Validation of Using Multiplex PCR with Sex Markers SSM4 and ALLWSex2 in Long-Term Stored Blood Samples to Determine Sex of the North American Shortnose Sturgeon (Acipenser brevirostrum)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Storage
2.2. Sex Confirmation
2.3. DNA Yield and Purity
2.4. Application of AllWSex2 and SSM4 Primers for Sex Discrimination
2.5. Experimental Design
2.6. Statistical Analysis
3. Results
3.1. Simplex Primer Verification
3.2. Effect of Sex on DNA Concentration and Ratios
3.3. Effect of Storage Time on DNA Concentration and Ratios
3.4. Effect of Storage Temperature on DNA Concentration and Ratios
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bemis, W.E.; Findeis, E.K.; Grande, L. An Overview of Acipenseriformes. In Sturgeon Biodiversity and Conservation; Birstein, V.J., Waldman, J.R., Bemis, W.E., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 25–71. ISBN 978-0-306-46854-4. [Google Scholar]
- The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/ja (accessed on 30 August 2024).
- Pikitch, E.K.; Doukakis, P.; Lauck, L.; Chakrabarty, P.; Erickson, D.L. Status, Trends and Management of Sturgeon and Paddlefish Fisheries. Fish Fish. 2005, 6, 233–265. [Google Scholar] [CrossRef]
- Congiu, L.; Striebel-Greiter, B.; Gessner, J.; Boscari, E.; Boner, M.; Jahrl, J.; Dalle Palle, S.; Ludwig, A. Identification and Tracking of Sturgeons and Paddlefish Products in Trade: Implications for Trade Control and Biodiversity Management. Aquaculture 2023, 574, 739708. [Google Scholar] [CrossRef]
- Litvak, M. The Sturgeons (Family: Acipenseridae). In Finfish Aquaculture Diversification; CABI: Wallingford, UK, 2010; pp. 178–199. [Google Scholar] [CrossRef]
- Billard, R.; Lecointre, G. Biology and Conservation of Sturgeon and Paddlefish. Rev. Fish Biol. Fish. 2000, 10, 355–392. [Google Scholar] [CrossRef]
- Pšenička, M.; Saito, T.; Linhartová, Z.; Gazo, I. Isolation and Transplantation of Sturgeon Early-Stage Germ Cells. Theriogenology 2015, 83, 1085–1092. [Google Scholar] [CrossRef]
- Anderson, W.G.; Schreier, A.; Crossman, J.A. Chapter 2—Conservation Aquaculture—A Sturgeon Story. In Fish Physiology; Fangue, N.A., Cooke, S.J., Farrell, A.P., Brauner, C.J., Eliason, E.J., Eds.; Conservation Physiology for the Anthropocene—Issues and Applications; Academic Press: Cambridge, MA, USA, 2022; Volume 39, pp. 39–109. [Google Scholar]
- Nelson, T.C.; Doukakis, P.; Lindley, S.T.; Schreier, A.D.; Hightower, J.E.; Hildebrand, L.R.; Whitlock, R.E.; Webb, M.A.H. Research Tools to Investigate Movements, Migrations, and Life History of Sturgeons (Acipenseridae), with an Emphasis on Marine-Oriented Populations. PLoS ONE 2013, 8, e71552. [Google Scholar] [CrossRef] [PubMed]
- Webb, M.A.H.; Doroshov, S.I. Importance of Environmental Endocrinology in Fisheries Management and Aquaculture of Sturgeons. Gen. Comp. Endocrinol. 2011, 170, 313–321. [Google Scholar] [CrossRef]
- Webb, M.A.H.; Van Eenennaam, J.P.; Crossman, J.A.; Chapman, F.A. A Practical Guide for Assigning Sex and Stage of Maturity in Sturgeons and Paddlefish. J. Appl. Ichthyol. 2019, 35, 169–186. [Google Scholar] [CrossRef]
- Balazadeh, K.; Litvak, M.K. Using Geometric Morphometrics for Sex Determination on Adult Shortnose Sturgeon (Acipenser brevirostrum). Aquaculture 2018, 487, 89–96. [Google Scholar] [CrossRef]
- Barulin, N.V. Using Machine Learning Algorithms to Analyse the Scute Structure and Sex Identification of Sterlet Acipenser ruthenus (Acipenseridae). Aquac. Res. 2019, 50, 2810–2825. [Google Scholar] [CrossRef]
- Barannikova, I.A.; Bayunova, L.V.; Semenkova, T.B. Serum Levels of Testosterone, 11-Ketotestosterone and Oestradiol-17β in Three Species of Sturgeon during Gonadal Development and Final Maturation Induced by Hormonal Treatment. J. Fish Biol. 2004, 64, 1330–1338. [Google Scholar] [CrossRef]
- Ceapa, C.; Williot, P.; Le Menn, F.; Davail-Cuisset, B. Plasma Sex Steroids and Vitellogenin Levels in Stellate Sturgeon (Acipenser stellatus Pallas) during Spawning Migration in the Danube River. J. Appl. Ichthyol. 2002, 18, 391–396. [Google Scholar] [CrossRef]
- Wheeler, C.R.; Novak, A.J.; Wippelhauser, G.S.; Sulikowski, J.A. Using Circulating Reproductive Hormones for Sex Determination of Atlantic Sturgeon (Acipenser oxyrinchus oxyrinchus) in the Saco River Estuary, Maine. Conserv. Physiol. 2016, 4, cow059. [Google Scholar] [CrossRef]
- Craig, J.M.; Papoulias, D.M.; Thomas, M.V.; Annis, M.L.; Boase, J. Sex Assignment of Lake Sturgeon (Acipenser fluvescens) Based on Plasma Sex Hormone and Vitellogenin Levels. J. Appl. Ichthyol. 2009, 25, 60–67. [Google Scholar] [CrossRef]
- Feist, G.; Van Eenennaam, J.P.; Doroshov, S.I.; Schreck, C.B.; Schneider, R.P.; Fitzpatrick, M.S. Early Identification of Sex in Cultured White Sturgeon, Acipenser transmontanus, Using Plasma Steroid Levels. Aquaculture 2004, 232, 581–590. [Google Scholar] [CrossRef]
- Matsche, M.A.; Gibbons, J. Annual Variation of Hematology and Plasma Chemistry in Shortnose Sturgeon, Acipenser brevirostrum, during a Dam-Impeded Spawning Run. Fish Physiol. Biochem. 2012, 38, 1679–1696. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, H.; Guiguen, Y.; Höhne, C.; Kreuz, E.; Du, K.; Klopp, C.; Lopez-Roques, C.; Yebra-Pimentel, E.S.; Ciorpac, M.; Gessner, J.; et al. A 180 Myr-Old Female-Specific Genome Region in Sturgeon Reveals the Oldest Known Vertebrate Sex Determining System with Undifferentiated Sex Chromosomes. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200089. [Google Scholar] [CrossRef] [PubMed]
- Ruan, R.; Feng, T.; Li, Y.; Yue, H.; Ye, H.; Du, H.; Liu, Q.; Ruan, J.; Li, C.; Wei, Q. Screening and Identification of Female-Specific DNA Sequences in Octaploid Sturgeon Using Comparative Genomics with High-Throughput Sequencing. Genomics 2021, 113, 4237–4244. [Google Scholar] [CrossRef] [PubMed]
- Sard, N.M.; Kreiser, B.R.; Pendleton, R.M.; Lubinski, B.A.; Johnson, R.L.; Fox, D.A.; Van Eenennaam, J.P.; Kahn, J.E.; Hager, C.; Higgs, A.L.; et al. Validation of a Molecular Sex Marker in Three Sturgeons from Eastern North America. Conserv. Genet. Resour. 2024, 16, 173–177. [Google Scholar] [CrossRef]
- Scribner, K.T.; Kanefsky, J. Molecular Sexing of Lake Sturgeon. J. Gt. Lakes Res. 2021, 47, 934–936. [Google Scholar] [CrossRef]
- Kanefsky, J.; Smith, S.; Scribner, K.T. Real-Time PCR-Based Method for Sex Determination in Lake Sturgeon (Acipenser fulvescens). Diversity 2022, 14, 839. [Google Scholar] [CrossRef]
- Sanfilippo, G.E.; Riedy, J.J.; Larson, D.L.; Scribner, K.T. Multi-Year Evidence of Unbiased Sex Ratios in Hatchery and Wild-Reared Age-0 Lake Sturgeon (Acipenser fulvescens). J. Gt. Lakes Res. 2022, 48, 1306–1313. [Google Scholar] [CrossRef]
- Daigle, N.J.; White, S.; Lubinski, B.A.; Johnson, R.; Kazyak, D.C.; Verhille, C.E.; Gillis, C.A.; Sacobie, C.F.D. Stock Composition of Cryptic Atlantic Sturgeon (Acipenser oxyrinchus oxyrinchus) in the Restigouche River and Estuary, Canada. Sci. Rep. 2025, 15, 20654. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.J.; Baumgartner, W.; Brinkman, E.; DeVries, R.J.; Stewart, H.A.; Aboagye, D.L.; Ramee, S.W.; Ciaramella, M.A.; Culpepper, C.M., III; Petrie-Hanson, L. Fin Healing and Regeneration in Sturgeon. J. Fish Biol. 2018, 93, 917–930. [Google Scholar] [CrossRef]
- Smith, A.; Marty, J.; Power, M. Non-Lethal Sampling of Lake Sturgeon for Stable Isotope Analysis: Comparing Pectoral Fin-Clip and Dorsal Muscle for Use in Trophic Studies. J. Gt. Lakes Res. 2015, 41, 292–297. [Google Scholar] [CrossRef]
- Smith, L.; Burgoyne, L. Collecting, Archiving and Processing DNA from Wildlife Samples Using FTA® Databasing Paper. BMC Ecol. 2004, 4, 4. [Google Scholar] [CrossRef]
- Gui, L.; Li, X.; Lin, S.; Zhao, Y.; Lin, P.; Wang, B.; Tang, R.; Guo, J.; Zu, Y.; Zhou, Y.; et al. Low-Cost and Rapid Method of DNA Extraction from Scaled Fish Blood and Skin Mucus. Viruses 2022, 14, 840. [Google Scholar] [CrossRef]
- National Marine Fisheries Service. Recovery Plan for the Shortnose Sturgeon (Acipenser brevirostrum); Prepared by the Shortnose Sturgeon Recovery Team for the National Marine Fisheries Service: Silver Spring, MD, USA, 1998; p. 104. [Google Scholar]
- COSEWIC Shortnose Sturgeon (Acipenser brevirostrum): COSEWIC Assessment and Status Report 2015. Available online: https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/shortnose-sturgeon-2015.html (accessed on 30 August 2024).
- Dadswell, M.J. Biology and Population Characteristics of the Shortnose Sturgeon, Acipenser brevirostrum LeSueur 1818 (Osteichthyes: Acipenseridae), in the Saint John River Estuary, New Brunswick, Canada. Can. J. Zool. 1979, 57, 2186–2210. [Google Scholar] [CrossRef]
- Kynard, B.; Bolden, S.; Kieffer, M.; Collins, M.; Brundage, H.; Hilton, E.J.; Litvak, M.; Kinnison, M.T.; King, T.; Peterson, D. Life History and Status of Shortnose Sturgeon (Acipenser brevirostrum LeSueur, 1818). J. Appl. Ichthyol. 2016, 32, 208–248. [Google Scholar] [CrossRef]
- Bahn, R.A.; Fleming, J.E.; Peterson, D.L. Bycatch of Shortnose Sturgeon in the Commercial American Shad Fishery of the Altamaha River, Georgia. N. Am. J. Fish. Manag. 2012, 32, 557–562. [Google Scholar] [CrossRef]
- Chambers, R.C.; Davis, D.D.; Habeck, E.A.; Roy, N.K.; Wirgin, I. Toxic Effects of PCB126 and TCDD on Shortnose Sturgeon and Atlantic Sturgeon. Environ. Toxicol. Chem. 2012, 31, 2324–2337. [Google Scholar] [CrossRef] [PubMed]
- Struthers, D.P.; Bower, S.D.; Lennox, R.J.; Gilroy, C.E.; MacDonald, E.C.; Cooke, S.J.; Litvak, M.K. Short-Term Physiological Disruption and Reflex Impairment in Shortnose Sturgeon Exposed to Catch-and-Release Angling. N. Am. J. Fish Manag. 2018, 38, 1075–1084. [Google Scholar] [CrossRef]
- Davis, M.W. Fish Stress and Mortality Can Be Predicted Using Reflex Impairment. Fish Fish. 2010, 11, 1–11. [Google Scholar] [CrossRef]
- McLean, M.F.; Hanson, K.C.; Cooke, S.J.; Hinch, S.G.; Patterson, D.A.; Nettles, T.L.; Litvak, M.K.; Crossin, G.T. Physiological Stress Response, Reflex Impairment and Delayed Mortality of White Sturgeon Acipenser transmontanus Exposed to Simulated Fisheries Stressors. Conserv. Physiol. 2016, 4, cow031. [Google Scholar] [CrossRef]
- McLean, M.F.; Litvak, M.K.; Cooke, S.J.; Hanson, K.C.; Patterson, D.A.; Hinch, S.G.; Crossin, G.T. Immediate Physiological and Behavioural Response from Catch-and-Release of Wild White Sturgeon (Acipenser transmontanus Richardson, 1836). Fish. Res. 2019, 214, 65–75. [Google Scholar] [CrossRef]
- McLean, M.F.; Litvak, M.K.; Stoddard, E.M.; Cooke, S.J.; Patterson, D.A.; Hinch, S.G.; Welch, D.W.; Crossin, G.T. Linking Environmental Factors with Reflex Action Mortality Predictors, Physiological Stress, and Post-Release Movement Behaviour to Evaluate the Response of White Sturgeon (Acipenser transmontanus Richardson, 1836) to Catch-and-Release Angling. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020, 240, 110618. [Google Scholar] [CrossRef]
- Balazadeh, K.; Litvak, M.K. Exploring Fractal Dimensions on Ultrasound of Gonadal Images for Sex Determination in Shortnose Sturgeon (Acipenser brevirostrum). bioRxiv 2024. bioRxiv:2024.10.31.621316. [Google Scholar] [CrossRef]
- Oosting, T.; Hilario, E.; Wellenreuther, M.; Ritchie, P.A. DNA Degradation in Fish: Practical Solutions and Guidelines to Improve DNA Preservation for Genomic Research. Ecol. Evol. 2020, 10, 8643. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice Hall/Pearson: Upper Saddle River, NJ, USA, 1999; p. 07458. [Google Scholar]
- R Core Team. _R: A Language and Environment for Statistical Computing_2024; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 14 September 2025).
- Hoorfar, J.; Cook, N.; Malorny, B.; Wagner, M.; De Medici, D.; Abdulmawjood, A.; Fach, P. Diagnostic PCR: Making Internal Amplification Control Mandatory. Lett. Appl. Microbiol. 2004, 38, 79–80. [Google Scholar]
- Hoorfar, J.; Wolffs, P.; Rådström, P. Diagnostic PCR: Validation and Sample Preparation Are Two Sides of the Same Coin. APMIS 2004, 112, 808–814. [Google Scholar] [CrossRef]
- Espy, M.J.; Uhl, J.R.; Sloan, L.M.; Buckwalter, S.P.; Jones, M.F.; Vetter, E.A.; Yao, J.D.C.; Wengenack, N.L.; Rosenblatt, J.E.; Cockerill, F.R.; et al. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing. Clin. Microbiol. Rev. 2006, 19, 165–256. [Google Scholar] [CrossRef]
- Rosenstraus, M.; Wang, Z.; Chang, S.-Y.; DeBonville, D.; Spadoro, J.P. An Internal Control for Routine Diagnostic PCR: Design, Properties, and Effect on Clinical Performance. J. Clin. Microbiol. 1998, 36, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Robles, F.; de la Herrán, R.; Ludwig, A.; Ruiz Rejón, C.; Ruiz Rejón, M.; Garrido-Ramos, M.A. Evolution of Ancient Satellite DNAs in Sturgeon Genomes. Gene 2004, 338, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yang, N.; Liu, Z.; Chen, Q.; Li, Y. Phylogenetic Perspective on the Relationships and Evolutionary History of the Acipenseriformes. Genomics 2020, 112, 3511–3517. [Google Scholar] [CrossRef]
- Blom, M.P.K. Opportunities and Challenges for High-Quality Biodiversity Tissue Archives in the Age of Long-Read Sequencing. Mol. Ecol. 2021, 30, 5935–5948. [Google Scholar] [CrossRef]
- Dahn, H.A.; Mountcastle, J.; Balacco, J.; Winkler, S.; Bista, I.; Schmitt, A.D.; Pettersson, O.V.; Formenti, G.; Oliver, K.; Smith, M.; et al. Benchmarking Ultra-High Molecular Weight DNA Preservation Methods for Long-Read and Long-Range Sequencing. GigaScience 2022, 11, giac068. [Google Scholar] [CrossRef] [PubMed]





| Year | Storage Temperature (°C) | Sex | Number |
|---|---|---|---|
| 2016 | −80 | male | 8 |
| 2016 | −80 | female | 8 |
| 2022 | −80 | male | 8 |
| 2022 | −20 | male | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozveh, H.S.T.; Dorafshan, S.; Benfey, T.J.; Addison, J.A.; Litvak, M.K. Validation of Using Multiplex PCR with Sex Markers SSM4 and ALLWSex2 in Long-Term Stored Blood Samples to Determine Sex of the North American Shortnose Sturgeon (Acipenser brevirostrum). Fishes 2025, 10, 478. https://doi.org/10.3390/fishes10100478
Pozveh HST, Dorafshan S, Benfey TJ, Addison JA, Litvak MK. Validation of Using Multiplex PCR with Sex Markers SSM4 and ALLWSex2 in Long-Term Stored Blood Samples to Determine Sex of the North American Shortnose Sturgeon (Acipenser brevirostrum). Fishes. 2025; 10(10):478. https://doi.org/10.3390/fishes10100478
Chicago/Turabian StylePozveh, Hajar Sadat Tabatabaei, Salar Dorafshan, Tillmann J. Benfey, Jason A. Addison, and Matthew K. Litvak. 2025. "Validation of Using Multiplex PCR with Sex Markers SSM4 and ALLWSex2 in Long-Term Stored Blood Samples to Determine Sex of the North American Shortnose Sturgeon (Acipenser brevirostrum)" Fishes 10, no. 10: 478. https://doi.org/10.3390/fishes10100478
APA StylePozveh, H. S. T., Dorafshan, S., Benfey, T. J., Addison, J. A., & Litvak, M. K. (2025). Validation of Using Multiplex PCR with Sex Markers SSM4 and ALLWSex2 in Long-Term Stored Blood Samples to Determine Sex of the North American Shortnose Sturgeon (Acipenser brevirostrum). Fishes, 10(10), 478. https://doi.org/10.3390/fishes10100478

