A (k, n)-Threshold Progressive Visual Secret Sharing without Expansion
Abstract
:1. Introduction
2. Related Works
Algorithm 1. (YLY scheme [27]) |
Input: A binary secret image S with size w × h pixels and the threshold parameters n and k Output: n shares SC1, SC2, …, SCn, each with size w × h pixels Step 1: For each position (i, j) ∈ {(i, j)|1 ≤ i ≤ w, 1 ≤ j ≤ h}, repeat Steps 2–6. Step 2: Select b1, b2, …, bk ∈ {0, 1} randomly. Step 3: If S(i, j) = b1 ⊕ b2 ⊕ … ⊕ bk, go to Step 5; else go to Step 4 Step 4: Randomly select p ∈ {1, 2, …, k} let bp = 1 − bp (that is, 0 → 1 or 1 → 0). Step 5: Set bk+1 = b1, bk+2 = b2, …, b2k = bk, b2k+1 = b1, … if (n mod k) = 0, bn = bk else bn = b(n mod k). Step 6: Randomly rearrangement b1, b2, …, bn to SC1(i, j), SC2(i, j), …, SCn(i, j). Step 7: Output the n shares SC1, SC2, …, SCn. |
3. Our Scheme
Algorithm 2. (CHJ scheme) |
Input: A binary secret image S with size w × h pixels and the threshold parameters n and k Output: n shares R1, R2, …, Rn, each with size w × h pixels if (k mod 2 == 1) C0 = [M(n, 2) || × M(n, 0) || ] C1 = [(n − k + 1) × M(n, 1) || × M(n, n) || ] m = ] else C0 = [M(n, 2) || × M(n, 0) || × M(n, n) || ] C1 = [(n − k + 1) × M(n, 1) || ] m = ] for (int j = 1; j ≤ h; j++) for (int i = 1; i ≤ w; i++) x = random(1, m) for (int t = 1; t ≤ n; t++) if (S(i, j) == 0) Rt(i, j) = C0(t, x) Else Rt(i, j) = C1(t, x) |
3.1. Proof of the CHJ Scheme
4. Experimental Results
4.1. Simulation 1: (4, 5)-Threshold PVSS Scheme
4.2. Simulation 2: (4, 6)-Threshold PVSS Scheme
4.3. Simulation 3: (4, 7)-Threshold PVSS Scheme
4.4. Simulation 4: (5, 6)-Threshold PVSS Scheme
4.5. Simulation 5: (5, 7)-Threshold PVSS Scheme
5. Analysis and Comparison
5.1. Visual Analysis
5.2. Security Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Blakley, G.R. Safeguarding cryptographic keys. In Proceedings of the AFIPS, New York, NY, USA, 4–7 June 1979; pp. 313–317. [Google Scholar]
- Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [Google Scholar] [CrossRef]
- Naor, M.; Shamir, A. Visual cryptography. Eurocrypt94, Lecture Notes in Computer Science; Springer: Berlin, Germany, 1995; Volume 950, pp. 1–12. [Google Scholar]
- Blundo, C.; Santis, A.D.; Stinson, D.R. On the contrast in visual cryptography schemes. J. Cryptol. 1999, 12, 261–289. [Google Scholar] [CrossRef]
- Eisen, P.A.; Stinson, D. Threshold visual cryptography schemes with specified whiteness levels of reconstructed pixels. Des. Codes Cryptogr. 2002, 25, 15–61. [Google Scholar] [CrossRef]
- Hofmeister, T.; Krause, M.; Simon, H.U. Contrast-optimal k out of n secret sharing schemes in visual cryptography. Theory Comput. Sci. 2000, 240, 471–485. [Google Scholar] [CrossRef]
- Lin, C.C.; Tsai, W.H. Secret multimedia information sharing with data hiding capability by simple logic operations. Pattern Recognit. Image Anal. 2004, 14, 594–600. [Google Scholar]
- Linial, N.; Nisan, N. Aprroximate inclusion-exlusion. Combinatorica 1990, 10, 349–365. [Google Scholar] [CrossRef]
- Yang, C.N. New visual secret sharing schemes using probabilistic method. Pattern Recognit. Lett. 2004, 25, 481–495. [Google Scholar] [CrossRef]
- Fang, W.-P.; Lin, S.-J.; Li, J.-C. Visual cryptography (VC) with nonexpanded shadow images: A hilbert-curve approach. In Proceedings of the IEEE International Conference on Intelligence and Security Informatics, Taipei, Taiwan, 17–20 June 2008; pp. 271–272. [Google Scholar]
- Hilbert, D. Üeber die stetige abbildung einer linie aufein flächenstück. Math. Ann. 1891, 38, 459–460. [Google Scholar] [CrossRef]
- Shyu, S.-J. Image encryption by multiple random grids. Pattern Recognit. 2009, 42, 1582–1596. [Google Scholar] [CrossRef]
- Kafri, O.; Keren, E. Encryption of pictures and shapes by random grids. Opt. Lett. 1987, 12, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.H.; Tsao, K.H. Visual secret sharing by random grids revisited. Pattern Recognit. 2009, 42, 2203–2217. [Google Scholar] [CrossRef]
- Wu, X.; Sun, W. Random grid-based visual secret sharing with abilities of OR and XOR decryptions. J. Vis. Commun. Image Represent. 2013, 24, 48–62. [Google Scholar] [CrossRef]
- Nag, A.; Biswas, S.; Sarkar, D.; Sarka, P.P. Secret image sharing scheme based on a boolean operation. Cybern. Inf. Technol. 2014, 14, 98–113. [Google Scholar] [CrossRef]
- Al-Tamimi, A.G.T.; Gaafar, A. A New Simple Non-Expansion Algorithm for (2, 2)-Visual Secret Sharing Scheme. Int. J. Comput. Appl. 2015, 113, 3. [Google Scholar]
- Chen, S.K.; Lin, J.C. Fault-tolerant and progressive transmission of images. Pattern Recognit. 2005, 38, 2466–2471. [Google Scholar] [CrossRef]
- Fang, W.P. Multi-layer progressive secret image sharing. In Proceedings of the 7th WSEAS, Athens, Greece, 24–26 August 2007; pp. 112–116. [Google Scholar]
- Fang, W.P.; Lin, J.C. Progressive viewing and sharing of sensitive images. Pattern Recognit. Image Anal. 2006, 16, 638–642. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Lee, Y.-S. Yet another friendly progressive visual secret sharing scheme. In Proceedings of the 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kyoto, Japan, 12–14 September 2009; pp. 353–356. [Google Scholar]
- Hou, Y.-C.; Quan, Z.-Y. Progressive visual cryptography with unexpanded shares. IEEE Trans. Circuits Syst. Video Technol. 2011, 21, 1760–1764. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Juan, J.S.T. A 4 out of n Secret Sharing Scheme in Visual Cryptography without Expansion. In Proceedings of the International Conference on Foundations of Computer Science (FCS), Stanford, CA, USA, 18–21 July 2011. [Google Scholar]
- Chen, T.H.; Tsao, K.H. Threshold visual secret sharing by random grids. J. Syst. Softw. 2011, 84, 1197–1208. [Google Scholar] [CrossRef]
- Wu, X.; Sun, W. Improving the visual quality of random grid based visual secret sharing. Signal Process. 2013, 93, 977–995. [Google Scholar] [CrossRef]
- Guo, T.; Liu, F.; Wu, C. Threshold visual secret sharing by random grids with improved contrast. J. Syst. Softw. 2013, 86, 2094–2109. [Google Scholar] [CrossRef]
- Yan, X.; Liu, X.; Yang, C.N. An enhanced threshold visual secret sharing based on random grids. J. Real-Time Image Process. 2018, 14, 61–73. [Google Scholar] [CrossRef]
- Wan, S.; Lu, Y.; Yan, X.; Wang, Y.; Chang, C. Visual secret sharing scheme for (k, n) threshold based on QR code with multiple decryptions. J. Real-Time Image Process. 2018, 14, 25–40. [Google Scholar] [CrossRef]
- Yan, X.; Wang, S.; Niu, X. Threshold progressive visual cryptography construction with unexpanded shares. Multimed. Tools Appl. 2016, 75, 8657–8674. [Google Scholar] [CrossRef]
- Liu, Y.X.; Yang, C.N.; Wu, S.Y.; Chou, Y.S. Progressive (k, n) secret image sharing schemes based on Boolean operations and covering codes. Signal Process. Image Commun. 2018, 66, 77–86. [Google Scholar] [CrossRef]
- Alon, N.; Spencer, J. The Probabilistic Method; Wiley: Hoboken, NJ, USA, 1992. [Google Scholar]
- Carter, J.L.; Wegman, M.N. Universal classes of hash functions. J. Comput. Syst. Sci. 1979, 18, 143–154. [Google Scholar] [CrossRef]
- Wegman, M.N.; Carter, J.L. New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 1981, 22, 265–279. [Google Scholar] [CrossRef]
- Chang, C.; Lin, C.; Lin, C.; Chen, Y. A novel secret image sharing scheme in color images using small shadow images. Inf. Sci. 2008, 178, 2433–2447. [Google Scholar] [CrossRef]
- Shankar, K.; Eswaran, P. A new k out of n secret image sharing scheme in visual cryptography. In Proceedings of the 10th International Conference on IEEE Intelligent Systems and Control (ISCO2016), Coimbatore, India, 7–8 January 2016; pp. 1–6. [Google Scholar]
Secret Image | Share 1 | Share 2 | Staked Share |
---|---|---|---|
0 | 0 | 0 | 0 |
1 | 1 | 1 | |
1 | 0 | 1 | 1 |
1 | 0 | 1 |
Contrast α1 | Ref. [3] | Our Proposed CHJ Scheme |
---|---|---|
(2, 2)-threshold SSS | 1/2 | 1/2 |
(3, 3)-threshold SSS | 1/4 | 1/4 |
(4, 5)-threshold SSS | ≅1/4261 | 1/15 |
(4, 6)-threshold SSS | ≅1/4261 | 1/24 |
(5, 6)-threshold SSS | ≅1/12820 | 1/30 |
(6, 8)-threshold SSS | ≅1/152200 | 1/128 |
(7, 8)-threshold SSS | ≅1/887707 | 1/175 |
Contrast α2 | Ref. [29] | Ref. [24] | Ref. [25] | Ref. [26] | Ref. [27] | Proposed CHJ Scheme |
---|---|---|---|---|---|---|
(3, 3)-threshold, t = 3 | 0.24957 | 0.25 | 0.249555 | 0.250342 | 0.24965 | 0.25 |
(3, 4)-threshold, t = 3 | 0.10286 | 0.0571 | 0.111718 | 0.05811 | 0.11335 | 0.0909 |
(3, 4)-threshold, t = 4 | 0.33267 | 0.125 | 0.250875 | 0.126323 | 0.25314 | 0.3333 |
(4, 4)-threshold, t = 4 | 0.12515 | 0.125 | 0.124552 | 0.124741 | 0.12451 | 0.125 |
(3, 5)-threshold, t = 3 | 0.05569 | 0.0224 | 0.062646 | 0.022415 | 0.0854 | 0.0454 |
(3, 5)-threshold, t = 4 | 0.17037 | 0.0481 | 0.136758 | 0.048008 | 0.18894 | 0.1578 |
(3, 5)-threshold, t = 5 | 0.37517 | 0.0625 | 0.250588 | 0.062215 | 0.24851 | 0.375 |
(4, 5)-threshold, t = 4 | 0.04495 | 0.0238 | 0.048006 | 0.023466 | 0.04691 | 0.0666 |
(4, 5)-threshold, t = 5 | 0.166885 | 0.0625 | 0.126651 | 0.0616 | 0.12536 | 0.2 |
(4,6)-threshold, t = 4 | N/A | 0.0078 | N/A | 0.0078 | 0.031873 | 0.0333 |
(4, 6)-threshold, t = 5 | N/A | 0.0204 | N/A | 0.0204 | N/A | 0.11111 |
(4, 6)-threshold, t = 6 | N/A | 0.03125 | N/A | 0.03125 | N/A | 0.25 |
(5, 6)-threshold, t = 5 | N/A | 0.01010 | 0.020408 | 0.01010 | 0.020408 | 0.03125 |
(5, 6)-threshold, t = 6 | N/A | 0.03125 | N/A | 0.03125 | N/A | 0.1 |
Reference | [3] | [10] | [23] | [24] | [25,26,27] | [28] | [29] | Proposed CHJ Scheme |
---|---|---|---|---|---|---|---|---|
Free size | Yes | No | Yes | Yes | Yes | No | Yes | Yes |
Without pixel expansion | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
The value of α | Small | Small/Large | Large | Small | Large when k < 4 | Small | Large when k < 4 | Large |
For every (k, n) | Yes | Yes | (4, n) | Yes | Yes | Yes | Yes | Yes |
Shares are QR code | No | No | No | No | No | Yes | No | No |
Image | Horizontal | Vertical | Diagonal | Vice-Diagonal |
---|---|---|---|---|
Secret image | 0.980633 | 0.987411 | 0.978314 | 0.977105 |
Share image s1 | 0.004277 | 0.003554 | 0.001016 | −0.005866 |
Share image s2 | 0.001302 | 0.002463 | −0.000905 | 0.003459 |
Share image s3 | −0.000577 | 0.005377 | −0.002523 | −0.001825 |
Share image s4 | −0.000266 | 0.003001 | −0.000825 | −0.000814 |
Share image s5 | −0.002421 | −0.000262 | 0.000475 | −0.002781 |
Restored image s1 ⊕ s2 | 0.003155 | −0.003003 | 0.000593 | −0.000530 |
Restored image s1 ⊕ s2 ⊕ s3 | 0.001182 | −0.001205 | 0.003247 | −0.001327 |
Image | Horizontal | Vertical | Diagonal | Vice-Diagonal |
---|---|---|---|---|
(4, 5) Share image s1 | 0.004277 | 0.003554 | 0.001016 | −0.005866 |
(4, 6) Share image s1 | −0.002590 | 0.002540 | 0.001554 | −0.001326 |
(4, 7) Share image s1 | −0.001515 | 0.001431 | 0.002974 | −0.001740 |
(5, 6) Share image s1 | −0.003995 | −0.000352 | 0.000663 | 0.000839 |
(5, 7) Share image s1 | 0.003781 | 0.002251 | −0.002108 | 0.003725 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-Y.; Huang, B.-Y.; Juan, J.S.-T. A (k, n)-Threshold Progressive Visual Secret Sharing without Expansion. Cryptography 2018, 2, 28. https://doi.org/10.3390/cryptography2040028
Chen Y-Y, Huang B-Y, Juan JS-T. A (k, n)-Threshold Progressive Visual Secret Sharing without Expansion. Cryptography. 2018; 2(4):28. https://doi.org/10.3390/cryptography2040028
Chicago/Turabian StyleChen, Ying-Yu, Bo-Yuan Huang, and Justie Su-Tzu Juan. 2018. "A (k, n)-Threshold Progressive Visual Secret Sharing without Expansion" Cryptography 2, no. 4: 28. https://doi.org/10.3390/cryptography2040028
APA StyleChen, Y. -Y., Huang, B. -Y., & Juan, J. S. -T. (2018). A (k, n)-Threshold Progressive Visual Secret Sharing without Expansion. Cryptography, 2(4), 28. https://doi.org/10.3390/cryptography2040028