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Abstract: Inspired by the advancements in (fully) homomorphic encryption in recent decades and its
practical applications, we conducted a preliminary study on the underlying mathematical structure
of the corresponding schemes. Hence, this paper focuses on investigating the challenge of deducing
bivariate polynomials constructed using homomorphic operations, namely repetitive additions and
multiplications. To begin with, we introduce an approach for solving the previously mentioned
problem using Lagrange interpolation for the evaluation of univariate polynomials. This method is
well-established for determining univariate polynomials that satisfy a specific set of points. Moreover,
we propose a second approach based on modular knapsack resolution algorithms. These algorithms
are designed to address optimization problems in which a set of objects with specific weights and
values is involved. Finally, we provide recommendations on how to run our algorithms in order to
obtain better results in terms of precision.

Keywords: bivariate polynomial; Lagrange interpolation; modular knapsack problem; lattice reduction

1. Introduction

The concept of homomorphic encryption [1] has been an area of active research
and development since the introduction of the RSA cryptosystem in the late 1970s [2].
Homomorphic encryption is a cryptographic technique that enables operations to be
performed directly on encrypted data, without requiring decryption first. This allows
for calculations of sensitive data without revealing information to the party performing
the computation.

The development of the previously mentioned area has been driven by the need
for privacy-preserving computation in various fields, such as health care, finance, and
data analysis. Cloud computing has revived the interest of researchers in homomorphic
encryption (HE), given that it promises the potential to allow organizations to perform
analyses and calculations on sensitive data while maintaining the privacy of the individuals
whose data are being studied.

Partially homomorphic cryptosystems, which allow for computation of only specific
operations on encrypted data, have been known for decades. However, a fully homomor-
phic encryption scheme (FHE), which enables arbitrary computations to be performed, was
first detailed in 2009 by Gentry in [3]. This breakthrough has opened up new possibili-
ties for privacy-preserving processing and has led to further research and development.
Besides Gentry’s proposal, another first generation FHE scheme was published in [4].
Second-generation FHE schemes were presented in [5–8], third-generation schemes were
proposed in [9–11], and fourth-generation FHE schemes were detailed in [12,13]. Various
corresponding libraries have been developed since 2009 [14].
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Banking-related applications of HE are detailed in [15,16]. To provide the reader
with a basic example, let us consider a banker, Bob, who maintains a ciphertext ( f (m)) of
Alice’s bank account balance (m). In this scenario, homomorphic encryption enables Bob to
perform operations on Alice’s bank account balance without ever having to decrypt the
ciphertext and expose the original value of m. This means that Bob can perform operations
such as crediting the account with a certain amount ( f (m + a)) or applying an interest rate
( f (m · a)) without ever having access to the actual value of m.

Another example of a HE application can be considered in health care, more pre-
cisely for analyzing medical records [17–22]. Medical records often contain sensitive and
confidential information about patients, such as their medical history, test results, and
personal identifying information. By using homomorphic encryption, medical researchers
and healthcare providers can analyze encrypted medical records without ever having to de-
crypt the data and expose the patients’ private information. For example, HE could be used
to analyze medical records to identify patterns or trends in certain diseases or conditions.
This information could be used to improve patient outcomes, develop new treatments,
and advance medical research. Another healthcare scenario would be to securely share
medical records between providers, such as doctors and hospitals while still ensuring that
the sensitive information remains confidential and protected.

Other classical HE applications are discussed in [23–26]: cloud computing, multiparty
computation, authenticated encryption, Internet of Things, etc.

As we will see, in a number of interesting cases, it is possible, given the ciphertext, to
infer the operations performed on the cleartext.

1.1. Our Results

In this paper, we propose two types of algorithms for identifying a polynomial (P)
such that P(a, b) = r, given the natural numbers a, b, r. The first algorithm is based on
modular Lagrange interpolation, which is a technique used for finding a polynomial that
passes through a given set of points [27]. The second algorithm is inspired by (modular)
knapsack resolution algorithms, which are used to solve optimization problems involving
a set of objects with certain weights and values [28–36].

Our work is a preliminary step in reverse engineering proprietary algorithms that fall
in the category of homomorphic encryption by analyzing the operations performed on
data, even though the data are encrypted. Through the proposed techniques, it is possible
to identify the exact polynomial used by the system, even if it is custom. Therefore, the
algorithms should be better protected by either limiting the amount of data being analyzed
or by increasing the density of the polynomial coefficients.

1.2. Related Work

To the best of our knowledge, this is the first paper to study the problem of inferring
polynomials resulting from repetitive use of homomorphic encryption. Therefore, in this
section, we only address papers that are related to polynomial interpolation and knapsack
resolution algorithms.

Multivariate polynomial interpolation is a fundamental technique in many areas of ap-
plied mathematics, including cryptography. Several methods for interpolating multivariate
polynomials have been proposed in the literature, each with their advantages and disad-
vantages. A review of these techniques can be found in [27]. One of the most important
methods is the generalization of Newton’s technique [37], which allows for the automatic
adjustment of the degree of a polynomial when new points are added or removed. This is
accomplished by adding or removing terms that correspond to new points, without having
to discard already existing terms. This is a significant advantage over Lagrange’s technique,
which is easier to implement but requires recomputing of the entire polynomial each time
new points are added [38]. Overall, the choice of which method to use depends on the
specific application and the tradeoffs between efficiency and ease of implementation.
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The subset sum problem [28,29,39] and the knapsack problem [30,31,36,40] were stud-
ied in the past and continue to be interesting topics for applied mathematics. The modular
knapsack problem is a mathematical optimization problem that has been extensively stud-
ied in cryptography due to its potential applications in creating secure cryptosystems. The
difficulty of this problem makes it a good candidate for use in the creation of encryption
schemes that rely on the computational difficulty of solving the problem. Some well-known
examples of cryptosystems based on the modular knapsack problem include one of the
earliest public key encryption algorithms published in [41]. Several methods have been pro-
posed to solve the (modular) knapsack problem, including lattice reduction techniques and
meet-in-the-middle attack. Cryptographic systems based on the modular multiplicative
knapsack problem were also proposed in [42]. We provide the reader with more insight on
the previously mentioned related problems in Section 2.

Moreover, the modular knapsack problem has particularly attracted the attention
of various researchers for more than three decades [43,44], and it is of particular inter-
est for the current work, as we propose an algorithm based on a modular knapsack
resolution algorithm.

1.3. Structure of the Paper

Section 2 recalls technical details regarding the modular knapsack problem and meth-
ods for solving it, especially lattice reduction-based resolution algorithms. In Section 3, we
provide the reader with the mathematical background necessary to better understand the
problem that we aim to solve. We propose a first type of solution for polynomial evaluation
in Section 4. Moreover, we propose a second kind of method for the discussed matter in
Section 5. We present the results of our implementations in Section 6. We present our
conclusions and suggest future research directions in Section 7.

2. Preliminaries
2.1. Notations

Throughout the paper, the notation #S denotes the cardinality of a set (S). The assign-
ment of value y to variable x is denoted by x ← y. The subset {0, . . . , s} ∈ N is denoted by
[0, s]. A vector (v) of length n is denoted by either v = (v0, . . . , vn−1) or v = {vi}i∈[0,n−1].

2.2. Modular Knapsack Problems

The subset sum problem [39] is a well-known NP-complete computational problem in
computer science that seeks to find a subset of a given set of integers, the sum of which
equals a given target value. The subset sum problem is considered to be very important in
computational complexity theory and has various applications in cryptography.

The knapsack problem [40] is another widely known computational problem in com-
puter science that involves selecting a subset of items with maximum values while adhering
to a weight constraint. The problem has various real-world applications, including cryp-
tography (as already stated in Section 1). The knapsack problem is also NP-complete.

There are some key differences between the subset sum problem and the knapsack
problem, the first of which focuses on finding a subset that adds up to a specific value,
while the second focuses on maximizing the value of a subset subject to a weight constraint.

Within the current paper, we are particularly interested in the modular knapsack
problem. The modular knapsack problem is an important variation of the knapsack problem
in which items have a value, a weight, and a modular coefficient. The goal is to select a
subset of items that maximizes the total value while respecting a weight constraint and a
modular constraint. The problem has applications in cryptography, as stated in Section 1.
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Definition 1 (The 0− 1 modular knapsack problem). Let a1, . . . , an be positive integers and
M, S integers. The modular knapsack problem consists of finding e1, . . . , en ∈ {0, 1} such that

n

∑
i=1

aiei ≡ S mod M. (1)

Remark 1. The generic modular knapsack problem is largely the same as the problem in Definition 1,
except that e1, . . . , en are not necessarily 0 or 1.

Under some assumptions, we have an equivalence between solving the classical
subset sum problem and the modular subset sum problem. When we are not dealing with
polynomial factors, basically, any algorithm that solves one of the problems can be used
to find solutions for the other. More precisely, given an algorithm that solves a knapsack
problem over the integers, we have the following:

• Consider Equation (1) with ai ∈ [0, M− 1];
• It follows immediately that any sum of, at most, n numbers is in [0, nM− 1] (e.g., ai);
• If S ∈ [0, M− 1], then solving n knapsacks over the integers with target sums S, S +

M, . . . , S + (n− 1)M means solving the modular knapsack given by Equation (1).

Definition 2 (The density of subset sum algorithms). The density of a set of weights ({a1, . . . , an})
is defined as

d =
n

log2 max(ai)
. (2)

In order to solve low-density knapsacks, lattice reduction is a very useful tool. Ac-
cording to [31], lattice reduction-based solutions are not an option when the density of the
knapsack is close to one.

2.3. Lattice Reduction: A Tool for Solving Modular Knapsacks

We refer the reader to [45] for basic definitions and properties of lattices, as these
concepts exceed the scope of our paper.

Two of the fundamental computational problems associated with a lattice are the
shortest vector problem (SVP) and the closest vector problem (CVP).

Definition 3 (SVP). Find the shortest non-zero vector in a lattice (L), i.e., find a non-zero vector
(v ∈ L) that minimizes the Euclidean norm (‖ vs. ‖).

Definition 4 (CVP). Given a vector (w ∈ Rn) that is not in L, find a vector (v ∈ L) that is closest
to w, i.e., find a vector (v ∈ L) that minimizes the Euclidean norm (‖ w− v ‖).

Remark 2. If a lattice (L) has a basis consisting of vectors that are pairwise orthogonal, it is easy to
solve both the SVP and CVP.

As this is not the usual case, in order to solve the SVP and CVP for L, we must find
a basis for which the vectors are sufficiently orthogonal to one another. This leads to
lattice basis reduction (finding a basis with short, nearly orthogonal vectors). Gauss’s
lattice reduction [46] is efficient when dealing with a two-dimensional lattice, but as the
dimensions increase, CVP and SVP become computationally difficult. When the dimensions
increase, a unique definition of a reduced lattice is not available. A widely known example
of a polynomial-time algorithm for finding a suitable basis in the high-dimension case is
LLL [47].

The first lattice algorithms were developed to solve knapsacks considered reductions
of the given problem, i.e., the SVP [29]. In [36], it was shown that a knapsack problem can
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be reduced to the CVP. However, it was stated that in the case of low-weight knapsacks,
the CVP and SVP are not notably different.

Lattice Reduction-Based Algorithms for Solving (Modular) Knapsacks

In the case of random knapsack problems, the attack presented in [28] can solve
knapsacks with a density d < 0.64, given an oracle solving the SVP in lattices. For
legacy purposes, we recall the Lagarias–Odlyzko algorithm for solving modular knapsack
problems as presented in [28]. We further refer to Algorithm 1 as SV.

Algorithm 1: Algorithm SV.
Input: A vector a = (a1, . . . , an) of positive integers and an integer S.
Output: A feasible solution e = (e1, . . . , en, 0) to a knapsack in accordance with

Definition 1.

1 Take the following vectors as a basis [b1, . . . , bn+2] for an n + 2-dimensional
integer lattice L:

b1 = (1, 0, . . . , 0,−a1)

b2 = (0, 1, . . . , 0,−a2)

. . .

bn = (0, . . . , 1, 0,−an)

bn+1 = (0, . . . , 0, 1, S)

Find a reduced basis [b∗1 , . . . , b∗n+2] of L using the LLL algorithm.
2 Check if any b∗i = (b∗i,1, . . . , b∗i,n+2) has all b∗i,j = 0 or λ for some fixed λ for

1 ≤ j ≤ n. For any such b∗i check whether ej = λ−1b∗i,j for 1 ≤ j ≤ n gives a
solution to the knapsack, and if so, stop. Otherwise, continue.

3 Repeat steps 1–3 with S replaced by S′ = ∑n
i=1 ai − S, then stop.

The previously mentioned attack was improved in [29] for densities up to d < 0.94.
This can be achieved by a simple modification of SV. The main difference between the
algorithm in [28] and the method in [29] consists of the lattice (L) for which a reduced basis
must be found: the vector bn+1 = (0, . . . , 0, S) is replaced by b

′
n+1 =

(
1
2 , . . . , 1

2 , S
)

. In SV,
the solution vector of the knapsack problem was in L, but in this case, it is not. Instead of

the solution vector (−→e = (e1, . . . , en, 0)), we have the vector
−→
e′ = (e1 − 1

2 , . . . , en − 1
2 , 0).

In order to modify the SV algorithm and its version presented in [29] to solve modular
knapsack problems, only a straightforward modification is required: using the modulus
(M) as an input and adding a vector (bn+2 = (0, . . . , M)) to the lattice basis.

Another type of algorithm for solving knapsacks with density of almost one was
presented in [48]. Given that this algorithm is less practical and does not meet the needs of
our proposed ideas, we do not review it here. A more practical version of the previously
mentioned algorithm was proposed in [30]. Its structure is particularly simple and clear
(see Algorithm 2). The previously developed techniques were extended in [31].

As stated in [31], in practice, the shortest-vector oracle is replaced by a lattice reduction
algorithm, e.g., LLL or BKZ [49]. We turn our attention to LLL-based algorithms, especially
to implement our proposed algorithm. Hence, we further mention the latest developments
regarding LLL variations, the purpose of which is mainly to speed up the previous versions.

Further developments were achieved, and, until recently, the state-of-the-art lattice
reduction algorithm used in practice was the L2 algorithm [32] implemented in fpLLL [50].
Other approaches were presented in [33–35,51]. The newest breakthrough in terms of lattice
reduction is presented in [52]. However, note that the main concern of the researchers was
to create faster algorithms rather than improving their precision (which is our main interest
in the current paper).
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Algorithm 2: Howgrave-Joux Algorithm for Solving Modular Knapsacks.
Input: The knapsack elements a1, . . . , an, the knapsack sum S and the parameter β.
Output: A feasible solution e = (e1, . . . , en) to a knapsack in accordance with

Definition 1.

1 Let M be a random prime close to 2βn.
2 Let R1, R2 and R3 be random values modulo M.
3 Solve the 1/8-unbalanced knapsack modulo M with elements a and target R1.
4 Solve the 1/8-unbalanced modular knapsack with target R2.
5 Solve the 1/8-unbalanced modular knapsack with target R3.
6 Solve the 1/8-unbalanced modular knapsack with target

S− R1 − R2 − R3 mod M. Create the 4 sets of non-modular sums corresponding
to the above solutions.

7 Do a 4-way merge (with early abort and consistency checks) on these 4 sets.
8 Rewrite the obtained solution as a knapsack solution.

3. A New Look at Homomorphic Encryption
3.1. Constructing Polynomials Based on Homomorphic Operations

Let a and b be two symbolic variables. We define the sets of arithmetic expressions
(Gk) obtained by combining a and b as follows:

G0 = {a, b}
Gk = {a + b, a, b ∈ Gk−1}

⋃
{a · b, a, b ∈ Gk−1} (3)

An automated construction of such sets yields

G1 = {2a, a2, 2b, ab, b2, a + b}
G2 = {4a, 4a2, 2a + a2, 2a3, b + 3a, 2ab + 2a2, 2a + ab, 2a2b, 2a + 2b,

4ab, 2a + b2, 2ab2, 2a2, a4, a + a2 + b, a2b + a3, ab + a2, a3b,

2b + a2, a2 + b2, a2b2, a2 + b2 + 2ab, a + b + ab, ab2 + a2b, 3b + a,

2b2 + 2ab, a + a2 + b, b3 + ab, 2ab, 2b + ab, b2 + ab, ab3, 4b, 4b2,

2b + b2, 2b3, 2b2, b4}
#G3 = 1124

. . .

Ignoring collisions, we can derive an upper bound for #Gk. More precisely, starting
from Gk−1 and using additions, we can construct #Gk−1(#Gk−1 + 1)/2 new elements. The
same number of elements is obtained using multiplication. Therefore, we have

#Gk ≤ #Gk−1(#Gk−1 + 1).

We define the following recurrence:

V0 = #G0 = 2,

Vk = Vk−1(Vk−1 + 1). (4)

Using the methods developed in [53], Knuth computed [54] that Vk ≤ θ2k+1 − 1/2,
where θ ≈ 1.597910218. Thus, we obtain

#Gk ≤ θ2k+1
. (5)
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Lemma 1. Let k ≥ 1. If

P(a, b) = ∑
i,j

ci,ja
ui,j bvi,j ∈ Gk,

then,

ui,j + vi,j ≤ 2k and ci,j ≤ 22k−1
.

Proof. We will prove this lemma using induction. Let maxk(ui,j + vi,j) be the maximum
degree of monomials in a and b for any P(a, b) ∈ Gk. Furthermore, let maxk(ci,j) be the

largest coefficient of any P(a.b). When k = 1, max1(ui,j + vi,j) = 21 and max1(ci,j) = 220
.

When k = 2, max2(ui,j + vi,j) = 22 and max2(ci,j) = 221
. We assume that the lemma is true

for k, and we prove it for k + 1. The only strategy that maximizes the degree of a monomial
from Gk+1 is to choose a maximal monomial from Gk and multiply it by itself. For example,
we can choose 22k−1

a2k ∈ Gk, yielding maxk+1(ui,j + vi,j) = 2k + 2k = 2k+1. We can also see

that multiplying 22k−1
a2k

by itself leads to maxk+1(ci,j) = 22k−1 · 22k−1
= 22k

.

3.2. Defining the Problem

In this subsection, we provide a high-level description of the protocol used to infer
the polynomial P(x, y). More precisely, for a given k ∈ N, Alice (the malicious user) and
Bob (the victim) exchange information that can be used by Alice (without Bob’s consent) to
compute the polynomial P:

1. Bob chooses a polynomial (P ∈ Gk);
2. Alice chooses two numbers (a, b ∈ N∗) and sends them to Bob;
3. Bob computes r = P(a, b) using the values received from Alice, then sends the result

to Alice;
4. Given r, Alice attempts to infer P from r;
5. If Alice is not successful, then she repeats steps 2 and 3 until she accumulates enough

data to guess P.

We provide the reader with a graphical representation of the overall process in Figure 1.
The objective of our paper is to propose a series of algorithms that solve the problem of
inferring P in the aforementioned scenario.

Alice chooses a, b

Bob responds with r = P(a, b)

Alice infers P

Stop

Alice sends (a, b)

Bob replies with r

Fail

Success

Figure 1. The overall process.
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4. Interpolating Bivariate Polynomials

The intuition behind our proposed algorithm (see Algorithm 3) is the following: Alice
starts by considering r modulo a. This makes all the P(a, b) terms ci,jaibj for which i > 0
vanish. Hence, the positive integer (r) can be regarded as the evaluation modulo (a) of a
univariate polynomial:

∑ c0,jbj mod a.

Remark 3 (Parameter selection). Note that in the first iteration of the while loop of Algorithm 3,
after computing L0,

Rt = ∑
i,j

ci,jaibj
t = ∑

j
c0,jb

j
t + ∑

i 6=0,j
ci,jaibj

t = L0(b) + ad · P′(a, bt).

When we extract the largest power of a, there is a case in which ds is larger than the correct
exponent (d). That happens when a|P′(a, bt) for all t. This automatically implies that we must
have a ≤ P′(a, bt) for all t due to the construction of Gk. Hence, the probability of a not to divide
P′(a, bt) for a given t is

1−
b P′(a,bt)

a c
P′(a, bt)

≥ 1− P′(a, bt)

aP′(a, bt)
= 1− 1

a
.

and is non-negligible if a is large enough.

Let degb(P) represent the degree of P(x) with respect to the variable b. When running
Algorithm 3, we encounter the following possible cases.

Case 1:When a is larger than all of P’s coefficients and the number of pairs (n) is equal to
degb(P) + 1, the algorithm always outputs the correct polynomial.

Case 2:When a is less than all of P’s coefficients and the number of pairs (n) is equal
to degb(P) + 1, the algorithm outputs a polynomial (P), although not the correct
polynomial.

Case 3:When n is less than degb(P) + 1, it is possible that some of the Ri values (see Algo-
rithm 3) become negative; thus, the algorithm returns ⊥, since it is clear that the
computed polynomial is not correct.

Since Alice does not know the exact degree (We do not consider the case of degb(P) = 1,
as it is trivial) of P, she uses Algorithm 4 to compute the exact P. Therefore, she avoids
Case 3. More precisely, Alice queries Bob until Algorithm 3 returns a polynomial that
maps j points into rj and also satisfies the supplementary condition (P(a, j + 1) = rj). This
condition is used to avoid the case in which n ≤ degb(P), and all the Ri values become
0. Note that on line 7, we have an additional check in order to avoid the case in which a
divides any of P’s coefficients. More precisely, if j = a + k, then j− k is not be invertible
when computing the `j(y) polynomial.

Example 1. Let a = 17 and

P(x, y) = x5y + 3x3y + x2y3 + 17xy5 + 15x + y2 + 58.

Note that we are in Case 2. Then, Algorithm 4 returns the following polynomial:

P′(x, y) = x5y + 3x3y + x2y5 + x2y3 + x2 + x + y2 + 7.

To avoid Case 2, we must query Bob at point (a′, 1), where a′ 6= a, and check if Bob’s
answer coincides with the evaluation of the computed polynomial. If the two values do
not coincide, then we must run Algorithm 4 with a larger a.
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Remark 4. When working with polynomials from a set (Gk), if Alice knows the value of k ≥ 1,
then she can choose a > 22k−1

such that the value is a prime number. Otherwise, she chooses a large
enough k, and if Algorithm 4 fails, she increases k and tries again until she finds the correct P.

Algorithm 3: Tries to compute a polynomial P such that r = P(a, b).
Input: A prime a and n positive integer pairs {bi, ri}i∈[0,n].
Output: A bivariate polynomial P(x, y) such that ri = P(a, bi).

1 j← 0
2 {Ri}i∈[0,n] ← {ri}i∈[0,n]
3 while 1 do
4 Compute using Lagrange interpolation

Lj(y) =
n

∑
i=1

Ri · `i(y) mod a,

where

`i(y) =
n

∏
t=0
t 6=i

y− bt

bi − bt
mod a.

5 Compute {Ri}i∈[0,n] ← {Ri − Lj(Ri)}i∈[0,n].
6 if all Ri = 0 then
7 break
8 if any Ri < 0 then
9 return ⊥

10 Compute the largest dj such that adj divides all Ri

11 Compute {Ri}i∈[0,n] ← {Ri/adj}i∈[0,n]
12 j← j + 1
13 P(x, y)← Lj(y)
14 for t← j− 1 downto 0 do
15 Compute the polynomial

P(x, y)← P(x, y) · xdt + Lt(y)

16 return P(x, y)

Algorithm 4: Probes Bob until it finds the correct P.
Input: A prime a.
Output: A bivariate polynomial P(x, y).

1 L ← ∅, j← 3
2 Interrogate Bob on points {(a, i + 1)}i∈[0,j] and receive {ri}i∈[0,j]

3 Use Algorithm 3 with input (a, {i + 1, ri}i∈[0,j−1]) and receive an answer P
4 if P 6= ⊥ and P(a, j + 1) = rj then
5 return P
6 while 1 do
7 if j > a then
8 return ⊥
9 j← j + 1

10 Interrogate Bob on points (a, j + 1) and receive rj

11 Use Algorithm 3 with input (a, {i + 1, ri}i∈[0,j−1]) and receive an answer P
12 if P 6= ⊥ and P(a, j + 1) = rj then
13 return P
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5. Lattice-Based Approaches for Reconstructing Bivariate Polynomials

We consider again P mod a; thus, the positive integer (r) can be regarded as the
evaluation modulo (a) of a univariate polynomial:

∑ ci,jb
ui,j . (6)

It can easily be observed that we are tackling a modular knapsack problem that can
be solved provided that specific conditions are met (see Section 2). Hence, Alice can use
Algorithm 5 to infer P.

If we also restrict k to a value such that a > 22k−1
, then we are assured that the ci,j

values found by solving the modular knapsack are also valid in Z. Hence, the integer value
from Equation (6) can be subtracted from r to reveal a polynomial that can be divided by a
proper power of a before applying the above process iteratively. When the value zero is
reached, the algorithm is run backwards to reconstruct P.

Note that we use the first if of Algorithm 5 for efficiency purposes, given that the mod-
ular knapsack resolution algorithm is not needed when P(x, y) does not have monomials
only in y.

Algorithm 5: Tries to compute a polynomial P such that r = P(a, b).
Input: A prime a and a positive integer pair {b, r}.
Output: A bivariate polynomial P(x, y) such that r = P(a, b).

1 if r mod a = 0 then
2 Compute the largest dk ∈ N such that adk divides r
3 Compute r′ ← r/adk

4 j← 0
5 r0 ← r′

6 while rj 6= 0 do
7 Solve

rj =
n

∑
i=1

tj,i · bi mod a for {tj,i}

using a modular knapsack resolution algorithm
8 Compute rj+1 ← rj −∑n

i=1 tj,i · bi

9 Compute the largest dj ∈ N such that adj divides rj+1

10 Compute rj+1 ← rj+1/adj

11 j← j + 1
12 P(x, y)← 1
13 for `← j− 1 downto 0 do
14 Compute the polynomial

P(x, y)← P(x, y) · xd` +
n

∑
i=1

t`,iyi

15 P(x, y)← xdk · P(x, y)
16 return P(x, y)
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Remark 5 (Parameter selection). As discussed in Section 2, lattice reduction-based algorithms
for solving modular knapsacks are suitable in the low-density case (smaller than 1). It is easy to
observe that in some cases, we do not fulfill this requirement. More specifically, we consider the case
in which d ≥ 1. Thus, 2k

log2 max(bi)
≥ 1. Using Lemma 1, we obtain

2k ≥ log2 max(bi)⇔ 2k ≥ log2 22k−1
degb(P)⇔

2k ≥ log2 22k−1
+ log2 degb(P)⇔ 2 ≥ log2 2 +

log2 degb(P)
2k−1 ⇔

1 ≥
log2 degb(P)

2k−1 ⇔ 2k−1 ≥ log2 degb(P) (7)

It follows from Equation (7) that d ≥ 1 when the number of bits in b is smaller than 2k−1

degb(P) .
Note that in the case of Algorithm 5, the probabilistic argument presented in Remark 3 still

holds if a is large enough such that 1/a is negligible.

Example 2. Let a = 913 and b = 2.

P(x, y) = 2xy + y2.

Note that we are in Case 2. Then, Algorithm 5 returns the following polynomial:

P′(x, y) = y2 + xy2

6. Implementation

In order to validate our hypotheses and algorithms, we developed a set of reference
implementations (unoptimized versions). We ran the code for Algorithm 4 on a standard
desktop using Ubuntu 20.04.5 LTS OS with the following specifications: CPU, Intel i7-4790
4.00 GHz and 16 Gigabytes of RAM. The programming language we used to implement our
Lagrange interpolation-based algorithms was Python. We used Mathematica 13.2 online to
implement our lattice reduction-based Algorithm 5. Given that our scope was to provide
the reader proof-of-concept algorithms for inferring bivariate polynomials of a certain form,
we implemented the attack proposed in [31]. Again, we stress that we wish to use modular
knapsack resolution algorithms with densities as close to one as possible. The newest
developments in the field of lattice reduction [52] are less important for our current work
than this aspect, given that researchers’ main struggle is to make algorithms more efficient
in terms of complexity.

6.1. Performance Analysis

In Table 1, we present the number of queries needed to recover the polynomial (P)
and the corresponding computational complexity. Note that deg(P) represents the highest
degree of the polynomial (P(x)), while dega(P) and degb(P) represent the degree of P(x)
with respect to the variables a and b, respectively.

Table 1. Performance analysis for inferring P.

Algorithm Number of Querries Complexity

Classical bivariate (deg(P)+1)(deg(P)+2)
2 + 1 O(deg(P)4)interpolation [27,38]

Algorithm 4 degb(P) + 2 O
(

dega(P)degb(P)
(

dega(P)
2 + degb(P)

))
Algorithm 5 2 O

(
dega(P)

(
dega(P)

2 + O
))
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In the case of classical bivariate interpolation, the number of queries differs from that
reported in [27,38], since we need an extra point to verify that we deduced the correct P.
Note that the extra query is performed to check whether the degree of P is larger than
anticipated. Regarding Algorithm 4, if a is larger than the largest coefficient of P, then we
need degb(P) + 1 points to recover P and an extra verification point. Lastly, Algorithm 5
only needs a point to infer P and an extra verification point.

To compute the complexity of Algorithm 3, we considered the fact that the complex-
ity of the Lagrange interpolation is O(degb(P)2) (according to [55]). For our knapsack-
based solution (Algorithm 5), we denoted O = O(A), where A is a modular knapsack
resolution algorithm.

6.2. Recommendations

In order to reduce the number of queries to Bob, we recommend first running Al-
gorithm 5 and, if it fails, Algorithm 4. In the improbable case of obtaining the incorrect
polynomial, two strategies can be used by Alice: either change a and try again or use a
classical bivariate interpolation algorithm (e.g., [38]). A graphical representation of the
recommended process is provided in Figure 2, where CBI denotes a classical bivariate
interpolation algorithm.

Alice runs
Algorithm 5

Alice infers P

Stop

Alice runs
Algorithm 4

Alice infers P

Stop

Alice runs CBI

Alice infers P

Stop

Fail

Succ
es

s

Fail

Succ
es

s

Succ
es

s

Figure 2. The recommended process.

7. Conclusions

The main focus of this paper is the problem of inferring bivariate polynomials with a
specific form required for homomorphic encryption. To solve this problem, we propose
two methods. The first method is based on Lagrange interpolation, which is a well-known
technique for polynomial evaluation. The second method is based on modular knapsack
resolution algorithms, which are commonly used in cryptography to solve similar problems.
Additionally, this paper offers guidance with respect to how to use these algorithms to
achieve improved accuracy. This guidance may be useful for practitioners who wish to
apply these algorithms in real-world scenarios.

Future Work

An interesting research direction would be to extend our proposed methods to mul-
tivariate polynomials and to look into other ways of solving the problem of inferring
polynomials. For example, the PSLQ algorithm introduced in [56] is a method of finding
integer relations. In certain cases, PSLQ might be significantly better than some of the algo-
rithms based on lattice reduction in terms of implementation performance and precision.

Using artificial intelligence techniques to obtain improved solutions is a generally
applied strategy. However, such ideas are beyond the scope of our paper, and we leave
them for future work.
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