Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines
Abstract
1. Introduction
2. Learning about the World through Agency
3. Learning in the Computing Nature
Learning in the Evolutionary Perspective
4. Learning as Computation in Networks of Agents
5. Info-Computational Learning by Morphological Computation
6. Learning to Learn from Raw Data and up—Agency from System 1 to System 2
7. Conclusions and Future Work
Funding
Acknowledgments
Conflicts of Interest
References
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Rozenberg, G.; Kari, L. The Many Facets of Natural Computing. Commun. ACM 2008, 51, 72–83. [Google Scholar]
- Dodig-Crnkovic, G. Nature as a network of morphological infocomputational processes for cognitive agents. Eur. Phys. J. Spec. Top. 2017. [Google Scholar] [CrossRef]
- Dodig-Crnkovic, G. Cognition as Embodied Morphological Computation. In Philosophy and Theory of Artificial Intelligence; Studies in Applied Philosophy, Epistemology and Rational Ethics; Springer: Cham, Switzerland, 2018; Volume 44, pp. 19–23. [Google Scholar]
- Bengio, Y. From System 1 Deep Learning to System 2 Deep Learning (NeurIPS 2019). Available online: https://www.youtube.com/watch?v=T3sxeTgT4qc (accessed on 24 June 2020).
- Bengio, Y. Scaling up deep learning. In Proceedings of the KDD ’14: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM: New York, NY, USA, 2014; p. 1966. [Google Scholar]
- Bengio, Y. The Consciousness Prior. arXiv 2019, arXiv:1709.08568v2. [Google Scholar]
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011; ISBN 9780374275631. [Google Scholar]
- Clark, A. Microcognition: Philosophy, Cognitive Science, and Parallel Distributed Processing; MIT Press: Cambridge, MA, USA, 1989; ISBN 978-0262530958. [Google Scholar]
- Scellier, B.; Bengio, Y. Towards a Biologically Plausible Backprop. arXiv 2016, arXiv:1602.05179, 1–17. [Google Scholar]
- Minsky, M. Logical vs. Analogical or Symbolic vs. Connectionist or Neat vs. Scruffy. In Artificial Intelligence at MIT, Expanding Frontiers; Winston, P.H., Ed.; MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Dinsmore, J. The Symbolic and Connectionist Paradigms; Psychology Press: New York, NY, USA; London, UK, 2014; ISBN 978-0805810806. [Google Scholar]
- Wang, J. Symbolism vs. Connectionism: A Closing Gap in Artificial Intelligence. Available online: http://wangjieshu.com/2017/12/23/symbol-vs-connectionism-a-closing-gap-in-artificial-intelligence/ (accessed on 28 June 2020).
- Garcez, A.D.A.; Besold, T.R.; De Raedt, L.; Foldiak, P.; Hitzler, P.; Icard, T.; Kiihnberger, K.U.; Lamb, L.C.; Miikkulainen, R.; Silver, D.L. Neural-symbolic learning and reasoning: Contributions and challenges. In Proceedings of the AAAI Spring Symposium-Technical Report, Stanford, CA, USA, 23–25 March 2015; Dagstuhl Seminar 14381. Dagstuhl Publishing: Dagstuhl, Germany, 2015. [Google Scholar]
- Floridi, L. Informational realism. In Proceedings of the Selected Papers from Conference on Computers and Philosophy-Volume 37 (CRPIT ’03); Weckert, J., Al-Saggaf, Y., Eds.; Australian Computer Society, Inc.: Darlinghurst, Australia, 2003; pp. 7–12. [Google Scholar]
- Dodig-Crnkovic, G. Dynamics of Information as Natural Computation. Information 2011, 2, 460–477. [Google Scholar] [CrossRef]
- Dodig-Crnkovic, G. Information, Computation, Cognition. Agency-Based Hierarchies of Levels. In Fundamental Issues of Artificial Intelligence. Synthese Library, (Studies in Epistemology, Logic, Methodology, and Philosophy of Science); Müller, V., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 141–159. ISBN 9783319264851. Volume 376. [Google Scholar]
- Dodig-Crnkovic, G.; Giovagnoli, R. COMPUTING NATURE. Turing Centenary Perspective; Dodig-Crnkovic, G., Giovagnoli, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7, ISBN 978-3-642-37224-7. [Google Scholar]
- Dodig-Crnkovic, G. Physical computation as dynamics of form that glues everything together. Information 2012, 3, 204–218. [Google Scholar] [CrossRef]
- Froese, T.; Ziemke, T. Enactive Artificial Intelligence: Investigating the systemic organization of life and mind. Artif. Intell. 2009, 173, 466–500. [Google Scholar] [CrossRef]
- Kauffman, S. The Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: Oxford, UK, 1993; ISBN 978-0195079517. [Google Scholar]
- Deacon, T. Incomplete Nature. How Mind Emerged from Matter; W. W. Norton & Company: New York, NY, USA, 2011; ISBN 978-0-393-04991-6. [Google Scholar]
- Bateson, G. Steps to an Ecology of Mind; University of Chicago Press: Chicago, IL, USA, 1973; ISBN 9780226039053. [Google Scholar]
- Floridi, L. A defense of informational structural realism. Synthese 2008, 161, 219–253. [Google Scholar] [CrossRef]
- Chaitin, G. Building the World Out of Information and Computation: Is God a Programmer, Not a Mathematician? In Exploring the Foundations of Science, Thought and Reality; Wuppuluri, S., Doria, F.A., Eds.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Dodig-Crnkovic, G. Shifting the Paradigm of Philosophy of Science: Philosophy of Information and a New Renaissance. Minds Mach. 2003. [Google Scholar] [CrossRef]
- Maturana, H. Biology of Cognition; Defense Technical Information Center: Urbana, IL, USA, 1970. [Google Scholar]
- Maturana, H.; Varela, F. Autopoiesis and cognition: The Realization of the Living; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1980; ISBN 9789027710154. [Google Scholar]
- Stewart, J. Cognition = life: Implications for higher-level cognition. Behav. Process. 1996, 35, 311–326. [Google Scholar] [CrossRef]
- Ben-Jacob, E. Bacterial Complexity: More Is Different on All Levels. In Systems Biology-The Challenge of Complexity; Nakanishi, S., Kageyama, R., Watanabe, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 25–35. [Google Scholar]
- Ben-Jacob, E. Learning from Bacteria about Natural Information Processing. Ann. N. Y. Acad. Sci. 2009, 1178, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Lyon, P. The cognitive cell: Bacterial behavior reconsidered. Front. Microbiol. 2015, 6, 264. [Google Scholar] [CrossRef] [PubMed]
- Marijuán, P.C.; Navarro, J.; del Moral, R. On prokaryotic intelligence: Strategies for sensing the environment. BioSystems 2010. [Google Scholar] [CrossRef]
- Popper, K. All Life Is Problem Solving; Routledge: London, UK, 1999; ISBN 978-0415249928. [Google Scholar]
- Baars, B.J. Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience. Prog. Brain Res. 2005, 150, 45–53. [Google Scholar] [CrossRef]
- Van Duijn, M.; Keijzer, F.; Franken, D. Principles of Minimal Cognition: Casting Cognition as Sensorimotor Coordination. Adapt. Behav. 2006, 14, 157–170. [Google Scholar] [CrossRef]
- Århem, P.; Liljenström, H. On the coevolution of cognition and consciousness. J. Theor. Biol. 1997. [Google Scholar] [CrossRef]
- Liljenström, H.; Århem, P. Consciousness Transitions: Phylogenetic, Ontogenetic and Physiological Aspects; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 978-0-444-52977-0. [Google Scholar]
- Dodig-Crnkovic, G.; von Haugwitz, R. Reality Construction in Cognitive Agents through Processes of Info-Computation. In Representation and Reality in Humans, Other Living Organisms and Intelligent Machines; Dodig-Crnkovic, G., Giovagnoli, R., Eds.; Springer International Publishing: Basel, Switzerland, 2017; pp. 211–235. ISBN 978-3-319-43782-8. [Google Scholar]
- Putnam, H. Mathematics, Matter and Method; Cambridge University Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Dodig-Crnkovic, G.; Schroeder, M. Contemporary Natural Philosophy and Philosophies. Philosophies 2018, 3, 42. [Google Scholar] [CrossRef]
- Dodig-Crnkovic, G.; Schroeder, M. Contemporary Natural Philosophy and Philosophies-Part 1; MDPI AG: Basel, Switzerland, 2019; ISBN 978-3-03897-822-0. [Google Scholar]
- Edmonds, B.; Gershenson, C. Learning, Social Intelligence and the Turing Test. In How the World Computes. CiE 2012. Lecture Notes in Computer Science; Cooper, S.B., Dawar, A., Löwe, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7318. [Google Scholar]
- Minsky, M. The Society of Mind; Simon and Schuster: New York, NY, USA, 1986; ISBN 0-671-60740-5. [Google Scholar]
- Dennett, D. From Bacteria to Bach and Back: The Evolution of Minds; W. W. Norton & Company: New York City, NY, USA, 2017; ISBN 978-0-393-24207-2. [Google Scholar]
- Dodig-Crnkovic, G. Investigations into Information Semantics and Ethics of Computing; Mälardalen University Press: Västerås, Sweden, 2006; ISBN 91-85485-23-3. [Google Scholar]
- Dodig-Crnkovic, G.; Müller, V. A Dialogue Concerning Two World Systems: Info-Computational vs. Mechanistic. In Information and Computation; Dodig Crnkovic, G., Burgin, M., Eds.; World Scientific Pub Co Inc: Singapore, 2009; pp. 149–184. ISBN 978-981-4295-47-5. [Google Scholar]
- Dodig-Crnkovic, G. The info-computational nature of morphological computing. In Philosophy and Theory of Artificial Intelligence. Studies in Applied Philosophy, Epistemology and Rational Ethics; Müller, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 5, ISBN 00935301. [Google Scholar]
- Pfeifer, R.; Bongard, J. How the Body Shapes the Way We Think–A New View of Intelligence; MIT Press: Cambridge, MA, USA, 2006; ISBN 9780262162395. [Google Scholar]
- Witzany, G. Memory and Learning as Key Competences of Living Organisms. In Memory and Learning in Plants. Signaling and Communication in Plants; Baluska, F., Gagliano, M., Witzany, G., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2018; pp. 1–16. [Google Scholar]
- Witzany, G. Introduction: Key Levels of Biocommunication of Bacteria. In Biocommunication in Soil Microorganisms; Witzany, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Witzany, G. Viruses: Essential Agents of Life; Springer Netherlands: Dodrecht, Netherlands, 2012; ISBN 9789400748996. [Google Scholar]
- Villarreal, L.P.; Witzany, G. Viruses are essential agents within the roots and stem of the tree of life. J. Theor. Biol. 2010. [Google Scholar] [CrossRef]
- Leyton, M. Shape as Memory Storage. In Ambient Intelligence for Scientific Discovery. Lecture Notes in Computer Science; Yang, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3345. [Google Scholar]
- Kandel, E.R.; Dudai, Y.; Mayford, M.R. The molecular and systems biology of memory. Cell 2014. [Google Scholar] [CrossRef]
- Fields, C.; Levin, M. Multiscale memory and bioelectric error correction in the cytoplasm–cytoskeleton-membrane system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Kukushkin, N.V.; Carew, T.J. Memory Takes Time. Neuron 2017. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Witzany, G. Biocommunication of Archaea; Springer International Publishing: Cham, Switzerland, 2017; ISBN 9783319655369. [Google Scholar]
- Witzany, G. Bio-communication of Plants. Nat. Preced. 2007. [Google Scholar] [CrossRef]
- Pombo, O.; Torres, J.M.; Rahman, S. Special Sciences and the Unity of Science; Logic, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-94-007-9213-5. [Google Scholar]
- Rosen, R. Anticipatory Systems; Springer: New York, NY, USA, 1985; ISBN 978-1-4614-1268-7. [Google Scholar]
- Popper, K. Objective Knowledge: An Evolutionary Approach; Oxford University Press: Oxford, UK, 1972. [Google Scholar]
- Campbell, D.T. Evolutionary epistemology. In The Philosophy of Karl Popper; Schilpp, P.A., Ed.; Open Court Publ.: La Salle, IL, USA, 1974; Volume 1, pp. 413–463. [Google Scholar]
- Vanberg, V. Cultural Evolution, Collective Learning, and Constitutional Design. In Economic Thought and Political Theory; Reisman, D., Ed.; Springer: Dordrecht, The Netherlands, 1994. [Google Scholar] [CrossRef]
- Thagard, P. Against Evolutionary Epistemology. PSA Proc. Bienn. Meet. Philos. Sci. Assoc. 1980. [Google Scholar] [CrossRef]
- Kronfeldner, M.E. Darwinian “blind” hypothesis formation revisited. Synthese 2010. [Google Scholar] [CrossRef]
- Jablonka, E.; Lamb, M.J.; Anna, Z. Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life; MIT Press: Cambridge, MA, USA, 2014; ISBN 9780262322676. [Google Scholar]
- Laland, K.N.; Uller, T.; Feldman, M.W.; Sterelny, K.; Müller, G.B.; Moczek, A.; Jablonka, E.; Odling-Smee, J. The extended evolutionary synthesis: Its structure, assumptions and predictions. Proc. R. Soc. B Biol. Sci. 2015. [Google Scholar] [CrossRef] [PubMed]
- Noble, D. The Music of Life: Biology Beyond the Genome. Lavoisierfr 2006. [Google Scholar] [CrossRef]
- Watson, R.A.; Szathmáry, E. How Can Evolution Learn? Trends Ecol Evol. 2016, 31, 147–157. [Google Scholar] [CrossRef]
- Turing, A.M. Computing machinery and intelligence. In Machine Intelligence: Perspectives on the Computational Model; Routledge: New York, NY, USA, 2012; ISBN 0815327684. [Google Scholar]
- Chaitin, G. Epistemology as Information Theory: From Leibniz to Ω. In Computation, Information, Cognition–The Nexus and The Liminal; Dodig Crnkovic, G., Ed.; Cambridge Scholars Pub.: Newcastle, UK, 2007; pp. 2–17. ISBN 978-1-4438-0040-2. [Google Scholar]
- Neil Gershenfeld Morphogenesis for the Design of Design A Talk by. Available online: https://www.edge.org/conversation/neil_gershenfeld-morphogenesis-for-the-design-of-design (accessed on 28 June 2020).
- Sloman, A. Meta-Morphogenesis: Evolution and Development of Information-Processing Machinery. In Alan Turing: His Work and Impact; Cooper, S.B., van Leeuwen, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; p. 849. ISBN 978-0-12-386980-7. [Google Scholar]
- Nature Gene Regulation. Available online: https://www.nature.com/subjects/gene-regulation (accessed on 28 June 2020).
- Hewitt, C. What is computation? Actor Model versus Turing’s Model. In A Computable Universe, Understanding Computation & Exploring Nature As Computation; Zenil, H., Ed.; World Scientific Publishing Company: Singapore, 2012. [Google Scholar]
- Rozenberg, G.; Bäck, T.; Kok, J.N. (Eds.) Handbook of Natural Computing; Springer: Berlin, Germany, 2012; ISBN 978-3-540-92911-6. [Google Scholar]
- Denning, P. Computing is a natural science. Commun. ACM 2007, 50, 13–18. [Google Scholar] [CrossRef]
- Denning, P.; Rosenbloom, P. The fourth great domain of science. ACM Commun. 2009, 52, 27–29. [Google Scholar] [CrossRef]
- Wang, Y. On Abstract Intelligence: Toward a Unifying Theory of Natural, Artificial, Machinable, and Computational Intelligence. Int. J. Softw. Sci. Comput. Intell. 2009, 1, 1–17. [Google Scholar] [CrossRef]
- Crutchfield, J.P.; Ditto, William, L.; Sinha, S. Introduction to Focus Issue: Intrinsic and Designed Computation: Information Processing in Dynamical Systems-Beyond the Digital Hegemony. Chaos 2010, 20, 037101. [Google Scholar] [CrossRef] [PubMed]
- Crutchfield, J.P.; Wiesner, K. Intrinsic Quantum Computation. Phys. Lett. A 2008, 374, 375–380. [Google Scholar] [CrossRef]
- Collier, J. Information, Causation and Computation. In Information and Computation; Dodig-Crnkovic, G., Burgin, M., Eds.; World Scientific: Singapore, 2011; pp. 89–105. [Google Scholar]
- Zenil, H. A Computable Universe. Understanding Computation & Exploring Nature as Computation; World Scientific: Singapore, 2012; ISBN 978-9814374293. [Google Scholar]
- Piccinini, G. Computation in Physical Systems. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; 2017; Available online: https://plato.stanford.edu/archives/sum2017/entries/computation-physicalsystems/ (accessed on 28 June 2020).
- Horsman, C.; Stepney, S.; Wagner, R.C.; Kendon, V. When does a physical system compute? Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 470, 20140182. [Google Scholar] [CrossRef] [PubMed]
- Horsman, D.; Kendon, V.; Stepney, S. The natural science of computing. Commun. ACM 2017, 60. [Google Scholar] [CrossRef]
- Horsman, D.; Kendon, V.; Stepney, S.; Young, J.P.W. Abstraction and representation in living organisms: When does a biological system compute? In Representation and Reality in Humans, Animals, and Machines. Studies in Applied Philosophy, Epistemology and Rational Ethics; Springer: Cham, Switzerland, 2017; Volume 28, pp. 91–116. [Google Scholar]
- Brooks, R.A. Intelligence without representation. Artif. Intell. 1991. [Google Scholar] [CrossRef]
- Hauser, H.; Füchslin, R.M.; Pfeifer, R. Opinions and Outlooks on Morphological Computation; e-book; 2014; ISBN 978-3-033-04515-6. Available online: https://www.morphologicalcomputation.org/e-book (accessed on 28 June 2020).
- Copeland, J.; Dresner, E.; Proudfoot, D.; Shagrir, O. Time to reinspect the foundations? Commun. ACM 2016, 59, 34–36. [Google Scholar] [CrossRef]
- Turing, A.M. The Chemical Basis of Morphogenesis. Philos. Trans. R. Soc. London 1952, 237, 37–72. [Google Scholar]
- Kampis, G. Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information, and Complexity; Pergamon Press: Amsterdam, The Netherlands, 1991; ISBN 9780080369792. [Google Scholar]
- Valiant, L. Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a Complex World; Basic Books: New York, NY, USA, 2013; ISBN 978-0465032716. [Google Scholar]
- Simon, H.A. Rational choice and the structure of the environment. Psychol. Rev. 1956, 63, 129–138. [Google Scholar] [CrossRef]
- Sloman, A.; Chrisley, R. Virtual machines and consciousness. J. Conscious. Stud. 2003, 10, 113–172. [Google Scholar]
- Grossberg, G.A.; Carpenter, S. ART 2: Self-organization of stable category recognition codes for analog input patterns. Appl. Opt. 1987, 26, 4919–4930. [Google Scholar]
- Mermin, N.D. Making better sense of quantum mechanics. Reports Prog. Phys. 2019. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.P. Law without law: From observer states to physics via algorithmic information theory. Quantum 2020. [Google Scholar] [CrossRef]
- Vedral, V. Information and physics. Information 2012, 3, 219–223. [Google Scholar] [CrossRef]
- Goyal, P. Information physics-towards a new conception of physical reality. Information 2012, 3, 567–594. [Google Scholar] [CrossRef]
- Dodig-Crnkovic, G. Information and energy/matter. Information 2012, 4, 751. [Google Scholar] [CrossRef]
- Fields, C. If physics is an information science, what is an observer? Information 2012, 3, 92–123. [Google Scholar] [CrossRef]
- Wheeler, J.A. Information, physics, quantum: The search for links. In Complexity, Entropy, and the Physics of Information; Zurek, W., Ed.; Addison-Wesley: Redwood City, CA, USA, 1990. [Google Scholar]
- Weizcsäcker, C.F. The Unity of Nature. In Physical Sciences and History of Physics; Boston Studies in the Philosophy of Science; Cohen, R.S., Wartofsky, M.W., Eds.; Springer: Dordrecht, The Netherlands, 1984; Volume 82. [Google Scholar]
- Ehresmann, A.C. MENS, an Info-Computational Model for (Neuro-)cognitive Systems Capable of Creativity. Entropy 2012, 14, 1703–1716. [Google Scholar] [CrossRef]
- Ghosh, S.; Aswani, K.; Singh, S.; Sahu, S.; Fujita, D.; Bandyopadhyay, A. Design and Construction of a Brain-Like Computer: A New Class of Frequency-Fractal Computing Using Wireless Communication in a Supramolecular Organic, Inorganic System. Information 2014, 5, 28–100. [Google Scholar] [CrossRef]
- Zenil, H.; Kiani, N.A.; Zea, A.A.; Tegnér, J. Causal deconvolution by algorithmic generative models. Nat. Mach. Intell. 2019. [Google Scholar] [CrossRef]
- Cardelli, L. Artificial Biochemistry. In Algorithmic Bioprocesses; Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E., Eds.; Springer: Heidelberg, Germany, 2009; pp. 429–462. [Google Scholar]
- Cardelli, L.; Zavattaro, G. On the computational power of biochemistry. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H., Eds.; LNCS; Springer: Heidelberg, Germany, 2008; Volume 5147, pp. 65–80. [Google Scholar]
- Cardelli, L. Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Cardelli, L.; Tribastone, M.; Tschaikowski, M. From electric circuits to chemical networks. Nat. Comput. 2020. [Google Scholar] [CrossRef]
- Fresco, N. Physical Computation and Cognitive Science; Springer: Berlin, Germany, 2014; ISBN 978-3-642-41374-2. [Google Scholar]
- Devon Hjelm, R.; Grewal, K.; Bachman, P.; Fedorov, A.; Trischler, A.; Lavoie-Marchildon, S.; Bengio, Y. Learning deep representations by mutual information estimation and maximization. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dodig-Crnkovic, G. Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines. Philosophies 2020, 5, 17. https://doi.org/10.3390/philosophies5030017
Dodig-Crnkovic G. Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines. Philosophies. 2020; 5(3):17. https://doi.org/10.3390/philosophies5030017
Chicago/Turabian StyleDodig-Crnkovic, Gordana. 2020. "Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines" Philosophies 5, no. 3: 17. https://doi.org/10.3390/philosophies5030017
APA StyleDodig-Crnkovic, G. (2020). Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines. Philosophies, 5(3), 17. https://doi.org/10.3390/philosophies5030017