Examination of Social Behavior and Cognition in Clownfish (Amphiprion ocellaris): Relationship to Artificial Rearing of Juveniles
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Sociality Test
2.3. Cognition Ability Test
2.4. Data Analysis
3. Results
3.1. Sociality Test
3.1.1. Exploration Duration
3.1.2. Frequency of Area Entries
3.1.3. Distribution Maps
3.1.4. Social Preference Index (SPI)
3.2. Cognition Ability Test
4. Discussion
4.1. Clownfish Demonstrate Distinct Social Preferences and Shoaling Behavior
4.2. Developmental Stage-Based Differences Exist in Their Cognition and Behavior
4.3. Some Implications for Aquaculture Practices
4.4. Limitations and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leal, M.C.; Vaz, M.C.M.; Puga, J.; Rocha, R.J.M.; Brown, C.; Rosa, R.; Calado, R. Marine ornamental fish imports in the European Union: An economic perspective. Fish Fish. 2016, 17, 459–468. [Google Scholar] [CrossRef]
- Murray, J.M.; Watson, G.J.; Giangrande, A.; Licciano, M.; Bentley, M.G. Managing the marine aquarium trade: Revealing the data gaps using ornamental polychaetes. PLoS ONE 2012, 7, e29543. [Google Scholar] [CrossRef]
- Rhyne, A.L.; Tlusty, M.F.; Schofield, P.J.; Kaufman, L.; Morris, J.A.; Bruckner, A.W. Revealing the appetite of the marine aquarium fish trade: The volume and biodiversity of fish imported into the United States. PLoS ONE 2012, 7, e35808. [Google Scholar] [CrossRef]
- Wabnitz, C. From Ocean to Aquarium: The Global Trade in Marine Ornamental Species; UNEP/Earthprint: Nairobi, Kenya, 2003. [Google Scholar]
- Wood, E. Exploitation of Coral Reef Fishes for the Aquarium Trade; Marine Conservation Society Press: Ross-on-Wye, UK, 1985. [Google Scholar]
- FAO. Trade and Market News. In Proceedings of the 3rd International Ornamental Fish Trade and Technical Conference, Kuala Lumpur, Malaysia, 25–26 February 2021. [Google Scholar]
- Palmtag, M.R. The Marine Ornamental Species Trade. In Marine Ornamental Species Aquaculture; Calado, R., Olivotto, I., Oliver, M.P., Holt, G.J., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 3–14. [Google Scholar]
- Dammannagoda, S.T. Sustainable Fishing Methods in the Asia Pacific Region. In Sustainable Aquaculture; Springer: Berlin/Heidelberg, Germany, 2018; pp. 95–122. [Google Scholar]
- Cohen, F.P.; Valenti, W.C.; Calado, R. Traceability issues in the trade of marine ornamental species. Rev. Fish. Sci. 2013, 21, 98–111. [Google Scholar] [CrossRef]
- Vagelli, A.A. The Banggai Cardinalfish: Natural History, conservation, and Culture of Pterapogon Kauderni; Wiley-Blackwell: Hoboken, NJ, USA, 2011; p. 224. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species, 2019. Available online: http://www.iucnredlist.org/ (accessed on 1 July 2021).
- Fautin, D.G.; Allen, G.R. Field Guide to Anemone Fishes and their Host Sea Anemones; Western Australian Museum: Perth, Australia, 1992. [Google Scholar]
- Carneiro, M.D.D.; Medeiros, R.S.D.; Monserrat, J.M.; Rodrigues, R.V.; Sampaio, L.A. Growth and oxidative stress of clownfish Amphiprion ocellaris reared at different salinities. Fishes 2024, 9, 30. [Google Scholar] [CrossRef]
- Robinson, G.E.; Fernald, R.D.; Clayton, D.F. Genes and social behavior. Science 2008, 322, 896–900. [Google Scholar] [CrossRef]
- Gonçalves-de-Freitas, E.; Teresa, F.B.; Gomes, F.S.; Giaquinto, P.C. Social Behavior and Welfare in Fish. In Fish Welfare; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 85–102. [Google Scholar]
- Brown, C. Fish intelligence, sentience and ethics. Anim. Cogn. 2015, 18, 1–17. [Google Scholar] [CrossRef]
- Kohda, M.; Hotta, T.; Takeyama, T.; Awata, S.; Tanaka, H.; Asai, J.Y.; Jordan, A.L. If a fish can pass the mark test, what are the implications for consciousness and self-awareness testing in animals? PLoS Biol. 2019, 17, e3000021. [Google Scholar] [CrossRef]
- Georgia, M.; Samantha, B.; Frode, O.; Tim, D. Challenges and benefits of applying fish behaviour to improve production and welfare in industrial aquaculture. Rev. Aquac. 2020, 13, 934–948. [Google Scholar] [CrossRef]
- Oppedal, F.; Juell, J.E.; Johansson, D. Thermo-and photoregulatory swimming behaviour of caged Atlantic salmon: Implications for photoperiod management and fish welfare. Aquaculture 2007, 265, 70–81. [Google Scholar] [CrossRef]
- Oppedal, F.; Dempster, T.; Stien, L.H. Environmental drivers of Atlantic salmon behaviour in sea-cages: A review. Aquaculture 2011, 311, 1–18. [Google Scholar] [CrossRef]
- Stien, L.H.; Fosseidengen, J.E.; Malm, M.E.; Sveier, H.; Torgersen, T.; Wright, D.W.; Oppedal, F. Low intensity light of different colours modifies Atlantic salmon depth use. Aquac. Eng. 2014, 62, 42–48. [Google Scholar] [CrossRef]
- Díaz-Jiménez, L.; Hernández-Vergara, M.P.; Pérez-Rostro, C.I.; Olvera-Novoa, M.Á. The effect of two carotenoid sources, background colour and light spectrum on the body pigmentation of the clownfish Amphiprion ocellaris. Aquac. Res. 2021, 52, 3052–3061. [Google Scholar] [CrossRef]
- Lee, M.C.; Huang, C.Y.; Huang, J.; Chang, C.Y.; Lee, P.T.; Nan, F.H. The Effect of dietary supplementation with haematococcus pluvialis for enhanced pigmentation in Amphiprion ocellaris. Aquac. Res. 2023, 2023, 5542730. [Google Scholar] [CrossRef]
- Nhan, H.T.; Tran, M.X.; Liew, H.J.; Tran, T.T.H.; Jha, R. Effects of natural dietary carotenoids on skin coloration of false Clownfish (Amphiprion ocellaris Cuvier, 1830). Aquaculture 2019, 25, 662–668. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Tran, A.N.T.; Ha, L.T.L.; Ngo, D.N.; Dang, B.T.; Geffen, A.J. Host choice and fitness of anemonefish Amphiprion ocellaris (Perciformes: Pomacentridae) living with host anemones (Anthozoa: Actiniaria) in captive conditions. J. Fish Biol. 2019, 94, 937–947. [Google Scholar] [CrossRef]
- Phillips, E.; DeAngelis, R.; Gogola, J.V.; Rhodes, J.S. Spontaneous alloparental care of unrelated offspring by non-breeding Amphiprion ocellaris in absence of the biological parents. Sci. Rep. 2020, 10, 4610. [Google Scholar] [CrossRef]
- Roux, N.; Logeux, V.; Trouillard, N.; Pillot, R.; Magré, K.; Salis, P.; Lecchini, D.; Besseau, L.; Laudet, V.; Romans, P. A star is born again: Methods for larval rearing of an emerging model organism, the False Clownfish Amphiprion ocellaris. J. Exp. Zool. B Mol. Dev. Evol. 2021, 336, 376–385. [Google Scholar] [CrossRef]
- Soman, M.; Chadha, N.K.; Madhu, K.; Madhu, R.; Sawant, P.B.; Francis, B. Optimization of temperature improves embryonic development and hatching efficiency of false clown fish, Amphiprion ocellaris Cuvier, 1830 under captive condition. Aquaculture 2021, 536, 736417. [Google Scholar] [CrossRef]
- Dunbar, R.I. The social role of touch in humans and primates: Behavioural function and neurobiological mechanisms. Neurosci. Biobehav. Rev. 2010, 34, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Tinbergen, N. Social Behaviour in Animals (Psychology Revivals): With Special Reference to Vertebrates; Psychology Press: London, UK, 2013. [Google Scholar]
- Wilson, E.O. Sociobiology: The New Synthesis, 25th ed.; Harvard University Press: Cambridge, MA, USA, 2000; p. 720. [Google Scholar]
- Aviles, L.; Harwood, G. A quantitative index of sociality and its application to group-living spiders and other social organisms. Ethology 2012, 118, 1219–1229. [Google Scholar] [CrossRef]
- Gonçalves, C.; Kareklas, K.; Teles, M.C.; Varela, S.A.; Costa, J.; Leite, R.B.; Paixao, T.; Oliveira, R.F. Phenotypic architecture of sociality and its associated genetic polymorphisms in zebrafish. Genes Brain Behav. 2022, 21, e12809. [Google Scholar] [CrossRef] [PubMed]
- Haulsee, D.E.; Fox, D.A.; Breece, M.W.; Brown, L.M.; Kneebone, J.; Skomal, G.B.; Oliver, M.J. Social network analysis reveals potential fission-fusion behavior in a shark. Sci. Rep. 2016, 6, 34087. [Google Scholar] [CrossRef] [PubMed]
- Kasumyan, A.; Pavlov, D. Evolution of schooling behavior in fish. J. Ichthyol. 2018, 58, 670–678. [Google Scholar] [CrossRef]
- Parrish, J.K.; Viscido, S.V.; Grunbaum, D. Self-organized fish schools: An examination of emergent properties. Biol. Bull. 2002, 202, 296–305. [Google Scholar] [CrossRef]
- Roose, R.; Oliver, M.; Haulsee, D.; Breece, M.; Carlisle, A.; Fox, D. The sociality of Atlantic sturgeon and sand tiger sharks in an estuarine environment. Anim. Behav. 2022, 193, 181–191. [Google Scholar] [CrossRef]
- Hing, M.L.; Klanten, O.S.; Dowton, M.; Brown, K.R.; Wong, M.Y. Repeated cyclone events reveal potential causes of sociality in coral-dwelling Gobiodon fishes. PLoS ONE 2018, 13, e0202407. [Google Scholar] [CrossRef] [PubMed]
- Nowicki, J.P.; Walker, S.P.; Coker, D.J.; Hoey, A.S.; Nicolet, K.J.; Pratchett, M.S. Pair bond endurance promotes cooperative food defense and inhibits conflict in coral reef butterflyfish. Sci. Rep. 2018, 8, 6295. [Google Scholar] [CrossRef]
- Thompson, C.A.; Matthews, S.; Hoey, A.S.; Pratchett, M.S. Changes in sociality of butterflyfishes linked to population declines and coral loss. Coral Reefs 2019, 38, 527–537. [Google Scholar] [CrossRef]
- Agrillo, C.; Petrazzini, M.E.M.; Bisazza, A. Numerical abilities in fish: A methodological review. Behav. Process. 2017, 141, 161–171. [Google Scholar] [CrossRef]
- Gómez-Laplaza, L.M.; Gerlai, R. Can angelfish (Pterophyllum scalare) count? Discrimination between different shoal sizes follows Weber’s law. Anim. Cogn. 2011, 14, 1–9. [Google Scholar] [CrossRef]
- Gómez-Laplaza, L.M.; Gerlai, R. Spontaneous discrimination of small quantities: Shoaling preferences in angelfish (Pterophyllum scalare). Anim. Cogn. 2011, 14, 565–574. [Google Scholar] [CrossRef]
- Gómez-Laplaza, L.M.; Gerlai, R. Quantification abilities in angelfish (Pterophyllum scalare): The influence of continuous variables. Anim. Cogn. 2013, 16, 373–383. [Google Scholar] [CrossRef]
- Gomez-Laplaza, L.M.; Gerlai, R. Discrimination of large quantities: Weber’s law and short-term memory in angelfish, Pterophyllum scalare. Anim. Behav. 2016, 112, 29–37. [Google Scholar] [CrossRef]
- Fu, S.J.; Li, J.Q. The effect of simulated predation stimulation on shoaling behavior of Spinibarbus sinensis with different sociability. Chin. J. Ecol. 2022, 41, 2382. [Google Scholar]
- Hemelrijk, C.K.; Reid, D.; Hildenbrandt, H.; Padding, J. The increased efficiency of fish swimming in a school. Fish Fish. 2015, 16, 511–521. [Google Scholar] [CrossRef]
- Killen, S.S.; Fu, C.; Wu, Q.; Wang, Y.X.; Fu, S.J. The relationship between metabolic rate and sociability is altered by food deprivation. Funct. Ecol. 2016, 30, 1358–1365. [Google Scholar] [CrossRef]
- Rodgers, G.M.; Downing, B.; Morrell, L.J. Prey body size mediates the predation risk associated with being “odd”. Behav. Ecol. 2015, 26, 242–246. [Google Scholar] [CrossRef]
- Tanaka, H.; Frommen, J.G.; Kohda, M. Helpers increase food abundance in the territory of a cooperatively breeding fish. Behav. Ecol. Sociobiol. 2018, 72, 51. [Google Scholar] [CrossRef]
- Schmitt, M.H.; Stears, K.; Wilmers, C.C.; Shrader, A.M. Determining the relative importance of dilution and detection for zebra foraging in mixed-species herds. Anim. Behav. 2014, 96, 151–158. [Google Scholar] [CrossRef]
- Ulrich, Y.; Saragosti, J.; Tokita, C.K.; Tarnita, C.E.; Kronauer, D.J. Fitness benefits and emergent division of labour at the onset of group living. Nature 2018, 560, 635–638. [Google Scholar] [CrossRef]
- Murali, G.; Kumari, K.; Kodandaramaiah, U. Dynamic colour change and the confusion effect against predation. Sci. Rep. 2019, 9, 274. [Google Scholar] [CrossRef]
- Ginnaw, G.M.; Davidson, I.K.; Harding, H.R.; Simpson, S.D.; Roberts, N.W.; Radford, A.N.; Ioannou, C.C. Effects of multiple stressors on fish shoal collective motion are independent and vary with shoaling metric. Anim. Behav. 2020, 168, 7–17. [Google Scholar] [CrossRef]
- Zhang, N.; Li, J.; Fu, C. Percentage of starved individuals in a group and simulated predation risk on the collective behavior of Chindongo demasoni. Acta Hydrobiol. Sin. 2023, 47, 989–996. [Google Scholar]
- Grabowska-Zhang, A.; Sheldon, B.; Hinde, C. Long-term familiarity promotes joining in neighbour nest defence. Biol. Lett. 2012, 8, 544–546. [Google Scholar] [CrossRef]
- Brandão, M.L.; Dorigão-Guimarães, F.; Bolognesi, M.C.; Gauy, A.C.D.S.; Pereira, A.V.S.; Vian, L.; Carvalho, T.B.; Gonçalves-de-Freitas, E. Understanding behaviour to improve the welfare of an ornamental fish. J. Fish Biol. 2021, 99, 726–739. [Google Scholar] [CrossRef] [PubMed]
- Shettleworth, S.J. Cognition, Evolution, and Behavior; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Braithwaite, V.A.; Huntingford, F.; van den Bos, R. Variation in emotion and cognition among fishes. J. Agric. Environ. Ethics 2013, 26, 7–23. [Google Scholar] [CrossRef]
- Braithwaite, V.A. Cognitive ability in fish. Fish Physiol. 2006, 24, 1. [Google Scholar]
- Bshary, R. Machiavellian intelligence in fishes. Fish Cogn. Behav. 2011, 13, 277–297. [Google Scholar]
- O’Connell, L.A.; Hofmann, H.A. The vertebrate mesolimbic reward system and social behavior network: A comparative synthesis. J. Comp. Neurol. 2011, 519, 3599–3639. [Google Scholar] [CrossRef] [PubMed]
- Pouca, C.V.; Brown, C. Contemporary topics in fish cognition and behaviour. Curr. Opin. Behav. Sci. 2017, 16, 46–52. [Google Scholar] [CrossRef]
- Agrillo, C.; Bisazza, A. Understanding the origin of number sense: A review of fish studies. Philos. Trans. R. Soc. B 2018, 373, 20160511. [Google Scholar] [CrossRef]
- Pilastro, A.; Scaggiante, M.; Rasotto, M.B. Individual adjustment of sperm expenditure accords with sperm competition theory. Proc. Natl. Acad. Sci. USA 2012, 99, 9913–9915. [Google Scholar] [CrossRef]
- Ebbesson, L.; Braithwaite, V. Environmental effects on fish neural plasticity and cognition. J. Fish Biol. 2012, 81, 2151–2174. [Google Scholar] [CrossRef]
- Brandão, M.L.; Braithwaite, V.A.; Goncalves-de-Freitas, E. Isolation impairs cognition in a social fish. Appl. Anim. Behav. Sci. 2015, 171, 204–210. [Google Scholar] [CrossRef]
- Huntingford, F.A.; Adams, C.; Braithwaite, V.; Kadri, S.; Pottinger, T.; Sandøe, P.; Turnbull, J. Current issues in fish welfare. J. Fish Biol. 2006, 68, 332–372. [Google Scholar] [CrossRef]
- Wong, M.; Uppaluri, C.; Medina, A.; Seymour, J.; Buston, P. The four elements of within-group conflict in animal societies: An experimental test using the clown anemonefish, Amphiprion percula. Behav. Ecol. Sociobiol. 2016, 70, 1467–1475. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Lin, J.; Xia, Q.; Guo, N.; Li, Q. Social preference deficits in juvenile zebrafish induced by early chronic exposure to sodium valproate. Front. Behav. Neurosci. 2016, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Olivotto, I. Clownfsh. In Marine Ornamental Species Aquaculture; Calado, R., Olivotto, I., Oliver, M.P., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 177–199. [Google Scholar]
- Moorhead, J.A.; Zeng, C. Development of captive breeding techniques for marine ornamental fish: A review. Rev. Fish. Sci. 2010, 18, 315–343. [Google Scholar] [CrossRef]
- Olivotto, I.; Planas, M.; Simões, N.; Holt, G.J.; Avella, M.A.; Calado, R. Advances in breeding and rearing marine ornamentals. J. World Aquac. Soc. 2011, 42, 135–166. [Google Scholar] [CrossRef]
- Callan, C.K.; Burgess, A.I.; Rothe, C.R.; Touse, R. Development of improved feeding methods in the culture of yellow tang Zebrasoma flavescens. J. World Aquac. Soc. 2018, 49, 493–503. [Google Scholar] [CrossRef]
- DiMaggio, M.A.; Cassiano, E.J.; Barden, K.P.; Ramee, S.W.; Ohs, C.L.; Watson, C.A. First record of captive larval culture and metamorphosis of the Pacific blue tang, Paracanthurus hepatus. J. World Aquac. Soc. 2017, 48, 393–401. [Google Scholar] [CrossRef]
- Rhyne, A.L.; Tlusty, M.F.; Szczebak, J.T. Early Culture Trials and an Overview on US Marine Ornamental Species Trade. In Marine Ornamental Species Aquaculture; Calado, R., Olivotto, I., Oliver, M.P., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 51–70. [Google Scholar]
- Clingerman, J.; Bebak, J.; Mazik, P.M.; Summerfelt, S.T. Use of avoidance response by rainbow trout to carbon dioxide for fish self-transfer between tanks. Aquac. Eng. 2007, 37, 234–251. [Google Scholar] [CrossRef]
- Summerfelt, S.T.; Bebak, J.A.; Tsukuda, S.M. CO2 and pH effects on fish in aquaculture. Aquac. Eng. 2009, 35, 157–164. [Google Scholar]
- Lekang, O.I.; Fjæra, S.O.; Thomassen, J.M. Voluntary fish transport in land-based fish farms. Aquac. Eng. 1996, 15, 13–25. [Google Scholar] [CrossRef]









| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Liu, J.; Yang, J.; Ma, S.; Wang, Z.; He, Y.; Li, X.; Yin, W.; Li, X.; Li, J.; et al. Examination of Social Behavior and Cognition in Clownfish (Amphiprion ocellaris): Relationship to Artificial Rearing of Juveniles. Fishes 2025, 10, 549. https://doi.org/10.3390/fishes10110549
Wang G, Liu J, Yang J, Ma S, Wang Z, He Y, Li X, Yin W, Li X, Li J, et al. Examination of Social Behavior and Cognition in Clownfish (Amphiprion ocellaris): Relationship to Artificial Rearing of Juveniles. Fishes. 2025; 10(11):549. https://doi.org/10.3390/fishes10110549
Chicago/Turabian StyleWang, Guodong, Jixiang Liu, Jifang Yang, Song Ma, Zi Wang, Yunlong He, Xiaohan Li, Wenhui Yin, Xinyu Li, Jiahao Li, and et al. 2025. "Examination of Social Behavior and Cognition in Clownfish (Amphiprion ocellaris): Relationship to Artificial Rearing of Juveniles" Fishes 10, no. 11: 549. https://doi.org/10.3390/fishes10110549
APA StyleWang, G., Liu, J., Yang, J., Ma, S., Wang, Z., He, Y., Li, X., Yin, W., Li, X., Li, J., Xu, K., Wang, C., & Xu, W. (2025). Examination of Social Behavior and Cognition in Clownfish (Amphiprion ocellaris): Relationship to Artificial Rearing of Juveniles. Fishes, 10(11), 549. https://doi.org/10.3390/fishes10110549
 
        


