On the Evolution of the Biological Framework for Insight
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reducibility of Biological Phenomena
2.2. The Origin and Provision of the Elements
2.3. The Birth of Life
2.4. Heterotrophy
2.5. Photosynthesis: The Implications of Innovation
2.6. Eukaryotes: Symbiosis and Predation
2.7. Multicellularity: Challenging Concepts
2.8. Room for Sensation
2.9. The Human Brain
2.10. Implications for Knowledge Emergence
2.11. Evolution: Patterns and the Question of Directionality
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Walker, S.I. Origins of life: A problem for physics, a key issues review. Rep. Prog. Phys. 2017, 80, 092601. [Google Scholar] [CrossRef]
- Preiner, M.; Asche, S.; Becker, S.; Betts, H.C.; Boniface, A.; Camprubi, E.; Chandru, K.; Erastova, V.; Garg, S.G.; Khawaja, N.; et al. The future of origin of life research: Bridging decades-old divisions. Life 2020, 10, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puy, D.; Signore, M. From nuclei to atoms and molecules: The chemical history of the early Universe. New Astron. Rev. 2002, 46, 709–723. [Google Scholar] [CrossRef] [Green Version]
- Allday, J. Quarks, Leptons and the Big Bang; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Weisskopf, V. The Origin of the Universe. Bull. Am. Acad. Arts Sci. 1989, 42, 22. [Google Scholar] [CrossRef]
- Bromm, V. Formation of the first stars. Rep. Prog. Phys. 2013, 76, 112901. [Google Scholar] [CrossRef]
- Susa, H. The mass of the first stars. Astrophys. J. 2013, 773, 185. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, N.; Umeda, H.; Tominaga, N.; Nomoto, K.; Maeda, K. The First Chemical Enrichment in the Universe and the Formation of Hyper Metal-Poor Stars. Science 2005, 309, 451–453. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.C.; Fall, M.; Hauser, M.G. Cosmic histories of stars, gas, heavy elements, and dust in galaxies. Astrophys. J. 1999, 522, 604–626. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, T.; Yoshida, N.; Magg, M.; Frebel, A.; O Glover, S.C.; A Gómez, F.; Griffen, B.; Ishigaki, M.N.; Ji, A.P.; Klessen, R.S.; et al. Descendants of the first stars: The distinct chemical signature of second-generation stars. Mon. Not. R. Astron. Soc. 2018, 478, 1795–1810. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.D.; Sigurdsson, S. The transition from the first stars to the second stars in the early universe. Astrophys. J. 2007, 661, L5–L8. [Google Scholar] [CrossRef] [Green Version]
- Montmerle, T.; Augereau, J.-C.; Chaussidon, M.; Gounelle, M.; Marty, B.; Morbidelli, A. Solar system formation and early evolution: The first 100 million years. Earth Moon Planets 2006, 98, 39–95. [Google Scholar] [CrossRef]
- Lissauer, J.J. Planet formation. Annu. Rev. Astron. Astrophys. 1993, 31, 129–172. [Google Scholar] [CrossRef]
- Yin, Q.; Jacobsen, S.B.; Yamashita, K.; Blichert-Toft, J.; Telouk, P.; Albarede, F. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nat. Cell Biol. 2002, 418, 949–952. [Google Scholar] [CrossRef]
- Wetherill, G.W. Formation of the Earth. Annu. Rev. Earth Planet. Sci. 1990, 18, 205–256. [Google Scholar] [CrossRef]
- Benner, S.A.; Bell, E.A.; Biondi, E.; Brasser, R.; Carell, T.; Kim, H.J.; Trail, D. When did life likely emerge on Earth in an RNA-first process? arXiv 2019, arXiv:1908.11327. [Google Scholar]
- Pearce, B.K.; Tupper, A.S.; Pudritz, R.E.; Higgs, P.G. Constraining the time interval for the origin of life on earth. Astrobiology 2018, 18, 343–364. [Google Scholar] [CrossRef]
- Mazzarello, P. A unifying concept: The history of cell theory. Nat. Cell Biol. 1999, 1, E13–E15. [Google Scholar] [CrossRef]
- Pross, A.; Pascal, R. The origin of life: What we know, what we can know and what we will never know. Open Biol. 2013, 3, 120190. [Google Scholar] [CrossRef] [Green Version]
- Mulkidjanian, A.Y.; Galperin, M.Y. Physico-chemical and evolutionary constraints for the formation and selection of first biopolymers: Towards the consensus paradigm of the abiogenic origin of life. Chem. Biodivers. 2007, 4, 2003–2015. [Google Scholar] [CrossRef]
- Orgel, L.E. The origin of life—A review of facts and speculations. Trends Biochem. Sci. 1998, 23, 491–495. [Google Scholar] [CrossRef]
- Küppers, B.-O. Information and the Origin of Life; Mit Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Gilbert, W. Origin of life: The RNA world. Nat. Cell Biol. 1986, 319, 618. [Google Scholar] [CrossRef]
- Oparin, A. The Origin of Life on the Earth; Oliver & Boyd: Edinburgh, UK; Oliver & Boyd: London, UK, 1957. [Google Scholar]
- Copley, S.D.; Smith, E.; Morowitz, H.J. The origin of the RNA world: Co-evolution of genes and metabolism. Bioorganic Chem. 2007, 35, 430–443. [Google Scholar] [CrossRef]
- Copley, S.D.; Smith, E.; Morowitz, H.J. A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc. Natl. Acad. Sci. USA 2005, 102, 4442–4447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vastel, C.; Ceccarelli, C.; Lefloch, B.; Bachiller, R. The origin of complex organic molecules in prestellar cores. Astrophys. J. 2014, 795, L2. [Google Scholar] [CrossRef] [Green Version]
- Podlech, J. Origin of organic molecules and biomolecular homochirality. Cell. Mol. Life Sci. 2001, 58, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Chyba, C.; Sagan, C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nat. Cell Biol. 1992, 355, 125–132. [Google Scholar] [CrossRef]
- Colín-García, M. Hydrothermal vents and prebiotic chemistry: A review. Boletín Soc. Geológica Mex. 2016, 68, 599–620. [Google Scholar] [CrossRef]
- Konn, C.; Charlou, J.-L.; Holm, N.G.; Mousis, O. The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic ridge. Astrobiology 2015, 15, 381–399. [Google Scholar] [CrossRef]
- Lang, S.Q.; Butterfield, D.A.; Schulte, M.; Kelley, D.S.; Lilley, M.D. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta 2010, 74, 941–952. [Google Scholar] [CrossRef]
- Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal vents and the origin of life. Nat. Rev. Genet. 2008, 6, 805–814. [Google Scholar] [CrossRef]
- Van Dover, C. The ecology of Deep-Sea Hydrothermal Vents; Princeton University Press: Princeton, NJ, USA, 2000. [Google Scholar]
- Smith, J.M. The Theory of Evolution; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Weiss, M.C.; Sousa, F.L.; Mrnjavac, N.; Neukirchen, S.; Roettger, M.; Nelson-Sathi, S.; Martin, W.F. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 2016, 1, 16116. [Google Scholar] [CrossRef]
- Glansdorff, N.; Xu, Y.; Labedan, B. The last universal common ancestor: Emergence, constitution and genetic legacy of an elusive forerunner. Biol. Direct 2008, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Koonin, E.V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Genet. 2003, 1, 127–136. [Google Scholar] [CrossRef]
- Penny, D.; Poole, A. The nature of the last universal common ancestor. Curr. Opin. Genet. Dev. 1999, 9, 672–677. [Google Scholar] [CrossRef]
- Schönheit, P.; Buckel, W.; Martin, W.F. On the origin of heterotrophy. Trends Microbiol. 2016, 24, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Lane, N.; Martin, W.F. The origin of membrane bioenergetics. Cell 2012, 151, 1406–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, W.; Russell, M.J. On the origins of cells: A hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos. Trans. R. Soc. B Biol. Sci. 2003, 358, 59–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schleper, C.; Sousa, F.L. Meet the relatives of our cellular ancestor. Nat. Cell Biol. 2020, 577, 478–479. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.A.; Cox, C.J.; Foster, P.G.; Szöllősi, G.J.; Embley, T.M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 2020, 4, 138–147. [Google Scholar] [CrossRef]
- Eme, L.; Spang, A.; Lombard, J.; Stairs, C.W.; Ettema, T.J.G. Archaea and the origin of eukaryotes. Nat. Rev. Genet. 2017, 15, 711–723. [Google Scholar] [CrossRef]
- Spang, A.; Saw, J.H.; Jørgensen, S.L.; Zaremba-Niedzwiedzka, K.; Martijn, J.; Lind, A.E.; Van Eijk, R.; Schleper, C.; Guy, L.; Ettema, T.J.G. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nat. Cell Biol. 2015, 521, 173–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, W.F.; Sousa, F.L. Early microbial evolution: The age of anaerobes. Cold Spring Harb. Perspect. Biol. 2015, 8, a018127. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.F. Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution of biological energy conservation. FEBS Lett. 2011, 586, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Cody, G.D.; Scott, J.H.; Sullivan, I.W.T.; Baross, J. The roots of metabolism. In Planets and Life; Cambridge University Press: Cambridge, UK, 2018; pp. 174–186. [Google Scholar]
- Petrov, A.S.; Gulen, B.; Norris, A.M.; Kovacs, N.A.; Bernier, C.R.; Lanier, K.A.; Fox, G.E.; Harvey, S.C.; Wartell, R.M.; Hud, N.V.; et al. History of the ribosome and the origin of translation. Proc. Natl. Acad. Sci. USA 2015, 112, 15396–15401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, G.E. Origin and evolution of the ribosome. Cold Spring Harb. Perspect. Biol. 2010, 2, a003483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caetano-Anollés, G. Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res. 2002, 30, 2575–2587. [Google Scholar] [CrossRef] [Green Version]
- Levin, S.R.; Gandon, S.; West, S.A. The social coevolution hypothesis for the origin of enzymatic cooperation. Nat. Ecol. Evol. 2019, 4, 132–137. [Google Scholar] [CrossRef]
- Xavier, J.C. The early origin of cooperation. Nat. Ecol. Evol. 2019, 4, 18–19. [Google Scholar] [CrossRef]
- Krupovic, M.; Dolja, V.V.; Koonin, E.V. Origin of viruses: Primordial replicators recruiting capsids from hosts. Nat. Rev. Genet. 2019, 17, 449–458. [Google Scholar] [CrossRef]
- Preiner, M.; Xavier, J.C.; Vieira, A.D.N.; Kleinermanns, K.; Allen, J.F.; Martin, W.F. Catalysts, autocatalysis and the origin of metabolism. Interface Focus 2019, 9, 20190072. [Google Scholar] [CrossRef]
- Lane, N.; Allen, J.F.; Martin, W. How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 2010, 32, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, J.A.; Caron, D.A. Heterotrophic planktonic microbes: Virus, bacteria, archaea, and protozoa. Available online: https://dornsife.usc.edu/assets/sites/378/docs/Caron_pdfs/2016_FuhrmanCaron_MEM4thEd.pdf (accessed on 21 May 2021).
- Martin, W.F.; A Bryant, D.; Beatty, J.T. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol. Rev. 2018, 42, 205–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blankenship, R.E. Early Evolution of photosynthesis. Plant Physiol. 2010, 154, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Olson, J.M. Photosynthesis in the Archean Era. Photosynth. Res. 2006, 88, 109–117. [Google Scholar] [CrossRef]
- Blankenship, R.E. Origin and early evolution of photosynthesis. Photosynth. Res. 1992, 33, 91–111. [Google Scholar] [CrossRef]
- Garlick, S.; Oren, A.; Padan, E. Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J. Bacteriol. 1977, 129, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Fischer, W.W.; Hemp, J.; Johnson, J.E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 2016, 44, 647–683. [Google Scholar] [CrossRef]
- Ward, L.M.; Kirschvink, J.L.; Fischer, W.W. Timescales of oxygenation following the evolution of oxygenic photosynthesis. Orig. Life Evol. Biosph. 2015, 46, 51–65. [Google Scholar] [CrossRef]
- Och, L.M.; Shields-Zhou, G.A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Science Rev. 2012, 110, 26–57. [Google Scholar] [CrossRef]
- Shields-Zhou, G.; Och, L. The case for a neoproterozoic oxygenation event: Geochemical evidence and biological consequences. GSA Today 2011, 21, 4–11. [Google Scholar] [CrossRef]
- Kopp, R.E.; Kirschvink, J.L.; Hilburn, I.A.; Nash, C.Z. The paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 2005, 102, 11131–11136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer, C. On the origin of eukaryotes. Science 2009, 325, 666–668. [Google Scholar] [CrossRef]
- Roger, A.J.; A Hug, L. The origin and diversification of eukaryotes: Problems with molecular phylogenetics and molecular clock estimation. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1039–1054. [Google Scholar] [CrossRef] [Green Version]
- Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 1967, 14, 225–274. [Google Scholar] [CrossRef]
- Cox, C.J.; Foster, P.G.; Hirt, R.P.; Harris, S.R.; Embley, T.M. The archaebacterial origin of eukaryotes. Proc. Natl. Acad. Sci. USA 2008, 105, 20356–20361. [Google Scholar] [CrossRef] [Green Version]
- De Duve, C. The origin of eukaryotes: A reappraisal. Nat. Rev. Genet. 2007, 8, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int. J. Syst. Evol. Microbiol. 2002, 52, 297–354. [Google Scholar] [CrossRef]
- Sogin, M.L. Early evolution and the origin of eukaryotes. Curr. Opin. Genet. Dev. 1991, 1, 457–463. [Google Scholar] [CrossRef]
- Davidov, Y.; Jurkevitch, E. Predation between prokaryotes and the origin of eukaryotes. BioEssays 2009, 31, 748–757. [Google Scholar] [CrossRef]
- Langerhans, R.B. Evolutionary consequences of predation: Avoidance, escape, reproduction, and diversification. In Predation in Organisms; Metzler, J.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 177–220. [Google Scholar]
- Booth, A. Symbiosis, selection, and individuality. Biol. Philos. 2014, 29, 657–673. [Google Scholar] [CrossRef]
- Clarke, E. The Problem of Biological Individuality. Biol. Theory 2010, 5, 312–325. [Google Scholar] [CrossRef]
- Lane, N. Power, Sex, Suicide: Mitochondria and the Meaning of Life; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Herron, M.D.; Borin, J.M.; Boswell, J.C.; Walker, J.; Chen, I.-C.K.; Knox, C.A.; Boyd, M.; Rosenzweig, F.; Ratcliff, W.C. De novo origins of multicellularity in response to predation. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libby, E.; Rainey, P.B. A conceptual framework for the evolutionary origins of multicellularity. Phys. Biol. 2013, 10, 035001. [Google Scholar] [CrossRef] [Green Version]
- Niklas, K.J.; Cobb, E.D.; Dunker, A.K. The number of cell types, information content, and the evolution of complex multicellularity. Acta Soc. Bot. Pol. 2014, 83, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Trillo, I.; Burger, G.; Holland, P.W.; King, N.; Lang, B.F.; Roger, A.J.; Gray, M.W. The origins of multicellularity: A multi-taxon genome initiative. Trends Genet. 2007, 23, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Bonner, J.T. The origins of multicellularity. Integr. Biol. 1998, 1, 27–36. [Google Scholar] [CrossRef]
- Nagy, L.G. Evolution: Complex multicellular life with 5,500 genes. Curr. Biol. 2017, 27, R609–R612. [Google Scholar] [CrossRef] [PubMed]
- Knoll, A.H. The multiple origins of complex multicellularity. Annu. Rev. Earth Planet. Sci. 2011, 39, 217–239. [Google Scholar] [CrossRef] [Green Version]
- Lynch, M.; Conery, J.S. The origins of genome complexity. Science 2003, 302, 1401–1404. [Google Scholar] [CrossRef] [Green Version]
- Lemons, D.; McGinnis, W. Genomic evolution of Hox gene clusters. Science 2006, 313, 1918–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruddle, F.H.; Bartels, J.L.; Bentley, K.L.; Kappen, C.; Murtha, M.T.; Pendleton, J.W. Evolution of hox genes. Annu. Rev. Genet. 1994, 28, 423–442. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.I. Top-down causation and the rise of information in the emergence of life. Information 2014, 5, 424–439. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.S.; Soubrier, J.; Edgecombe, G.D. Rates of phenotypic and genomic evolution during the cambrian explosion. Curr. Biol. 2013, 23, 1889–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, C.R. Explaining the Cambrian “explosion” of animals. Annu. Rev. Earth Planet. Sci. 2006, 34, 355–384. [Google Scholar] [CrossRef] [Green Version]
- Miljkovic-Licina, M.; Gauchat, D.; Galliot, B. Neuronal evolution: Analysis of regulatory genes in a first-evolved nervous system, the hydra nervous system. Biosystems 2004, 76, 75–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooshangi, S.; E Bentley, W. From unicellular properties to multicellular behavior: Bacteria quorum sensing circuitry and applications. Curr. Opin. Biotechnol. 2008, 19, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Bourret, R.B.; Stock, A.M. Molecular information processing: Lessons from bacterial chemotaxis. J. Biol. Chem. 2002, 277, 9625–9628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catterall, W.A.; Wisedchaisri, G.; Zheng, N. The chemical basis for electrical signaling. Nat. Chem. Biol. 2017, 13, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Arendt, D.; Bertucci, P.Y.; Achim, K.; Musser, J.M. Evolution of neuronal types and families. Curr. Opin. Neurobiol. 2019, 56, 144–152. [Google Scholar] [CrossRef]
- Kristan, J.; William, B. Early evolution of neurons. Curr. Biol. 2016, 26, R949–R954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moroz, L.L. On the independent origins of complex brains and neurons. Brain Behav. Evol. 2009, 74, 177–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grillner, S.; Robertson, B. The basal ganglia downstream control of brainstem motor centres—An evolutionarily conserved strategy. Curr. Opin. Neurobiol. 2015, 33, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, H.B.; Netsky, M.G. When does a ganglion become a brain? Evolutionary origin of the central nervous system. Semin. Pediatr. Neurol. 2002, 9, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Jerison, H. Evolution of the Brain and Intelligence; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Roth, G.; Dicke, U. Evolution of the brain and intelligence. Trends Cogn. Sci. 2005, 9, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Striedter, G.F. Principles of Brain Evolution; Sinauer Associates: Sunderland, MA, USA, 2005. [Google Scholar]
- Passingham, R.E.; Wise, S.P. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Florio, M.; Huttner, W.B. Neural progenitors, neurogenesis and the evolution of the neocortex. Development 2014, 141, 2182–2194. [Google Scholar] [CrossRef] [Green Version]
- Rakic, P. Evolution of the neocortex: A perspective from developmental biology. Nat. Rev. Neurosci. 2009, 10, 724–735. [Google Scholar] [CrossRef]
- Northcutt, R.G.; Kaas, J.H. The emergence and evolution of mammalian neocortex. Trends Neurosci. 1995, 18, 373–379. [Google Scholar] [CrossRef]
- Weil, K. Thinking Animals: Why Animal Studies Now? Columbia University Press: New York, NY, USA, 2012. [Google Scholar]
- Povinelli, D.J.; Vonk, J. Chimpanzee minds: Suspiciously human? Trends Cogn. Sci. 2003, 7, 157–160. [Google Scholar] [CrossRef]
- Lewis, L.P.; Siju, K.; Aso, Y.; Friedrich, A.B.; Bulteel, A.J.; Rubin, G.M.; Kadow, I.C.G. A Higher Brain circuit for immediate integration of conflicting sensory information in drosophila. Curr. Biol. 2015, 25, 2203–2214. [Google Scholar] [CrossRef] [Green Version]
- Nuñez, A.; Malmierca, E. Corticofugal modulation of sensory information. Adv. Anat. Embryol. Cell Boil. 2007, 187, 1–74. [Google Scholar]
- Kerr, B.J.; Bradbury, E.J.; Bennett, D.L.H.; Trivedi, P.M.; Dassan, P.; French, J.; Shelton, D.B.; McMahon, S.B.; Thompson, S.W.N. Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-Evoked responses in the rat spinal cord. J. Neurosci. 1999, 19, 5138–5148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harter, M.R.; Aine, C.J. Brain mechanisms of visual selective attention. Var. Atten. 1984, 293–321. [Google Scholar]
- Guttorp, P.; Gigerenzer, G.; Swijtink, Z.; Porter, T.; Daston, L.; Beatty, J.; Krüger, L. The empire of chance: How probability changed science and everyday life. J. Am. Stat. Assoc. 1990, 85, 592. [Google Scholar] [CrossRef]
- Simberloff, D. A succession of paradigms in ecology: Essentialism to materialism and probabilism. Synthese 1980, 43, 3–39. [Google Scholar] [CrossRef]
- Birch, J. Natural selection and the maximization of fitness. Biol. Rev. 2015, 91, 712–727. [Google Scholar] [CrossRef] [Green Version]
- Demetrius, L. Directionality principles in thermodynamics and evolution. Proc. Natl. Acad. Sci. USA 1997, 94, 3491–3498. [Google Scholar] [CrossRef] [Green Version]
- Purvis, A.; Jones, K.E.; Mace, G.M. Extinction. BioEssays 2000, 22, 1123–1133. [Google Scholar] [CrossRef]
- Hart, M.B. Biotic Recovery from Mass Extinction Events; Geological Society of London: London, UK, 1996. [Google Scholar]
- Crowley, T.J.; North, G.R. Abrupt climate change and extinction events in earth history. Science 1988, 240, 996–1002. [Google Scholar] [CrossRef]
- Raup, D.M. Biological extinction in earth history. Science 1986, 231, 1528–1533. [Google Scholar] [CrossRef] [Green Version]
- Benton, M.J. The origins of modern biodiversity on land. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3667–3679. [Google Scholar] [CrossRef] [PubMed]
- Courtillot, V.; Gaudemer, Y. Effects of mass extinctions on biodiversity. Nat. Cell Biol. 1996, 381, 146–148. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pievani, T. The sixth mass extinction: Anthropocene and the human impact on biodiversity. RENDICONTI Lincei 2014, 25, 85–93. [Google Scholar] [CrossRef]
- Crutzen, P.J. The anthropocene. In Earth System Science in the Anthropocene; Springer: Berlin/Heidelberg, Germany, 2006; pp. 13–18. [Google Scholar]
- Bradshaw, C.J.A.; Ehrlich, P.R.; Beattie, A.; Ceballos, G.; Crist, E.; Diamond, J.; Dirzo, R.; Ehrlich, A.H.; Harte, J.; Harte, M.E.; et al. Underestimating the challenges of avoiding a ghastly future. Front. Conserv. Sci. 2021, 1, 9. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neidhöfer, C. On the Evolution of the Biological Framework for Insight. Philosophies 2021, 6, 43. https://doi.org/10.3390/philosophies6020043
Neidhöfer C. On the Evolution of the Biological Framework for Insight. Philosophies. 2021; 6(2):43. https://doi.org/10.3390/philosophies6020043
Chicago/Turabian StyleNeidhöfer, Claudio. 2021. "On the Evolution of the Biological Framework for Insight" Philosophies 6, no. 2: 43. https://doi.org/10.3390/philosophies6020043
APA StyleNeidhöfer, C. (2021). On the Evolution of the Biological Framework for Insight. Philosophies, 6(2), 43. https://doi.org/10.3390/philosophies6020043