Inferring Bivariate Polynomials for Homomorphic Encryption Application
Abstract
:1. Introduction
1.1. Our Results
1.2. Related Work
1.3. Structure of the Paper
2. Preliminaries
2.1. Notations
2.2. Modular Knapsack Problems
2.3. Lattice Reduction: A Tool for Solving Modular Knapsacks
Lattice Reduction-Based Algorithms for Solving (Modular) Knapsacks
Algorithm 1: Algorithm SV. |
|
Algorithm 2: Howgrave-Joux Algorithm for Solving Modular Knapsacks. |
|
3. A New Look at Homomorphic Encryption
3.1. Constructing Polynomials Based on Homomorphic Operations
3.2. Defining the Problem
- Bob chooses a polynomial ();
- Alice chooses two numbers () and sends them to Bob;
- Bob computes using the values received from Alice, then sends the result to Alice;
- Given r, Alice attempts to infer P from r;
- If Alice is not successful, then she repeats steps 2 and 3 until she accumulates enough data to guess P.
4. Interpolating Bivariate Polynomials
- Case 1:
- When a is larger than all of P’s coefficients and the number of pairs (n) is equal to , the algorithm always outputs the correct polynomial.
- Case 2:
- When a is less than all of P’s coefficients and the number of pairs (n) is equal to , the algorithm outputs a polynomial (P), although not the correct polynomial.
- Case 3:
- When n is less than , it is possible that some of the values (see Algorithm 3) become negative; thus, the algorithm returns ⊥, since it is clear that the computed polynomial is not correct.
Algorithm 3: Tries to compute a polynomial P such that . |
Algorithm 4: Probes Bob until it finds the correct P. |
5. Lattice-Based Approaches for Reconstructing Bivariate Polynomials
Algorithm 5: Tries to compute a polynomial P such that . |
6. Implementation
6.1. Performance Analysis
6.2. Recommendations
7. Conclusions
Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dertouzos, M.L.; Rivest, R.L.; Adleman, L. On Data Banks and Privacy Homomorphisms. In Foundations of Secure Computation; Academia Press: Cambridge, MA, USA, 1978; pp. 169–179. [Google Scholar]
- Rivest, R.L.; Shamir, A.; Adleman, L. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Gentry, C. A Fully Homomorphic Encryption Scheme. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2009. [Google Scholar]
- van Dijk, M.; Gentry, C.; Halevi, S.; Vaikuntanathan, V. Fully Homomorphic Encryption over the Integers. In Proceedings of the EUROCRYPT’10; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6110, pp. 24–43. [Google Scholar]
- Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. Fully Homomorphic Encryption without Bootstrapping. Cryptology ePrint Archive, Paper 2011/277. 2011. Available online: https://eprint.iacr.org/2011/277.pdf (accessed on 25 May 2023).
- Fan, J.; Vercauteren, F. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive, Paper 2012/144. 2012. Available online: https://eprint.iacr.org/2012/144.pdf (accessed on 25 May 2023).
- Brakerski, Z. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. In Proceedings of the CRYPTO’12; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7417, pp. 868–886. [Google Scholar]
- Bos, J.W.; Lauter, K.E.; Loftus, J.; Naehrig, M. Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme. In Proceedings of the IMACC’13; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8308, pp. 45–64. [Google Scholar]
- Gentry, C.; Sahai, A.; Waters, B. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In Proceedings of the CRYPTO’13; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8042, pp. 75–92. [Google Scholar]
- Brakerski, Z.; Vaikuntanathan, V. Lattice-Based FHE as Secure as PKE. In Proceedings of the ITCS’14; Association for Computing Machinery: New York, NY, USA, 2014; pp. 1–12. [Google Scholar]
- Carpov, S.; Chillotti, I.; Gama, N.; Georgieva, M.; Izabachene, M. TFHE: Fast Fully Homomorphic Encryption Library. 2016. Available online: https://tfhe.github.io/tfhe (accessed on 25 May 2023).
- Cheon, J.H.; Kim, A.; Kim, M.; Song, Y.S. Homomorphic Encryption for Arithmetic of Approximate Numbers. In Proceedings of the ASIACRYPT’17; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10624, pp. 409–437. [Google Scholar]
- Li, B.; Micciancio, D. On the Security of Homomorphic Encryption on Approximate Numbers. In Proceedings of the EUROCRYPT’21; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2021; Volume 12696, pp. 648–677. [Google Scholar]
- A Curated List of Amazing Homomorphic Encryption Libraries, Software and Resources. 2023. Available online: https://github.com/jonaschn/awesome-he (accessed on 25 May 2023).
- Williams, E.A. Driven by Privacy, Homomorphic Encryption Is Changing the Way We Do Business. 2021. Available online: https://www.forbes.com/sites/forbestechcouncil/2021/05/19/driven-by-privacy-homomorphic-encryption-is-changing-the-way-we-do-business/?sh=60d688004cbf (accessed on 25 May 2023).
- Jackson, A. 20 Use Cases of Homomorphic Encryption Every CISO Must Know. 2023. Available online: https://www.linkedin.com/pulse/20-use-cases-homomorphic-encryption-every-ciso-must-know-jackson-/ (accessed on 25 May 2023).
- Bos, J.W.; Lauter, K.; Naehrig, M. Private Predictive Analysis on Encrypted Medical Data. J. Biomed. Inform. 2014, 50, 234–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Zhu, L.; Xu, C.; Lu, R. PPDP: An Efficient and Privacy-Preserving Disease Prediction Scheme in Cloud-Based e-Healthcare System. Future Gener. Comput. Syst. 2018, 79, 16–25. [Google Scholar] [CrossRef]
- Munjal, K.; Bhatia, R. A Systematic Review of Homomorphic Encryption and its Contributions in Healthcare Industry. Complex Intell. Syst. 2022, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Ayday, E. Cryptographic Solutions for Genomic Privacy. In Proceedings of the FC 2016; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9604, pp. 328–341. [Google Scholar]
- Graepel, T.; Lauter, K.; Naehrig, M. ML Confidential: Machine Learning on Encrypted Data. In Proceedings of the ICISC 2012; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7839, pp. 1–21. [Google Scholar]
- Cheon, J.H.; Jeong, J.; Lee, J.; Lee, K. Privacy-Preserving Computations of Predictive Medical Models with Minimax Approximation and Non-Adjacent Form. In Proceedings of the FC 2017; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10323, pp. 53–74. [Google Scholar]
- Marcolla, C.; Sucasas, V.; Manzano, M.; Bassoli, R.; Fitzek, F.H.; Aaraj, N. Survey on Fully Homomorphic Encryption, Theory, and Applications. Proc. IEEE 2022, 110, 1572–1609. [Google Scholar] [CrossRef]
- Derler, D.; Ramacher, S.; Slamanig, D. Homomorphic Proxy Re-Authenticators and Applications to Verifiable Multi-User Data Aggregation. In Proceedings of the FC 2017; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10322, pp. 124–142. [Google Scholar]
- Diallo, M.H.; August, M.; Hallman, R.; Kline, M.; Au, H.; Beach, V. CallForFire: A Mission-Critical Cloud-Based Application Built Using the Nomad Framework. In Proceedings of the FC 2016; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9604, pp. 319–327. [Google Scholar]
- Doröz, Y.; Çetin, G.S.; Sunar, B. On-the-fly Homomorphic Batching/Unbatching. In Proceedings of the FC 2016; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9604, pp. 288–301. [Google Scholar]
- Kincaid, D.; Kincaid, D.R.; Cheney, E.W. Numerical Analysis: Mathematics of Scientific Computing; American Mathematical Society: Providence, RI, USA, 2009; Volume 2. [Google Scholar]
- Lagarias, J.C.; Odlyzko, A.M. Solving Low-Density Subset Sum Problems. J. ACM 1985, 32, 229–246. [Google Scholar] [CrossRef]
- Coster, M.J.; Joux, A.; LaMacchia, B.A.; Odlyzko, A.M.; Schnorr, C.P.; Stern, J. Improved Low-Density Subset Sum Algorithms. Comput. Complex. 1992, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Howgrave-Graham, N.; Joux, A. New Generic Algorithms for Hard Knapsacks. In Proceedings of the EUROCRYPT’10; Gilbert, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 235–256. [Google Scholar]
- Becker, A.; Coron, J.S.; Joux, A. Improved Generic Algorithms for Hard Knapsacks. In Proceedings of the EUROCRYPT’11; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; pp. 364–385. [Google Scholar]
- Nguyen, P.Q.; Stehlé, D. An LLL Algorithm with Quadratic Complexity. SIAM J. Comput. 2009, 39, 874–903. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, P.; Espitau, T.; Fouque, P.A. Towards Faster Polynomial-Time Lattice Reduction. In Proceedings of the CRYPTO’21; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2021; Volume 12826, pp. 760–790. [Google Scholar]
- Koy, H.; Schnorr, C.P. Segment LLL-Reduction of Lattice Bases. In Proceedings of the Cryptography and Lattices; Springer: Berlin/Heidelberg, Germany, 2001; pp. 67–80. [Google Scholar]
- Schnorr, C.P. Fast LLL-type lattice reduction. Inf. Comput. 2006, 204, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.Q.; Stern, J. Adapting Density Attacks to Low-Weight Knapsacks. In Proceedings of the ASIACRYPT; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3788, pp. 41–58. [Google Scholar]
- Micchelli, C.A. Algebraic Aspects of Interpolation. In Proceedings of Symposia in Applied Mathematics; AMS: New York, NY, USA, 1986; Volume 36, pp. 81–102. [Google Scholar]
- Saniee, K. A Simple Expression for Multivariate Lagrange Interpolation. SIAM Undergrad. Res. Online 2008, 1, 1–9. [Google Scholar] [CrossRef]
- Garey, M.R.; Johnson, D.S. Computers and Intractability; A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York, NY, USA, 1990. [Google Scholar]
- Martello, S.; Toth, P. Knapsack Problems: Algorithms and Computer Implementations; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1990. [Google Scholar]
- Merkle, R.; Hellman, M. Hiding Information and Signatures in Trapdoor Knapsacks. IEEE Trans. Inf. Theory 1978, 24, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Naccache, D.; Stern, J. A New Public-Key Cryptosystem. In Proceedings of the EUROCRYPT ’97; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1997; Volume 1233, pp. 27–36. [Google Scholar]
- Salomaa, A. A Deterministic Algorithm for Modular Knapsack Problems. Theor. Comput. Sci. 1991, 88, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Chee, Y.M.; Joux, A.; Stern, J. The Cryptanalysis of a New Public-Key Cryptosystem Based on Modular Knapsacks. In Proceedings of the CRYPTO’91; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1991; Volume 576, pp. 204–212. [Google Scholar]
- Hoffstein, J.; Pipher, J.; Silverman, J. An Introduction to Mathematical Cryptography; Undergraduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Anzala-Yamajako, A. Review of Algorithmic Cryptanalysis, by Antoine Joux. SIGACT News 2012, 43, 13–16. [Google Scholar] [CrossRef]
- Lenstra, A.; Lenstra, H.; Lovász, L. Factoring polynomials with rational coefficients. Math. Ann. 1982, 261, 515–534. [Google Scholar] [CrossRef]
- Schroeppel, R.; Shamir, A. A T = O(2n/2), S = O(2n/4) Algorithm for Certain NP-Complete Problems. SIAM J. Comput. 1981, 10, 456–464. [Google Scholar] [CrossRef]
- Schnorr, C. A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms. Theor. Comput. Sci. 1987, 53, 201–224. [Google Scholar] [CrossRef] [Green Version]
- fpLLL. 2022. Available online: https://github.com/fplll/fplll (accessed on 25 May 2023).
- Kirchner, P.; Espitau, T.; Fouque, P.A. Fast Reduction of Algebraic Lattices over Cyclotomic Fields. In Proceedings of the CRYPTO’20; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12171, pp. 155–185. [Google Scholar]
- Ryan, K.; Heninger, N. Fast Practical Lattice Reduction through Iterated Compression. Cryptology ePrint Archive, Paper 2023/237. 2023. Available online: https://eprint.iacr.org/2023/237 (accessed on 25 May 2023).
- Aho, A.; Sloane, N. Some Doubly Exponential Sequences. Fibonacci Q. 1973, 11, 429–437. [Google Scholar]
- Sequence A007018. Available online: https://oeis.org/A007018 (accessed on 25 May 2023).
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ferguson, H.R.P.; Bailey, D.H.; Kutler, P. A Polynomial Time, Numerically Stable Integer Relation Algorithm; NASA Technical Report RNR–91–032. 1991. Available online: https://ntrs.nasa.gov/citations/20020052399 (accessed on 25 May 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maimuţ, D.; Teşeleanu, G. Inferring Bivariate Polynomials for Homomorphic Encryption Application. Cryptography 2023, 7, 31. https://doi.org/10.3390/cryptography7020031
Maimuţ D, Teşeleanu G. Inferring Bivariate Polynomials for Homomorphic Encryption Application. Cryptography. 2023; 7(2):31. https://doi.org/10.3390/cryptography7020031
Chicago/Turabian StyleMaimuţ, Diana, and George Teşeleanu. 2023. "Inferring Bivariate Polynomials for Homomorphic Encryption Application" Cryptography 7, no. 2: 31. https://doi.org/10.3390/cryptography7020031
APA StyleMaimuţ, D., & Teşeleanu, G. (2023). Inferring Bivariate Polynomials for Homomorphic Encryption Application. Cryptography, 7(2), 31. https://doi.org/10.3390/cryptography7020031