar. Sci. 2023, 80, 2036–2049. [Google Scholar] [CrossRef]
- He, J.X.; Madenjian, C.P. Comparing Year-Class Strength Indices from Longitudinal Analysis of Catch-at-Age Data with Those from Catch-Curve Regression: Application to Lake Huron Lake Trout. Fishes 2025, 10, 332. [Google Scholar] [CrossRef]
- Smith, S.H.; Buettner, H.J.; Hile, R. Fishery Statistical Districts of the Great Lakes; Great Lakes Fishery Commission: Ann Arbor, MI, USA, 1961; Technical Report No. 2; 24p, Available online: https://www.glfc.org/pubs/TechReports/Tr02.pdf (accessed on 5 October 2025).
- He, J.X.; Madenjian, C.P.; Wills, T.C. A generalized application of the catch-curve regression with comparisons of adult mortality and year-class strength between hatchery-stocked and wild-reared lake trout in US waters of Lake Huron. Can. J. Fish. Aquat. Sci. 2023, 80, 1714–1722. [Google Scholar] [CrossRef]
- Wellenkamp, W.; He, J.X.; Vercnocke, D. Using maxillae to estimate ages of Lake Trout. N. Am. J. Fish. Manag. 2015, 35, 296–301. [Google Scholar] [CrossRef]
- Murphy, E.W.; Smith, M.L.; He, J.X.; Wellenkamp, W.; Barr, E.; Downey, P.C.; Miller, K.M.; Meyer, K.A. Revised fish aging techniques improve fish contaminant trend analyses in the face of changing Great Lakes food webs. J. Gt. Lakes Res. 2018, 44, 725–734. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the Second International Symposium on Information Theory; Petrov, B.N., Csáki, F., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Aho, K.; Derryberry, D.; Peterson, T. Model selection for ecologists: The worldviews of AIC and BIC. Ecology 2014, 95, 631–636. [Google Scholar] [CrossRef]
- Schielzeth, H.; Dingemanse, N.J.; Nakagawa, S.; Westneat, D.F.; Allegue, H.; Teplitsky, C.; Réale, D.; Dochtermann, N.A.; Garamszegi, L.Z.; Araya-Ajoy, Y.G. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 2020, 11, 1141–1152. [Google Scholar] [CrossRef]
- McCulloch, C.M.; Searle, S.R.; Neuhaus, J.M. Generalized, Linear, and Mixed Models, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NY, USA, 2008; 424p. [Google Scholar]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2000; 528p. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 5 October 2025).
- Zhang, L. Cross-validation of non-linear growth functions for modelling tree height–diameter relationships. Ann. Bot. 1997, 79, 251–257. [Google Scholar] [CrossRef]
- Hao, X.; Yujun, S.; Xinjie, W.; Jin, W.; Yao, F. Linear Mixed-Effects Models to Describe Individual Tree Crown Width for China-Fir in Fujian Province, Southeast China. PLoS ONE 2015, 10, e0122257. [Google Scholar] [CrossRef] [PubMed]
- Muir, A.M.; Krueger, C.C.; Hansen, M.J. Re-establishing lake trout in the Laurentian Great Lakes: Past, present, and future. In Great Lakes Fisheries Policy and Management: A Binational Perspective, 2nd ed.; Taylor, W.W., Lynch, A.J., Leonard, N.J., Eds.; Michigan State University Press: East Lansing, MI, USA, 2012; pp. 533–588. [Google Scholar]
- Hondorp, D.W.; DeBruyne, R.; Brant, C.O.; Esselman, P.C.; O’Brien, T.P. Status and Trends of the Lake Huron Prey Fish Community, 1976–2024; Great Lakes Fishery Commission: Ann Arbor, MI, USA, 2025; 24p, Available online: https://www.glfc.org/pubs/lake_committees/common_docs/Status_Trends_LakeHuron_PreyFish_2024_FINAL_20250505.pdf (accessed on 20 September 2025).
- Roseman, E.F.; Schaeffer, J.S.; Bright, E.; Fielder, D.G. Angler-caught piscivore diets reflect fish community changes in Lake Huron. Trans. Am. Fish. Soc. 2014, 143, 1419–1433. [Google Scholar] [CrossRef]
- Stewart, D.J.; Weininger, D.; Rottiers, D.V.; Edsall, T.A. An Energetics Model for Lake Trout, Salvelinus namaycush: Application to the Lake Michigan Population. Can. J. Fish. Aquat. Sci. 1983, 40, 681–698. [Google Scholar] [CrossRef]
- Fontes, J.; Santos, R.S.; Afonso, P.; Caselle, J.E. Larval growth, size, stage duration and recruitment success of a temperate reef fish. J. Sea Res. 2011, 65, 1–7. [Google Scholar] [CrossRef]
- Dub, J.D.; Redman, R.A.; Wahl, D.H.; Czesny, S.J. Size-specific growth and mortality of juvenile yellow perch in southwestern Lake Michigan. J. Gt. Lakes Res. 2014, 40, 179–186. [Google Scholar] [CrossRef]




| Age | Stocked | Wild | Total | ||||
|---|---|---|---|---|---|---|---|
| NLH | SLH | All | NLH | SLH | All | ||
| 2 | 581 | 308 | 889 | 30 | 2 | 32 | 921 |
| 3 | 3671 | 1779 | 5450 | 154 | 17 | 171 | 5621 |
| 4 | 5582 | 3491 | 9073 | 253 | 85 | 338 | 9411 |
| 5 | 4256 | 4737 | 8993 | 285 | 175 | 460 | 9453 |
| 6 | 2067 | 4266 | 6333 | 333 | 263 | 596 | 6929 |
| 7 | 1211 | 2809 | 4020 | 315 | 284 | 599 | 4619 |
| 8 | 644 | 1590 | 2234 | 242 | 236 | 478 | 2712 |
| 9 | 350 | 939 | 1289 | 114 | 137 | 251 | 1540 |
| 10 | 243 | 631 | 874 | 88 | 73 | 161 | 1035 |
| 11 | 185 | 392 | 577 | 67 | 45 | 112 | 689 |
| 12 | 183 | 320 | 503 | 44 | 36 | 80 | 583 |
| 13 | 174 | 260 | 434 | 47 | 24 | 71 | 505 |
| 14 | 135 | 167 | 302 | 24 | 39 | 63 | 365 |
| 15 | 96 | 130 | 226 | 17 | 24 | 41 | 267 |
| 16 | 107 | 101 | 208 | 18 | 18 | 36 | 244 |
| 17 | 103 | 85 | 188 | 4 | 10 | 14 | 202 |
| 18 | 70 | 82 | 152 | 6 | 5 | 11 | 163 |
| 19 | 62 | 66 | 128 | 5 | 5 | 10 | 138 |
| 20 | 50 | 71 | 121 | 5 | 3 | 8 | 129 |
| 21 | 25 | 38 | 63 | 2 | 5 | 7 | 70 |
| 22 | 24 | 47 | 71 | -- | 3 | 3 | 74 |
| 23 | 21 | 32 | 53 | 1 | 1 | 2 | 55 |
| 24 | 10 | 31 | 41 | 1 | 2 | 3 | 44 |
| 25 | 5 | 13 | 18 | -- | -- | -- | 18 |
| 26 | 4 | 4 | 8 | 1 | -- | 1 | 9 |
| 27 | -- | 7 | 7 | 1 | -- | 1 | 8 |
| 28 | 1 | 2 | 3 | -- | -- | -- | 3 |
| 29 | -- | 2 | 2 | -- | 1 | 1 | 3 |
| 31 | 1 | -- | 1 | -- | -- | -- | 1 |
| 32 | -- | 1 | 1 | -- | -- | -- | 1 |
| 34 | -- | 2 | 2 | -- | -- | -- | 2 |
| Total | 19,861 | 22,403 | 42,264 | 2057 | 1493 | 3550 | 45,814 |
| Model | Model Description | df | ΔAIC | ΔBIC | -logLik |
|---|---|---|---|---|---|
| Equation (1) | Age | 32 | 21,789 | 20,907 | 23,170 |
| Equation (2) | Age, Sex | 34 | 21,770 | 20,906 | 23,159 |
| Equation (3) | Age, Wd | 33 | 20,866 | 19,994 | 22,708 |
| Equation (4) | Age, Yr | 80 | 17,637 | 17,175 | 21,046 |
| Equation (5) | Age, Yc | 84 | 17,393 | 16,965 | 20,920 |
| Equation (6) | Age, Rg | 33 | 16,275 | 15,402 | 20,412 |
| Equation (7) | Age, W.Yc, (R.Yr) | 132 | 6498 | 6490 | 15,424 |
| Equation (8) | Age, R.Yr, (W.Yc) | 129 | 6331 | 6297 | 15,344 |
| Equation (9) | Age, Wd, R.Yr, (W.Yc) | 130 | 6313 | 6288 | 15,334 |
| Equation (10) | Age, Wd, R.Yr, (W.Yc.A) | 131 | 5552 | 5535 | 14,953 |
| Equation (11) | Age, Wd, R.Yr, (W.Yc.A) * | 132 | 4706 | 4698 | 14,528 |
| Equation (12) | Age, Wd, R.Yr, (W.Yc.A) ** | 133 | 0 | 0 | 12,175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.X.; Madenjian, C.P. Assessing Fish Growth Changes Under an Ecosystem Regime Shift: The Approach of Linear Mixed-Effects Modeling with Application to Lake Huron Lake Trout. Fishes 2025, 10, 599. https://doi.org/10.3390/fishes10120599
He JX, Madenjian CP. Assessing Fish Growth Changes Under an Ecosystem Regime Shift: The Approach of Linear Mixed-Effects Modeling with Application to Lake Huron Lake Trout. Fishes. 2025; 10(12):599. https://doi.org/10.3390/fishes10120599
Chicago/Turabian StyleHe, Ji X., and Charles P. Madenjian. 2025. "Assessing Fish Growth Changes Under an Ecosystem Regime Shift: The Approach of Linear Mixed-Effects Modeling with Application to Lake Huron Lake Trout" Fishes 10, no. 12: 599. https://doi.org/10.3390/fishes10120599
APA StyleHe, J. X., & Madenjian, C. P. (2025). Assessing Fish Growth Changes Under an Ecosystem Regime Shift: The Approach of Linear Mixed-Effects Modeling with Application to Lake Huron Lake Trout. Fishes, 10(12), 599. https://doi.org/10.3390/fishes10120599

