Comparative Effects of Arthrobacter bussei-Derived Powder and Probiotics, and Haematococcus pluvialis Powder, as Dietary Supplements for Pacific White Shrimp (Litopenaeus vannamei)
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Experimental Diets
2.2. Experimental Design
2.3. Growth Performance
2.4. Sample Collection and Biochemical Analyses
2.5. Proximate Composition Analysis
2.6. Non-Specific Immunity and Antioxidant Assays
2.7. Digestibility Test
2.8. Statistical Analyses
3. Results
3.1. Growth Performance and Whole-Body Composition
3.2. Non-Specific Immunity, Antioxidant Capacity, and Biochemical Parameters
3.3. Apparent Digestibility Coefficients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADC | Apparent digestibility coefficients | 
| GYH | Glutathione-rich yeast hydrolysate | 
| THC | Total hemocyte count | 
| ABP | Arthrobacter bussei powder | 
| CON | Control | 
| FCR | Feed conversion ratio | 
| HPP | Haematococcus pluvialis powder | 
| PER | Protein efficiency ratio | 
| SGR | Specific growth rate | 
| WG | Weight gain | 
| ALT | Alanine aminotransferase | 
| AST | Aspartate aminotransferase | 
| GPx | Glutathione peroxidase | 
| SOD | Superoxide dismutase | 
| MDA | Malondialdehyde | 
| PO | Phenoloxidase | 
References
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Chen, K.; Li, E.; Xu, C.; Wang, X.; Lin, H.; Qin, J.G.; Chen, L. Evaluation of different lipid sources in diet of Pacific white shrimp Litopenaeus vannamei at low salinity. Aquacult. Rep. 2015, 2, 163–168. [Google Scholar] [CrossRef]
- Talukdar, A.; Deo, A.D.; Sahu, N.P.; Sardar, P.; Aklakur, M.; Harikrishna, V.; Prakash, S.; Nazeemashahul, S.; Jana, P. Effects of different levels of dietary protein on growth and physio-metabolic responses of juvenile Litopenaeus vannamei. Aquacult. Nutr. 2021, 27, 2128–2141. [Google Scholar] [CrossRef]
- Hai, N.V. The use of probiotics in aquaculture. J. Appl. Microbiol. 2015, 119, 917–935. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Sun, Y.-Z.; Wang, A.; Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 2018, 9, 2429. [Google Scholar] [CrossRef] [PubMed]
- Ju, Z.Y.; Deng, D.-F.; Dominy, W.G.; Forster, I.P. A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fish meal in diets of Pacific white shrimp. Aquaculture 2012, 354–355, 50–55. [Google Scholar] [CrossRef]
- Ju, Z.Y.; Deng, D.-F.; Dominy, W.G. Pigmentation of Litopenaeus vannamei by dietary astaxanthin extracted from Haematococcus pluvialis. J. World Aquacult. Soc. 2011, 42, 633–644. [Google Scholar] [CrossRef]
- Xie, S.; Fang, W.; Wei, D.; Liu, Y.; Yin, P.; Niu, J.; Tian, L. Dietary supplementation of Haematococcus pluvialis improved immune capacity and low-salinity tolerance of post-larval L. vannamei. Fish Shellfish Immunol. 2018, 80, 452–457. [Google Scholar] [CrossRef]
- Fang, H.; Zhuang, Z.; Huang, L.; Niu, J.; Zhao, W. A newly isolated strain of Haematococcus pluvialis GXU-A23 improves growth performance, antioxidant and anti-inflammatory status, metabolic capacity and mid-intestine morphology of juvenile L. vannamei. Front. Physiol. 2022, 13, 882091. [Google Scholar] [CrossRef]
- Mansour, A.T.; Ashour, M.; Abbas, E.M.; Alsaqufi, A.S.; Kelany, M.S.; El-Sawy, M.A.; Sharawy, Z.Z. Growth performance, immune-related and antioxidant genes expression, and gut bacterial abundance of Pacific white leg shrimp, Litopenaeus vannamei, dietary supplemented with natural astaxanthin. Front. Physiol. 2022, 13, 874172. [Google Scholar] [CrossRef]
- Wegh, C.A.M.; Geerlings, S.Y.; Knol, J.; Roeselers, G. Postbiotics: Definition, health benefits and applications. Int. J. Mol. Sci. 2019, 20, 4673. [Google Scholar] [CrossRef]
- Zokaeifar, H.; Balcázar, J.L.; Saad, C.R.; Kamarudin, M.S.; Sijam, K.; Arshad, A.; Nejat, N. Effects of Bacillus subtilis on growth performance, digestive enzymes, immune gene expression and disease resistance of L. vannamei. Fish Shellfish Immunol. 2012, 33, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Amiin, M.K.; Lahay, A.F.; Putriani, R.B.; Reza, M.; Putri, S.M.E.; Sumon, M.A.A.; Jamal, M.T.; Santanumurti, M.B. The role of probiotics in L. vannamei aquaculture performance—A review. Vet. World 2023, 16, 638–649. [Google Scholar] [CrossRef]
- Flegler, A.; Runzheimer, K.; Kombeitz, V.; Mänz, A.T.; Heidler von Heilborn, D.; Etzbach, L.; Schieber, A.; Hölzl, G.; Hüttel, B.; Woehle, C.; et al. Arthrobacter bussei sp. nov., a pink-coloured organism isolated from cheese made of cow’s milk. Int. J. Syst. Evol. Microbiol. 2020, 70, 3027–3036. [Google Scholar] [CrossRef]
- Giani, M.; Pire, C.; Martínez-Espinosa, R.M. Bacterioruberin: Biosynthesis, Antioxidant Activity, and Therapeutic Applications in Cancer and Immune Pathologies. Marine Drugs. 2024, 22, 167. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Caicedo-Paz, A.V.; Farias, F.O.; de Souza Mesquita, L.M.; Giuffrida, D.; Dufossé, L. Microbial bacterioruberin: The new C50 carotenoid player in food industries. Food Microbiol. 2024, 124, 104623. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jeon, H.; Bai, S.C.; Kim, K.W.; Lee, S.; Hur, J.W.; Han, H.S. Effects of dietary supplementation with Arthrobacter bussei powder on growth performance, antioxidant capacity, and innate immunity of Pacific white shrimp (Litopenaeus vannamei). Aquacult. Rep. 2022, 25, 101270. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Lin, S.; Chen, M.; Chen, X.; Li, Y.; Liu, Y.; Zhang, P.; Hou, X.; Tan, B.; Niu, J.; Tan, B.; et al. Supplemental effects of Haematococcus pluvialis in a low-fish meal diet for Litopenaeus vannamei at varying temperatures: Growth performance, innate immunity and gut bacterial community. Front. Immunol. 2024, 15, 1501753. [Google Scholar] [CrossRef]
- Xia, Z.; Zhu, M.; Zhang, Y. Effects of the probiotic Arthrobacter sp. Cw9 on the survival and immune status of white shrimp (Penaeus vannamei). Lett. Appl. Microbiol. 2014, 58, 60–64. [Google Scholar] [CrossRef]
- Ntakirutimana, R.; Mujeeb Rahiman, K.M.; Neethu, K.V. Probiotic effects of Arthrobacter nicotianae and Bacillus cereus on the growth, health, and microbiota of red tilapia (Oreochromis sp.). Aquacult. Nutr. 2025, 2025, 6074225. [Google Scholar] [CrossRef] [PubMed]
- Rahayu, S.; Amoah, K.; Huang, Y.; Cai, J.; Wang, B.; Shija, V.M.; Jin, X.; Anokyewaa, M.A.; Jiang, M.; Anokyewaa, M.A.; et al. Probiotics application in aquaculture: Its potential effects, current status in China and future prospects. Front. Mar. Sci. 2024, 11, 1455905. [Google Scholar] [CrossRef]
- Thakur, K.; Singh, B.; Kumar, S.; Sharma, D.; Sharma, A.K.; Jindal, R.; Kumar, R. Potential of probiotics and postbiotics in aquaculture: Connecting current research gaps and future perspectives. Microbe 2025, 8, 100431. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.J.; Tian, L.X.; Yang, H.J.; Liang, G.Y.; Yue, Y.R.; Xu, D.H. Effects of dietary astaxanthin on growth, antioxidant capacity and gene expression in Pacific white shrimp Litopenaeus vannamei. Aquacult. Nutr. 2013, 19, 917–927. [Google Scholar] [CrossRef]
- Eldessouki, E.A.A.; Diab, A.M.; Selema, T.A.M.A.; Sabry, N.M.; Abotaleb, M.M.; Khalil, R.H.; El-Sabbagh, N.; Younis, N.A.; Abdel-Tawwab, M.; Younis, N.A.; et al. Dietary astaxanthin modulated the performance, gastrointestinal histology, and antioxidant and immune responses and enhanced the resistance of Litopenaeus vannamei against Vibrio harveyi infection. Aquacult. Int. 2022, 30, 1869–1887. [Google Scholar] [CrossRef]
- Flegler, A.; Lipski, A. The C50 carotenoid bacterioruberin regulates membrane fluidity in pink-pigmented Arthrobacter species. Arch. Microbiol. 2021, 204, 70. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, L.; Yang, F.; Yi, J.; Yang, Z.; Li, Z.; Cheng, T.; Hu, X.; Tan, B.; Cao, A.; et al. Comparative Analysis of the Benefits of glutathione-Rich Yeast hydrolysate and astaxanthin on Growth Performance, Antioxidant Capacity and Lipid Metabolism in Pacific White Shrimp (Litopenaeus vannamei). J. Anim. Physiol. Anim. Nutr. 2025, 109, 821–833. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, L.; Xu, B.; Sagada, G.; Zhang, J.; Shao, Q. Effects of diets with varying astaxanthin from Yarrowia lipolytica levels on the growth, feed utilization, metabolic enzymes activities, antioxidative status and serum biochemical parameters of Litopenaeus vannamei. Fishes 2022, 7, 352. [Google Scholar] [CrossRef]
- Shen, W.Y.; Fu, L.L.; Li, W.F.; Zhu, Y.R. Effect of dietary supplementation with Bacillus subtilis on the growth, performance, immune response and antioxidant activities of the shrimp (Litopenaeus vannamei). Aquac. Res. 2010, 41, 1691–1698. [Google Scholar] [CrossRef]
- Adel, M.; Yeganeh, S.; Dawood, M.; Safari, R.; Radhakrishnan, S. Effects of Pediococcus pentosaceus Supplementation on Growth Performance, Intestinal Microflora and Disease Resistance of White Shrimp, Litopenaeus vannamei. Aquac. Nutr. 2017, 23, 1401–1409. [Google Scholar] [CrossRef]
- Hong, N.T.X.; Linh, N.T.H.; Baruah, K.; Thuy, D.T.B.; Phuoc, N.N. The Combined Use of Pediococcus pentosaceus and Fructooligosaccharide Improves Growth Performance, Immune Response, and Resistance of whiteleg Shrimp Litopenaeus vannamei against Vibrio parahaemolyticus. Front. Microbiol. 2022, 13, 826151. [Google Scholar] [CrossRef]
- Jie, H. Effects of Probiotics from the Shrimp Intestine on the Non-specific Immunity and Antiviral Capacity of Litopenaeus vannamei. J. Fish. Sci. China/Zhongguo Shuichan Kexue 2011, 18, 1358–1367. [Google Scholar]
- Xie, J.-J.; Liu, Q.-Q.; Liao, S.; Fang, H.H.; Yin, P.; Xie, S.-W.; Tian, L.-X.; Liu, Y.-J.; Niu, J. Effects of dietary mixed probiotics on growth, non-specific immunity, intestinal morphology and microbiota of juvenile pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2019, 90, 456–465. [Google Scholar] [CrossRef]
- Amoah, K.; Huang, Q.C.; Dong, X.-H.; Tan, B.; Zhang, S.; Chi, S.; Yang, Q.; Liu, H.; Yang, Y. Paenibacillus polymyxa improves the growth, immune and antioxidant activity, intestinal health, and disease resistance in Litopenaeus vannamei challenged with Vibrio parahaemolyticus. Aquaculture 2020, 518, 734563. [Google Scholar] [CrossRef]
- Won, S.; Hamidoghli, A.; Choi, W.; Bae, J.; Jang, W.J.; Lee, S.; Bai, S.C. Evaluation of Potential probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on Growth Performance, Immune Response, Gut Histology and Immune-Related Genes in whiteleg Shrimp, Litopenaeus vannamei. Microorganisms 2020, 8, 281. [Google Scholar] [CrossRef]
- Le, B.; Kim, D.G.; Phuoc, N.N.; Linh, N.T.H.; Yang, S.H. Dietary supplementation with Pediococcus pentosaceus enhances the innate immune response in and promotes growth of Litopenaeus vannamei shrimp. J. Fish Dis. 2022, 45, 1343–1354. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, J.; Cai, X.; Ai, Y.; Long, H.; Ren, W.; Huang, A.; Zhang, X.; Xie, Z.Y. Dietary supplementation of astaxanthin is superior to its combination with Lactococcus lactis in improving the growth performance, antioxidant capacity, immunity and disease resistance of white shrimp (Litopenaeus vannamei). Aquacult. Rep. 2022, 24, 101124. [Google Scholar] [CrossRef]
- Ying-ying, Y.; Liu, Y.; Yin, P.; Zhou, W.; Tian, L.; Liu, Y.; Xu, D.; Niu, J. Astaxanthin Attenuates Fish Oil-Related Hepatotoxicity and Oxidative Insult in Juvenile Pacific White Shrimp (Litopenaeus vannamei). Mar. Drugs 2020, 18, 218. [Google Scholar] [CrossRef] [PubMed]
- SuRui, P.; Yueqiang, G.; Yunting, M. Effects of Dietary Supplementation of Astaxanthin on Growth, Survival and Antioxidant Capacity of Pacific White Shrimp (Litopenaeus vannamei). Fish. Sci. 2009, 28, 126–129. [Google Scholar]
- Xuying, J.; Sen, D.; Fang, W.; Shuanglin, D. A Comparative Study on the Nonspecific Immunity of Juvenile Litopenaeus vannamei ever Inhabiting Freshwater and Seawater. J. Ocean Univ. China 2014, 13, 472–478. [Google Scholar] [CrossRef]
- Miandare, H.K.; Yarahmadi, P.; Abbasian, M. Immune related transcriptional responses and performance of Litopenaeus vannamei post-larvae fed on dietary probiotic PrimaLac®. Fish Shellfish Immunol. 2016, 55, 671–678. [Google Scholar] [CrossRef]
| Ingredients (%) | Experimental Diets | ||||
|---|---|---|---|---|---|
| CON | HPP | ABP | ABL | ABH | |
| Anchovy fish meal a | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 | 
| Squid liver powder b | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 
| Soybean meal b | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 | 
| Wheat flour b | 19.5 | 19.5 | 19.5 | 19.5 | 19.5 | 
| Starch b | 11.0 | 10.0 | 10.0 | 10.0 | 10.0 | 
| Haematococcus pluvialis powder | 0 | 1.0 | 0 | 0 | 0 | 
| Arthrobacter bussei powder | 0 | 0 | 1.0 | 0 | 0 | 
| A. bussei probiotics (1 × 105 CFU mL−1) | 0 | 0 | 0 | 1.0 | 0 | 
| A. bussei probiotics (1 × 108 CFU mL−1) | 0 | 0 | 0 | 0 | 1.0 | 
| Fish oil c | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 
| Monocalcium phosphate b | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 
| Lecithin | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 
| Choline chloride | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 
| Vitamin and Mineral premix d | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 
| Chemical composition (%, dry mater) | |||||
| Moisture | 9.27 | 9.35 | 9.41 | 10.80 | 10.95 | 
| Crude protein | 37.27 | 37.10 | 37.21 | 37.25 | 37.33 | 
| Crude lipid | 5.98 | 6.02 | 5.89 | 6.06 | 6.04 | 
| Crude ash | 7.21 | 7.04 | 7.64 | 7.98 | 7.01 | 
| CON | HPP | ABP | ABL | ABH | ||
|---|---|---|---|---|---|---|
| Initial mean weight (g) | 0.54 ± 0.00 a | 0.54 ± 0.00 a | 0.54 ± 0.00 a | 0.54 ± 0.00 a | 0.54 ± 0.00 a | |
| Final mean weight (g) | 5.65 ± 0.12 c | 6.50 ± 0.19 b | 6.99 ± 0.15 a | 5.95 ± 0.19 c | 6.18 ± 0.21 bc | |
| WG (%) 2 | 952.6 ± 22.0 c | 1109.6 ± 35.8 b | 1201.2 ± 27.0 a | 1006.8 ± 38.0 c | 1053.1 ± 40.2 bc | |
| FCR 3 | 1.47 ± 0.03 c | 1.24 ± 0.04 ab | 1.14 ± 0.04 a | 1.39 ± 0.05 bc | 1.33 ± 0.05 b | |
| SGR (%/day) 4 | 3.84 ± 0.08 a | 4.12 ± 0.11 a | 4.28 ± 0.32 a | 3.95 ± 0.15 a | 4.11 ± 0.19 a | |
| PER 5 | 1.83 ± 0.04 c | 2.14 ± 0.07 b | 2.31 ± 0.05 a | 1.94 ± 0.07 c | 2.02 ± 0.07 bc | |
| SR (%) 6 | 81.7 ± 2.9 a | 86.7 ± 2.9 a | 90.0 ± 5.0 a | 88.3 ± 2.9 a | 90.0 ± 0.0 a | |
| CON | HPP | ABP | ABL | ABH | ||
|---|---|---|---|---|---|---|
| Moisture (%) | 75.80 ± 1.05 | 74.90 ± 1.23 | 75.03 ± 1.77 | 74.50 ± 1.77 | 75.60 ± 2.59 | |
| Crude protein (%) | 18.13 ± 1.05 | 18.27 ± 0.60 | 18.97 ± 1.76 | 18.90 ± 0.61 | 18.60 ± 1.08 | |
| Crude lipid (%) | 1.21 ± 0.29 | 1.20 ± 0.12 | 1.17 ± 0.11 | 1.29 ± 0.12 | 1.25 ± 0.09 | |
| Crude ash (%) | 1.57 ± 0.15 | 1.50 ± 0.26 | 1.47 ± 0.25 | 1.31 ± 0.23 | 1.40 ± 0.10 | |
| CON | HPP | ABP | ABL | ABH | ||
|---|---|---|---|---|---|---|
| Innate immunity parameters | ||||||
| Lysozyme (U mL−1) 2 | 7.55 ± 0.32 b | 9.09 ± 0.23 a | 9.16 ± 0.19 a | 7.73 ± 0.42 b | 8.70 ± 0.64 b | |
| Antiprotease | 27.4 ± 0.9 a | 28.2 ± 1.2 a | 29.3 ± 0.6 a | 28.0 ± 1.3 a | 28.1 ± 1.4 a | |
| PO 3 | 0.306 ± 0.023 b | 0.448 ± 0.042 a | 0.482 ± 0.017 a | 0.328 ± 0.049 b | 0.426 ± 0.045 ab | |
| Antioxidant capacity parameters | ||||||
| GPx (mU mL−1) 4 | 44.6 ± 0.7 b | 57.6 ± 3.8 a | 58.0 ± 5.2 a | 46.5 ± 5.5 ab | 53.2 ± 6.4 ab | |
| SOD (U mL−1) 5 | 22.3 ± 2.9 b | 31.1 ± 0.4 a | 31.3 ± 2.3 a | 27.6 ± 2.8 ab | 28.2 ± 2.5 ab | |
| MDA (U mL−1) 6 | 5.37 ± 0.50 b | 3.63 ± 0.23 a | 3.57 ± 0.50 a | 4.77 ± 0.42 ab | 4.10 ± 0.79 ab | |
| Biochemical parameters | ||||||
| AST (U L−1) 7 | 58.5 ± 1.1 a | 51.3 ± 4.0 a | 52.2 ± 2.3 a | 53.7 ± 4.3 a | 54.3 ± 2.0 a | |
| ALT (U L−1) 8 | 1.54 ± 0.31 a | 0.98 ± 0.11 a | 0.92 ± 0.06 a | 1.41 ± 0.40 a | 0.97 ± 0.16 a | |
| CON | HPP | ABP | ABL | ABH | ||
|---|---|---|---|---|---|---|
| ADCd (%) 2 | 85.4 ± 1.33 | 84.6 ± 0.70 | 84.1 ± 1.77 | 85.5 ± 1.09 | 85.3 ± 2.45 | |
| ADCp (%) 3 | 85.5 ± 0.73 b | 90.4 ± 0.68 a | 91.3 ± 0.87 a | 89.0 ± 1.15 a | 90.2 ± 0.96 a | |
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Jung, H.M.; Lee, S.; Han, H.-S. Comparative Effects of Arthrobacter bussei-Derived Powder and Probiotics, and Haematococcus pluvialis Powder, as Dietary Supplements for Pacific White Shrimp (Litopenaeus vannamei). Fishes 2025, 10, 543. https://doi.org/10.3390/fishes10110543
Kim S, Jung HM, Lee S, Han H-S. Comparative Effects of Arthrobacter bussei-Derived Powder and Probiotics, and Haematococcus pluvialis Powder, as Dietary Supplements for Pacific White Shrimp (Litopenaeus vannamei). Fishes. 2025; 10(11):543. https://doi.org/10.3390/fishes10110543
Chicago/Turabian StyleKim, Soohwan, Hyun Mi Jung, Seunghan Lee, and Hyon-Sob Han. 2025. "Comparative Effects of Arthrobacter bussei-Derived Powder and Probiotics, and Haematococcus pluvialis Powder, as Dietary Supplements for Pacific White Shrimp (Litopenaeus vannamei)" Fishes 10, no. 11: 543. https://doi.org/10.3390/fishes10110543
APA StyleKim, S., Jung, H. M., Lee, S., & Han, H.-S. (2025). Comparative Effects of Arthrobacter bussei-Derived Powder and Probiotics, and Haematococcus pluvialis Powder, as Dietary Supplements for Pacific White Shrimp (Litopenaeus vannamei). Fishes, 10(11), 543. https://doi.org/10.3390/fishes10110543
 
        

 
       