Compatibility Investigation of a Steroid and Two Antibiotics with Heparin for the Prevention of Catheter Occlusion in Neonatal Intensive Care Units
Abstract
1. Introduction
2. Materials and Methods
2.1. Drugs and Reagents
2.2. Mixing of Drugs for Preparation of Test Samples
2.3. Visual Inspection
2.4. Absorbance Measurement
2.5. pH Measurement
2.6. Measurement of Changes in HDC, ABPC, and CTX Content
3. Results
3.1. Change in Appearance with Visual Inspection
3.2. Absorbance
3.3. pH Change
3.4. Changes in HDC, ABPC, and CTX Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Basagoiti, A.; Fernández, A.; Mendiola, S.; De Miguel, M.; Guerra, E.; Loureiro, B.; Campino, A. Intravenous drug use in neonatal intensive care units. Eur. J. Hosp. Pharm. 2021, 28, 341–345. [Google Scholar] [CrossRef]
- Fernández-Peña, A.; Katsumiti, A.; De Basagoiti, A.; Castaño, M.; Ros, G.; Sautua, S.; De Miguel, M.; Campino, A. Drug compatibility in neonatal intensive care units: Gaps in knowledge and discordances. Eur. J. Pediatr. 2021, 180, 2305–2313. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Sharon, E.; Teena, J.; Nobil, S.; Nazeer, I. A clinical study on drug-related problems associated with intravenous drug administration. J. Basic. Clin. Pharm. 2014, 5, 49. [Google Scholar] [CrossRef]
- Leopoldino, R.W.; Costa, H.T.; Costa, T.X.; Martins, R.R.; Oliveira, A.G. Potential drug incompatibilities in the neonatal intensive care unit: A network analysis approach. BMC Pharmacol. Toxicol. 2018, 19, 83. [Google Scholar] [CrossRef]
- Hill, S.E.; Heldman, L.S.; Goo, E.D.H.; Whippo, P.E.; Perkinson, J.C. Fatal microvascular pulmonary emboli from precipitation of a total nutrient admixture solution. J. Parenter. Enteral Nutr. 1996, 20, 81–87. [Google Scholar] [CrossRef]
- Bradley, J.S.; Wassel, R.T.; Lee, L.; Nambiar, S. Intravenous ceftriaxone and calcium in the neonate: Assessing the risk for cardiopulmonary adverse events. Pediatrics 2009, 123, e1234–e1238. [Google Scholar] [CrossRef]
- Kalikstad, B.; Skjerdal, Å.; Hansen, T.W.R. Compatibility of drug infusions in the NICU. Arch. Dis. Child. 2010, 95, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Onland, W.; Cools, F.; Kroon, A.; Rademaker, K.; Merkus, M.P.; Dijk, P.H.; van Straaten, H.L.; Pas, A.B.T.; Mohns, T.; Bruneel, E.; et al. Effect of hydrocortisone therapy initiated 7 to 14 days after birth on mortality or bronchopulmonary dysplasia among very preterm infants receiving mechanical ventilation. JAMA 2019, 321, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.W.; Cheong, J.L.; Hay, S.; Manley, B.J.; Halliday, H.L. Late (≥7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst. Rev. 2021, 11, CD012345. [Google Scholar] [CrossRef] [PubMed]
- Baud, O.; Maury, L.; Lebail, F.; Ramful, D.; El Moussawi, F.; Nicaise, C.; Zupan-Simunek, V.; Coursol, A.; Beuchée, A.; Bolot, P.; et al. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): A double-blind, placebo-controlled, multicentre, randomised trial. Lancet 2016, 387, 1827–1836. [Google Scholar] [CrossRef]
- Bonsante, F.; Latorre, G.; Iacobelli, S.; Forziati, V.; Laforgia, N.; Esposito, L.; Mautone, A. Early low-dose hydrocortisone in very preterm infants: A randomized, placebo-controlled trial. Neonatology 2007, 91, 217–221. [Google Scholar] [CrossRef]
- Watterberg, K.L.; Gerdes, J.S.; Cole, C.H.; Aucott, S.W.; Thilo, E.H.; Mammel, M.C.; Couser, R.J.; Garland, J.S.; Rozycki, H.J.; Leach, C.L.; et al. Prophylaxis of early adrenal insufficiency to prevent bronchopulmonary dysplasia: A multicenter trial. Pediatrics 2004, 114, 1649–1657. [Google Scholar] [CrossRef]
- Pfizer Japan Inc. Solu-Cortef® Injection 100 mg Interview Form, 17th ed.; Pfizer Japan Inc.: Tokyo, Japan, 2024. [Google Scholar]
- Shah, P.S.; Shah, V.S. Continuous heparin infusion to prevent thrombosis and catheter occlusion in neonates with peripherally placed percutaneous central venous catheters. Cochrane Database Syst. Rev. 2008, 2, CD002772. [Google Scholar] [CrossRef]
- Shah, P.S.; Kalyn, A.; Satodia, P.; Dunn, M.S.; Parvez, B.; Daneman, A.; Salem, S.; Glanc, P.; Ohlsson, A.; Shah, V. A randomized, controlled trial of heparin versus placebo infusion to prolong the usability of peripherally placed percutaneous central venous catheters (PCVCs) in neonates: The HIP (Heparin Infusion for PCVC) study. Pediatrics 2007, 119, e284–e291. [Google Scholar] [CrossRef]
- Bin-Nun, A.; Wasserteil, N.; Nakhash, R.; Hammerman, C. Heparinization of long indwelling lines in neonates: Systematic review and practical recommendations. Isr. Med. Assoc. J. 2016, 18, 692–696. [Google Scholar] [PubMed]
- Maktabi, B.; Howard, M.S.; Baki, G.; Churchwell, M.D. Intravenous physical compatibility of heparin sodium and furosemide. Int. J. Pharm. Compd. 2022, 26, 522–526. [Google Scholar]
- Kenneally, A.M.; Agbana, P.; Gardner, B.; Bae, Y.; Mitchell, T.; Beckman, E.J. Compatibility of calcium chloride with milrinone, epinephrine, vasopressin, and heparin via in vitro testing and simulated Y-site administration. Am. J. Health Syst. Pharm. 2023, 80, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.L.; Tawfik, G.; Saxinger, L.; Stang, L.; Etches, W.; Lee, B. Stability of heparin and physical compatibility of heparin/antibiotic solutions in concentrations appropriate for antibiotic lock therapy. J. Antimicrob. Chemother. 2005, 56, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Dobson, S.R.; Mauro, V.F.; Boddu, S.H.S.; Churchwell, M.D. The physical compatibility of clinically used concentrations of diltiazem hydrochloride with heparin sodium. J. Pharm. Technol. 2020, 36, 126–129. [Google Scholar] [CrossRef]
- Fox, L.M.; Wilder, A.G.; Foushee, J.A. Physical compatibility of various drugs with neonatal total parenteral nutrient solution during simulated Y-site administration. Am. J. Health Syst. Pharm. 2013, 70, 520–524. [Google Scholar] [CrossRef]
- Semark, A.J.; Venkatesh, K.; McWhinney, B.C.; Pretorius, C.; Roberts, J.A.; Cohen, J.; Venkatesh, B. The compatibility of a low concentration of hydrocortisone sodium succinate with selected drugs during a simulated Y-site administration. Crit. Care Resusc. 2013, 15, 63–66. [Google Scholar] [CrossRef]
- Foushee, J.A.; Meredith, P.; Fox, L.M.; Wilder, A.G. Y-site physical compatibility of hydrocortisone continuous infusions with admixtures used in critically ill patients. Am. J. Health Syst. Pharm. 2020, 77, 1144–1148. [Google Scholar] [CrossRef]
- Mochida Pharmaceutical Co. Heparin Sodium Injection 5000 Units/5 mL; Heparin Sodium Injection 10,000 Units/10 mL Interview Form, 8th ed.; Mochida Pharmaceutical Co.: Tokyo, Japan, 2024. [Google Scholar]
- Grohskopf, L.A.; Huskins, W.C.; Sinkowitz-Cochran, R.L.; Levine, G.L.; Goldmann, D.A.; Jarvis, W.R. Use of antimicrobial agents in United States neonatal and pediatric intensive care patients. Pediatr. Infect. Dis. J. 2005, 24, 766–773. [Google Scholar] [CrossRef]
- Cantey, J.B.; Wozniak, P.S.; Sánchez, P.J. Prospective surveillance of antibiotic use in the neonatal intensive care unit. Pediatr. Infect. Dis. J. 2015, 34, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Korang, S.K.; Safi, S.; Gluud, C.; Lausten-Thomsen, U.; Jakobsen, J.C. Antibiotic regimens for neonatal sepsis—A protocol for a systematic review with meta-analysis. Syst. Rev. 2019, 8, 306. [Google Scholar] [CrossRef]
- Korang, S.K.; Safi, S.; Nava, C.; Gordon, A.; Gupta, M.; Greisen, G.; Lausten-Thomsen, U.; Jakobsen, J.C. Antibiotic regimens for early-onset neonatal sepsis. Cochrane Database Syst. Rev. 2021, 5, CD013837. [Google Scholar] [CrossRef] [PubMed]
- Thampi, N.; Shah, P.S.; Nelson, S.; Agarwal, A.; Steinberg, M.; Diambomba, Y.; Morris, A.M. Prospective audit and feedback on antibiotic use in neonatal intensive care: A retrospective cohort study. BMC Pediatr. 2019, 19, 105. [Google Scholar] [CrossRef]
- Russell, A.B.; Sharland, M.; Heath, P.T. Improving antibiotic prescribing in neonatal units: Time to act. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F141–F146. [Google Scholar] [CrossRef]
- Sivanandan, S.; Soraisham, A.S.; Swarnam, K. Choice and duration of antimicrobial therapy for neonatal sepsis and meningitis. Int. J. Pediatr. 2011, 2011, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wilder, A.G.; Foushee, J.A.; Fox, L.M.; Navalle, J.; Wright, A.M.; Greer, M.A. Physical compatibility of medications used in critically ill patients with balanced fluid solutions. Int. J. Pharm. Compd. 2020, 24, 238–241. [Google Scholar]
- Jiménez-Lozano, I.; Larrosa-García, M.; Boix-Montañés, A.; Bautista, S.C.; Poy, M.J.C. Simulated Y-site compatibility of atosiban acetate with selected intravenous drugs. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 275, 106–109. [Google Scholar] [CrossRef]
- Salamat-Miller, N.; Turner, M.A.; Bandekar, A.; Dixit, N.; Jochim, E.; Mangum, B.; McPherson, C.; Tenjarla, S.; Singh, S.; Hwang, Y.S.; et al. Assessment of compatibility of rhIGF-1/rhIGFBP-3 with neonatal intravenous medications. World J. Pediatr. 2023, 19, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Mahlberg, K.; Krootila, K.; Uusitalo, R. Compatibility of corticosteroids and antibiotics in combination. J. Cataract. Refract. Surg. 1997, 23, 878–882. [Google Scholar] [CrossRef]
- Nilsson, N.; Storesund, I.; Tho, I.; Nezvalova-Henriksen, K. Co-administration of drugs with parenteral nutrition in the neonatal intensive care unit—Physical compatibility between three components. Eur. J. Pediatr. 2022, 181, 2685–2693. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.S.; Waldrop, B.; Arnold, J. Compatibility and stability of cefotaxime, vancomycin, and ciprofloxacin in antibiotic lock solutions containing heparin. Int. J. Pharm. Compd. 2010, 14, 346–349. [Google Scholar]
- Dotson, B.; Lynn, S.; Savakis, K.; Churchwell, M.D. Physical compatibility of 4% sodium citrate with selected antimicrobial agents. Am. J. Health Syst. Pharm. 2010, 67, 1195–1198. [Google Scholar] [CrossRef]
- AlSalman, F.; Howlett, M.; Breatnach, C.; Kelly, H.; O’Brien, F. Supporting the use of sildenafil infusions in paediatric and neonatal intensive care—A compatibility study. Eur. J. Pharm. Biopharm. 2020, 151, 153–161. [Google Scholar] [CrossRef]
- Tilouche, N.; Jaoued, O.; Ali, H.B.S.; Gharbi, R.; Fekih Hassen, M.; Elatrous, S. Comparison between continuous and intermittent administration of hydrocortisone during septic shock: A randomized controlled clinical trial. Shock 2019, 52, 481–486. [Google Scholar] [CrossRef]
- Ram, G.; Shekhar, S.; Singh, R.; Anand, R.; De, R.; Kumar, N. Hyperglycemia risk evaluation of hydrocortisone intermittent boluses versus continuous infusion in septic shock: A prospective randomized trial. Anesth. Essays Res. 2022, 16, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Angle, J.F.; Matsumoto, A.H.; Skalak, T.C.; O’Brien, R.F.; Hartwell, G.D.; Tegtmeyer, C.J. Flow characteristics of peripherally inserted central catheters. J. Vasc. Interv. Radiol. 1997, 8, 569–577. [Google Scholar] [CrossRef]
- Snijder, R.A.; Egberts, T.C.G.; Lucas, P.; Lemmers, P.M.A.; van Bel, F.; Timmerman, A.M.D.E. Dosing errors in preterm neonates due to flow rate variability in multi-infusion syringe pump setups: An in vitro spectrophotometry study. Eur. J. Pharm. Sci. 2016, 93, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Watrobska-Swietlikowska, D. Compatibility of maximum inorganic and organic calcium and phosphate content in neonatal parenteral solutions. Sci. Rep. 2019, 9, 10525. [Google Scholar] [CrossRef] [PubMed]


| Drug | Additives | Solvent and Diluent | Concentration |
|---|---|---|---|
| Heparin sodium (Derived from pig intestinal mucosa) (Mochida Pharmaceutical Co., Ltd., Tokyo, 160-0004, Japan) | Sodium chloride benzyl Alcohol | Normal saline | 20 U/mL |
| Hydrocortisone sodium succinate (Pfizer Inc., New York, NY 10017, USA) | Anhydrous disodium phosphate anhydrous monosodium phosphate pH adjusting agent | Normal saline (Dissolved in supplied injection water, 125 mg/mL) | 50 mg/mL |
| Ampicillin sodium (MeijiSeika Pharma Co., Ltd., Tokyo, 104-0031, Japan) | — | Normal saline | 250 mg/mL |
| Cefotaxime sodium (Nichi-Iko Pharmaceutical Co., Ltd., Tokyo, 103-0023, Japan) | — | Normal saline | 250 mg/mL |
| Mixtures | Composition |
|---|---|
| Mix A | 10 U/mL UFH + 25 mg/mL HDC |
| Mix B | 10 U/mL UFH + 125 mg/mL ABPC |
| Mix C | 10 U/mL UFH + 125 mg/mL CTX |
| Ctrl (+) | Sodium phosphate corrective injection and calcium gluconate injection (1:1) |
| Ctrl (−) | water |
| Ctrl (HDC) | 25 mg/mL HDC |
| Ctrl (ABPC) | 125 mg/mL ABPC |
| Ctrl (CTX) | 125 mg/mL CTX |
| Step | Time (min) | B (%) |
|---|---|---|
| 1 | 0 | 20 |
| 2 | 1 | 20 |
| 3 | 2 | 40 |
| 4 | 3 | 100 |
| 5 | 5 | 20 (re-equilibration) |
| Mixtures | Initial Average (SD) | p-Value † | After 3 h Average (SD) | p-Value † |
|---|---|---|---|---|
| Mix A | 0.0405 (0.0004) | 0.123 | 0.0419 (0.0007) | 0.342 |
| Mix B | 0.0419 (0.0011) | 0.374 | 0.0430 (0.0014) | 0.700 |
| Mix C | 0.0412 (0.0003) | 0.225 | 0.0436 (0.0013) | 0.906 |
| Ctrl (+) | 1.3761(0.0038) | |||
| Ctrl (−) | 0.0438 (0.0038) |
| Mixtures | Initial Average (SD) | After 3 h Average (SD) | ΔpH | p-Value ‡ |
|---|---|---|---|---|
| Mix A | 7.476 (0.010) | 7.539 (0.008) | +0.063 | 0.0011 * |
| Mix B | 9.142 (0.025) | 9.072 (0.000) | −0.070 | 0.0413 * |
| Mix C | 5.400 (0.001) | 5.475 (0.007) | +0.075 | 0.0031 * |
| Mixtures | Peak Area (mAU) of Control | Initial Peak Area (mAU) | Initial Ratio to Control (%) | After 3 h Peak Area (mAU) | After 3 h Ratio to Control (%) | ΔRatio (%) |
|---|---|---|---|---|---|---|
| Mix A | 7,192,131 (43,321.7) | 6,937,497 (70,065.1) | 96.5 | 6,905,828 (40,071.2) | 96.0 | −0.5 |
| Mix B | 22,759,605 (478,276.1) | 24,310,153 (163,183.8) | 106.8 | 24,330,014 (930,607.3) | 106.9 | +0.1 |
| Mix C | 21,091,242 (365,098) | 21,901,246 (438,856.4) | 96.2 | 22,298,180 (344,953) | 98.0 | +1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maekawa, M.; Maekawa, M.; Sato, Y.; Watanabe, S.; Saito, M.; Mano, N. Compatibility Investigation of a Steroid and Two Antibiotics with Heparin for the Prevention of Catheter Occlusion in Neonatal Intensive Care Units. Methods Protoc. 2025, 8, 136. https://doi.org/10.3390/mps8060136
Maekawa M, Maekawa M, Sato Y, Watanabe S, Saito M, Mano N. Compatibility Investigation of a Steroid and Two Antibiotics with Heparin for the Prevention of Catheter Occlusion in Neonatal Intensive Care Units. Methods and Protocols. 2025; 8(6):136. https://doi.org/10.3390/mps8060136
Chicago/Turabian StyleMaekawa, Mao, Masamitsu Maekawa, Yu Sato, Shimpei Watanabe, Masatoshi Saito, and Nariyasu Mano. 2025. "Compatibility Investigation of a Steroid and Two Antibiotics with Heparin for the Prevention of Catheter Occlusion in Neonatal Intensive Care Units" Methods and Protocols 8, no. 6: 136. https://doi.org/10.3390/mps8060136
APA StyleMaekawa, M., Maekawa, M., Sato, Y., Watanabe, S., Saito, M., & Mano, N. (2025). Compatibility Investigation of a Steroid and Two Antibiotics with Heparin for the Prevention of Catheter Occlusion in Neonatal Intensive Care Units. Methods and Protocols, 8(6), 136. https://doi.org/10.3390/mps8060136

