On the Evolution of the Biological Framework for Insight
Abstract
1. Introduction
2. Results and Discussion
2.1. Reducibility of Biological Phenomena
2.2. The Origin and Provision of the Elements
2.3. The Birth of Life
2.4. Heterotrophy
2.5. Photosynthesis: The Implications of Innovation
2.6. Eukaryotes: Symbiosis and Predation
2.7. Multicellularity: Challenging Concepts
2.8. Room for Sensation
2.9. The Human Brain
2.10. Implications for Knowledge Emergence
2.11. Evolution: Patterns and the Question of Directionality
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Walker, S.I. Origins of life: A problem for physics, a key issues review. Rep. Prog. Phys. 2017, 80, 092601. [Google Scholar] [CrossRef]
- Preiner, M.; Asche, S.; Becker, S.; Betts, H.C.; Boniface, A.; Camprubi, E.; Chandru, K.; Erastova, V.; Garg, S.G.; Khawaja, N.; et al. The future of origin of life research: Bridging decades-old divisions. Life 2020, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Puy, D.; Signore, M. From nuclei to atoms and molecules: The chemical history of the early Universe. New Astron. Rev. 2002, 46, 709–723. [Google Scholar] [CrossRef][Green Version]
- Allday, J. Quarks, Leptons and the Big Bang; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Weisskopf, V. The Origin of the Universe. Bull. Am. Acad. Arts Sci. 1989, 42, 22. [Google Scholar] [CrossRef]
- Bromm, V. Formation of the first stars. Rep. Prog. Phys. 2013, 76, 112901. [Google Scholar] [CrossRef]
- Susa, H. The mass of the first stars. Astrophys. J. 2013, 773, 185. [Google Scholar] [CrossRef][Green Version]
- Iwamoto, N.; Umeda, H.; Tominaga, N.; Nomoto, K.; Maeda, K. The First Chemical Enrichment in the Universe and the Formation of Hyper Metal-Poor Stars. Science 2005, 309, 451–453. [Google Scholar] [CrossRef]
- Pei, Y.C.; Fall, M.; Hauser, M.G. Cosmic histories of stars, gas, heavy elements, and dust in galaxies. Astrophys. J. 1999, 522, 604–626. [Google Scholar] [CrossRef]
- Hartwig, T.; Yoshida, N.; Magg, M.; Frebel, A.; O Glover, S.C.; A Gómez, F.; Griffen, B.; Ishigaki, M.N.; Ji, A.P.; Klessen, R.S.; et al. Descendants of the first stars: The distinct chemical signature of second-generation stars. Mon. Not. R. Astron. Soc. 2018, 478, 1795–1810. [Google Scholar] [CrossRef]
- Smith, B.D.; Sigurdsson, S. The transition from the first stars to the second stars in the early universe. Astrophys. J. 2007, 661, L5–L8. [Google Scholar] [CrossRef][Green Version]
- Montmerle, T.; Augereau, J.-C.; Chaussidon, M.; Gounelle, M.; Marty, B.; Morbidelli, A. Solar system formation and early evolution: The first 100 million years. Earth Moon Planets 2006, 98, 39–95. [Google Scholar] [CrossRef]
- Lissauer, J.J. Planet formation. Annu. Rev. Astron. Astrophys. 1993, 31, 129–172. [Google Scholar] [CrossRef]
- Yin, Q.; Jacobsen, S.B.; Yamashita, K.; Blichert-Toft, J.; Telouk, P.; Albarede, F. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nat. Cell Biol. 2002, 418, 949–952. [Google Scholar] [CrossRef]
- Wetherill, G.W. Formation of the Earth. Annu. Rev. Earth Planet. Sci. 1990, 18, 205–256. [Google Scholar] [CrossRef]
- Benner, S.A.; Bell, E.A.; Biondi, E.; Brasser, R.; Carell, T.; Kim, H.J.; Trail, D. When did life likely emerge on Earth in an RNA-first process? arXiv 2019, arXiv:1908.11327. [Google Scholar]
- Pearce, B.K.; Tupper, A.S.; Pudritz, R.E.; Higgs, P.G. Constraining the time interval for the origin of life on earth. Astrobiology 2018, 18, 343–364. [Google Scholar] [CrossRef]
- Mazzarello, P. A unifying concept: The history of cell theory. Nat. Cell Biol. 1999, 1, E13–E15. [Google Scholar] [CrossRef]
- Pross, A.; Pascal, R. The origin of life: What we know, what we can know and what we will never know. Open Biol. 2013, 3, 120190. [Google Scholar] [CrossRef]
- Mulkidjanian, A.Y.; Galperin, M.Y. Physico-chemical and evolutionary constraints for the formation and selection of first biopolymers: Towards the consensus paradigm of the abiogenic origin of life. Chem. Biodivers. 2007, 4, 2003–2015. [Google Scholar] [CrossRef]
- Orgel, L.E. The origin of life—A review of facts and speculations. Trends Biochem. Sci. 1998, 23, 491–495. [Google Scholar] [CrossRef]
- Küppers, B.-O. Information and the Origin of Life; Mit Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Gilbert, W. Origin of life: The RNA world. Nat. Cell Biol. 1986, 319, 618. [Google Scholar] [CrossRef]
- Oparin, A. The Origin of Life on the Earth; Oliver & Boyd: Edinburgh, UK; Oliver & Boyd: London, UK, 1957. [Google Scholar]
- Copley, S.D.; Smith, E.; Morowitz, H.J. The origin of the RNA world: Co-evolution of genes and metabolism. Bioorganic Chem. 2007, 35, 430–443. [Google Scholar] [CrossRef]
- Copley, S.D.; Smith, E.; Morowitz, H.J. A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc. Natl. Acad. Sci. USA 2005, 102, 4442–4447. [Google Scholar] [CrossRef] [PubMed]
- Vastel, C.; Ceccarelli, C.; Lefloch, B.; Bachiller, R. The origin of complex organic molecules in prestellar cores. Astrophys. J. 2014, 795, L2. [Google Scholar] [CrossRef]
- Podlech, J. Origin of organic molecules and biomolecular homochirality. Cell. Mol. Life Sci. 2001, 58, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Chyba, C.; Sagan, C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nat. Cell Biol. 1992, 355, 125–132. [Google Scholar] [CrossRef]
- Colín-García, M. Hydrothermal vents and prebiotic chemistry: A review. Boletín Soc. Geológica Mex. 2016, 68, 599–620. [Google Scholar] [CrossRef]
- Konn, C.; Charlou, J.-L.; Holm, N.G.; Mousis, O. The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic ridge. Astrobiology 2015, 15, 381–399. [Google Scholar] [CrossRef]
- Lang, S.Q.; Butterfield, D.A.; Schulte, M.; Kelley, D.S.; Lilley, M.D. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta 2010, 74, 941–952. [Google Scholar] [CrossRef]
- Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal vents and the origin of life. Nat. Rev. Genet. 2008, 6, 805–814. [Google Scholar] [CrossRef]
- Van Dover, C. The ecology of Deep-Sea Hydrothermal Vents; Princeton University Press: Princeton, NJ, USA, 2000. [Google Scholar]
- Smith, J.M. The Theory of Evolution; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Weiss, M.C.; Sousa, F.L.; Mrnjavac, N.; Neukirchen, S.; Roettger, M.; Nelson-Sathi, S.; Martin, W.F. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 2016, 1, 16116. [Google Scholar] [CrossRef]
- Glansdorff, N.; Xu, Y.; Labedan, B. The last universal common ancestor: Emergence, constitution and genetic legacy of an elusive forerunner. Biol. Direct 2008, 3, 29. [Google Scholar] [CrossRef]
- Koonin, E.V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Genet. 2003, 1, 127–136. [Google Scholar] [CrossRef]
- Penny, D.; Poole, A. The nature of the last universal common ancestor. Curr. Opin. Genet. Dev. 1999, 9, 672–677. [Google Scholar] [CrossRef]
- Schönheit, P.; Buckel, W.; Martin, W.F. On the origin of heterotrophy. Trends Microbiol. 2016, 24, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Lane, N.; Martin, W.F. The origin of membrane bioenergetics. Cell 2012, 151, 1406–1416. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.; Russell, M.J. On the origins of cells: A hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos. Trans. R. Soc. B Biol. Sci. 2003, 358, 59–85. [Google Scholar] [CrossRef] [PubMed]
- Schleper, C.; Sousa, F.L. Meet the relatives of our cellular ancestor. Nat. Cell Biol. 2020, 577, 478–479. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.A.; Cox, C.J.; Foster, P.G.; Szöllősi, G.J.; Embley, T.M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 2020, 4, 138–147. [Google Scholar] [CrossRef]
- Eme, L.; Spang, A.; Lombard, J.; Stairs, C.W.; Ettema, T.J.G. Archaea and the origin of eukaryotes. Nat. Rev. Genet. 2017, 15, 711–723. [Google Scholar] [CrossRef]
- Spang, A.; Saw, J.H.; Jørgensen, S.L.; Zaremba-Niedzwiedzka, K.; Martijn, J.; Lind, A.E.; Van Eijk, R.; Schleper, C.; Guy, L.; Ettema, T.J.G. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nat. Cell Biol. 2015, 521, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.F.; Sousa, F.L. Early microbial evolution: The age of anaerobes. Cold Spring Harb. Perspect. Biol. 2015, 8, a018127. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.F. Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution of biological energy conservation. FEBS Lett. 2011, 586, 485–493. [Google Scholar] [CrossRef]
- Cody, G.D.; Scott, J.H.; Sullivan, I.W.T.; Baross, J. The roots of metabolism. In Planets and Life; Cambridge University Press: Cambridge, UK, 2018; pp. 174–186. [Google Scholar]
- Petrov, A.S.; Gulen, B.; Norris, A.M.; Kovacs, N.A.; Bernier, C.R.; Lanier, K.A.; Fox, G.E.; Harvey, S.C.; Wartell, R.M.; Hud, N.V.; et al. History of the ribosome and the origin of translation. Proc. Natl. Acad. Sci. USA 2015, 112, 15396–15401. [Google Scholar] [CrossRef] [PubMed]
- Fox, G.E. Origin and evolution of the ribosome. Cold Spring Harb. Perspect. Biol. 2010, 2, a003483. [Google Scholar] [CrossRef] [PubMed]
- Caetano-Anollés, G. Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res. 2002, 30, 2575–2587. [Google Scholar] [CrossRef]
- Levin, S.R.; Gandon, S.; West, S.A. The social coevolution hypothesis for the origin of enzymatic cooperation. Nat. Ecol. Evol. 2019, 4, 132–137. [Google Scholar] [CrossRef]
- Xavier, J.C. The early origin of cooperation. Nat. Ecol. Evol. 2019, 4, 18–19. [Google Scholar] [CrossRef]
- Krupovic, M.; Dolja, V.V.; Koonin, E.V. Origin of viruses: Primordial replicators recruiting capsids from hosts. Nat. Rev. Genet. 2019, 17, 449–458. [Google Scholar] [CrossRef]
- Preiner, M.; Xavier, J.C.; Vieira, A.D.N.; Kleinermanns, K.; Allen, J.F.; Martin, W.F. Catalysts, autocatalysis and the origin of metabolism. Interface Focus 2019, 9, 20190072. [Google Scholar] [CrossRef]
- Lane, N.; Allen, J.F.; Martin, W. How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 2010, 32, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, J.A.; Caron, D.A. Heterotrophic planktonic microbes: Virus, bacteria, archaea, and protozoa. Available online: https://dornsife.usc.edu/assets/sites/378/docs/Caron_pdfs/2016_FuhrmanCaron_MEM4thEd.pdf (accessed on 21 May 2021).
- Martin, W.F.; A Bryant, D.; Beatty, J.T. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol. Rev. 2018, 42, 205–231. [Google Scholar] [CrossRef] [PubMed]
- Blankenship, R.E. Early Evolution of photosynthesis. Plant Physiol. 2010, 154, 434–438. [Google Scholar] [CrossRef]
- Olson, J.M. Photosynthesis in the Archean Era. Photosynth. Res. 2006, 88, 109–117. [Google Scholar] [CrossRef]
- Blankenship, R.E. Origin and early evolution of photosynthesis. Photosynth. Res. 1992, 33, 91–111. [Google Scholar] [CrossRef]
- Garlick, S.; Oren, A.; Padan, E. Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J. Bacteriol. 1977, 129, 623–629. [Google Scholar] [CrossRef]
- Fischer, W.W.; Hemp, J.; Johnson, J.E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 2016, 44, 647–683. [Google Scholar] [CrossRef]
- Ward, L.M.; Kirschvink, J.L.; Fischer, W.W. Timescales of oxygenation following the evolution of oxygenic photosynthesis. Orig. Life Evol. Biosph. 2015, 46, 51–65. [Google Scholar] [CrossRef]
- Och, L.M.; Shields-Zhou, G.A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Science Rev. 2012, 110, 26–57. [Google Scholar] [CrossRef]
- Shields-Zhou, G.; Och, L. The case for a neoproterozoic oxygenation event: Geochemical evidence and biological consequences. GSA Today 2011, 21, 4–11. [Google Scholar] [CrossRef]
- Kopp, R.E.; Kirschvink, J.L.; Hilburn, I.A.; Nash, C.Z. The paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 2005, 102, 11131–11136. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, C. On the origin of eukaryotes. Science 2009, 325, 666–668. [Google Scholar] [CrossRef]
- Roger, A.J.; A Hug, L. The origin and diversification of eukaryotes: Problems with molecular phylogenetics and molecular clock estimation. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1039–1054. [Google Scholar] [CrossRef]
- Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 1967, 14, 225–274. [Google Scholar] [CrossRef]
- Cox, C.J.; Foster, P.G.; Hirt, R.P.; Harris, S.R.; Embley, T.M. The archaebacterial origin of eukaryotes. Proc. Natl. Acad. Sci. USA 2008, 105, 20356–20361. [Google Scholar] [CrossRef]
- De Duve, C. The origin of eukaryotes: A reappraisal. Nat. Rev. Genet. 2007, 8, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int. J. Syst. Evol. Microbiol. 2002, 52, 297–354. [Google Scholar] [CrossRef]
- Sogin, M.L. Early evolution and the origin of eukaryotes. Curr. Opin. Genet. Dev. 1991, 1, 457–463. [Google Scholar] [CrossRef]
- Davidov, Y.; Jurkevitch, E. Predation between prokaryotes and the origin of eukaryotes. BioEssays 2009, 31, 748–757. [Google Scholar] [CrossRef]
- Langerhans, R.B. Evolutionary consequences of predation: Avoidance, escape, reproduction, and diversification. In Predation in Organisms; Metzler, J.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 177–220. [Google Scholar]
- Booth, A. Symbiosis, selection, and individuality. Biol. Philos. 2014, 29, 657–673. [Google Scholar] [CrossRef]
- Clarke, E. The Problem of Biological Individuality. Biol. Theory 2010, 5, 312–325. [Google Scholar] [CrossRef]
- Lane, N. Power, Sex, Suicide: Mitochondria and the Meaning of Life; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Herron, M.D.; Borin, J.M.; Boswell, J.C.; Walker, J.; Chen, I.-C.K.; Knox, C.A.; Boyd, M.; Rosenzweig, F.; Ratcliff, W.C. De novo origins of multicellularity in response to predation. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Libby, E.; Rainey, P.B. A conceptual framework for the evolutionary origins of multicellularity. Phys. Biol. 2013, 10, 035001. [Google Scholar] [CrossRef]
- Niklas, K.J.; Cobb, E.D.; Dunker, A.K. The number of cell types, information content, and the evolution of complex multicellularity. Acta Soc. Bot. Pol. 2014, 83, 337–347. [Google Scholar] [CrossRef]
- Ruiz-Trillo, I.; Burger, G.; Holland, P.W.; King, N.; Lang, B.F.; Roger, A.J.; Gray, M.W. The origins of multicellularity: A multi-taxon genome initiative. Trends Genet. 2007, 23, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Bonner, J.T. The origins of multicellularity. Integr. Biol. 1998, 1, 27–36. [Google Scholar] [CrossRef]
- Nagy, L.G. Evolution: Complex multicellular life with 5,500 genes. Curr. Biol. 2017, 27, R609–R612. [Google Scholar] [CrossRef] [PubMed]
- Knoll, A.H. The multiple origins of complex multicellularity. Annu. Rev. Earth Planet. Sci. 2011, 39, 217–239. [Google Scholar] [CrossRef]
- Lynch, M.; Conery, J.S. The origins of genome complexity. Science 2003, 302, 1401–1404. [Google Scholar] [CrossRef]
- Lemons, D.; McGinnis, W. Genomic evolution of Hox gene clusters. Science 2006, 313, 1918–1922. [Google Scholar] [CrossRef] [PubMed]
- Ruddle, F.H.; Bartels, J.L.; Bentley, K.L.; Kappen, C.; Murtha, M.T.; Pendleton, J.W. Evolution of hox genes. Annu. Rev. Genet. 1994, 28, 423–442. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.I. Top-down causation and the rise of information in the emergence of life. Information 2014, 5, 424–439. [Google Scholar] [CrossRef]
- Lee, M.S.; Soubrier, J.; Edgecombe, G.D. Rates of phenotypic and genomic evolution during the cambrian explosion. Curr. Biol. 2013, 23, 1889–1895. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.R. Explaining the Cambrian “explosion” of animals. Annu. Rev. Earth Planet. Sci. 2006, 34, 355–384. [Google Scholar] [CrossRef]
- Miljkovic-Licina, M.; Gauchat, D.; Galliot, B. Neuronal evolution: Analysis of regulatory genes in a first-evolved nervous system, the hydra nervous system. Biosystems 2004, 76, 75–87. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hooshangi, S.; E Bentley, W. From unicellular properties to multicellular behavior: Bacteria quorum sensing circuitry and applications. Curr. Opin. Biotechnol. 2008, 19, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Bourret, R.B.; Stock, A.M. Molecular information processing: Lessons from bacterial chemotaxis. J. Biol. Chem. 2002, 277, 9625–9628. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A.; Wisedchaisri, G.; Zheng, N. The chemical basis for electrical signaling. Nat. Chem. Biol. 2017, 13, 455–463. [Google Scholar] [CrossRef]
- Arendt, D.; Bertucci, P.Y.; Achim, K.; Musser, J.M. Evolution of neuronal types and families. Curr. Opin. Neurobiol. 2019, 56, 144–152. [Google Scholar] [CrossRef]
- Kristan, J.; William, B. Early evolution of neurons. Curr. Biol. 2016, 26, R949–R954. [Google Scholar] [CrossRef] [PubMed]
- Moroz, L.L. On the independent origins of complex brains and neurons. Brain Behav. Evol. 2009, 74, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Grillner, S.; Robertson, B. The basal ganglia downstream control of brainstem motor centres—An evolutionarily conserved strategy. Curr. Opin. Neurobiol. 2015, 33, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, H.B.; Netsky, M.G. When does a ganglion become a brain? Evolutionary origin of the central nervous system. Semin. Pediatr. Neurol. 2002, 9, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Jerison, H. Evolution of the Brain and Intelligence; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Roth, G.; Dicke, U. Evolution of the brain and intelligence. Trends Cogn. Sci. 2005, 9, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Striedter, G.F. Principles of Brain Evolution; Sinauer Associates: Sunderland, MA, USA, 2005. [Google Scholar]
- Passingham, R.E.; Wise, S.P. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Florio, M.; Huttner, W.B. Neural progenitors, neurogenesis and the evolution of the neocortex. Development 2014, 141, 2182–2194. [Google Scholar] [CrossRef]
- Rakic, P. Evolution of the neocortex: A perspective from developmental biology. Nat. Rev. Neurosci. 2009, 10, 724–735. [Google Scholar] [CrossRef]
- Northcutt, R.G.; Kaas, J.H. The emergence and evolution of mammalian neocortex. Trends Neurosci. 1995, 18, 373–379. [Google Scholar] [CrossRef]
- Weil, K. Thinking Animals: Why Animal Studies Now? Columbia University Press: New York, NY, USA, 2012. [Google Scholar]
- Povinelli, D.J.; Vonk, J. Chimpanzee minds: Suspiciously human? Trends Cogn. Sci. 2003, 7, 157–160. [Google Scholar] [CrossRef]
- Lewis, L.P.; Siju, K.; Aso, Y.; Friedrich, A.B.; Bulteel, A.J.; Rubin, G.M.; Kadow, I.C.G. A Higher Brain circuit for immediate integration of conflicting sensory information in drosophila. Curr. Biol. 2015, 25, 2203–2214. [Google Scholar] [CrossRef]
- Nuñez, A.; Malmierca, E. Corticofugal modulation of sensory information. Adv. Anat. Embryol. Cell Boil. 2007, 187, 1–74. [Google Scholar]
- Kerr, B.J.; Bradbury, E.J.; Bennett, D.L.H.; Trivedi, P.M.; Dassan, P.; French, J.; Shelton, D.B.; McMahon, S.B.; Thompson, S.W.N. Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-Evoked responses in the rat spinal cord. J. Neurosci. 1999, 19, 5138–5148. [Google Scholar] [CrossRef] [PubMed]
- Harter, M.R.; Aine, C.J. Brain mechanisms of visual selective attention. Var. Atten. 1984, 293–321. [Google Scholar]
- Guttorp, P.; Gigerenzer, G.; Swijtink, Z.; Porter, T.; Daston, L.; Beatty, J.; Krüger, L. The empire of chance: How probability changed science and everyday life. J. Am. Stat. Assoc. 1990, 85, 592. [Google Scholar] [CrossRef]
- Simberloff, D. A succession of paradigms in ecology: Essentialism to materialism and probabilism. Synthese 1980, 43, 3–39. [Google Scholar] [CrossRef]
- Birch, J. Natural selection and the maximization of fitness. Biol. Rev. 2015, 91, 712–727. [Google Scholar] [CrossRef]
- Demetrius, L. Directionality principles in thermodynamics and evolution. Proc. Natl. Acad. Sci. USA 1997, 94, 3491–3498. [Google Scholar] [CrossRef]
- Purvis, A.; Jones, K.E.; Mace, G.M. Extinction. BioEssays 2000, 22, 1123–1133. [Google Scholar] [CrossRef]
- Hart, M.B. Biotic Recovery from Mass Extinction Events; Geological Society of London: London, UK, 1996. [Google Scholar]
- Crowley, T.J.; North, G.R. Abrupt climate change and extinction events in earth history. Science 1988, 240, 996–1002. [Google Scholar] [CrossRef]
- Raup, D.M. Biological extinction in earth history. Science 1986, 231, 1528–1533. [Google Scholar] [CrossRef]
- Benton, M.J. The origins of modern biodiversity on land. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3667–3679. [Google Scholar] [CrossRef] [PubMed]
- Courtillot, V.; Gaudemer, Y. Effects of mass extinctions on biodiversity. Nat. Cell Biol. 1996, 381, 146–148. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef] [PubMed]
- Pievani, T. The sixth mass extinction: Anthropocene and the human impact on biodiversity. RENDICONTI Lincei 2014, 25, 85–93. [Google Scholar] [CrossRef]
- Crutzen, P.J. The anthropocene. In Earth System Science in the Anthropocene; Springer: Berlin/Heidelberg, Germany, 2006; pp. 13–18. [Google Scholar]
- Bradshaw, C.J.A.; Ehrlich, P.R.; Beattie, A.; Ceballos, G.; Crist, E.; Diamond, J.; Dirzo, R.; Ehrlich, A.H.; Harte, J.; Harte, M.E.; et al. Underestimating the challenges of avoiding a ghastly future. Front. Conserv. Sci. 2021, 1, 9. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neidhöfer, C. On the Evolution of the Biological Framework for Insight. Philosophies 2021, 6, 43. https://doi.org/10.3390/philosophies6020043
Neidhöfer C. On the Evolution of the Biological Framework for Insight. Philosophies. 2021; 6(2):43. https://doi.org/10.3390/philosophies6020043
Chicago/Turabian StyleNeidhöfer, Claudio. 2021. "On the Evolution of the Biological Framework for Insight" Philosophies 6, no. 2: 43. https://doi.org/10.3390/philosophies6020043
APA StyleNeidhöfer, C. (2021). On the Evolution of the Biological Framework for Insight. Philosophies, 6(2), 43. https://doi.org/10.3390/philosophies6020043