Multiplex Immunoassay for Biomarker Profiling of Whole Blood Cell Lysates and Supernatants and Pathogen Response in Neat Whole Blood Cultures
Abstract
:1. Introduction
2. Experimental Design
2.1. Materials
- Protease Inhibitor Cocktail for use in tissue culture (Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P1860)
- Protease Inhibitor Cocktails (Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P8340)
- Phosphatase Inhibitor Cocktail 3 (Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P0044)
- Lipopolysaccharide suitable for cell culture (Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: L7770)
- Radioimmunoprecipitation (RIPA) buffer (Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: R0278)
- ProcartaPlex 14-plex Kit: Catalog Number: PPX-14-MXCE7DR, Lot #: 433427-000, Expiry date: 2025-12 (Thermo Fisher Scientific, Vienna, Austria)
- Standard Mix A: Lot 388185-000, Expiry date: 01/12/2025
- Standard Mix B: Lot 420280-000, Expiry date: 01/12/2025
- Standard Mix C: Lot 422159-000, Expiry date: 01/12/2025
- Standard Mix E: Lot 397396-000, Expiry date: 01/12/2025
- Standard Mix 10: Lot 381352-000, Expiry date: 01/12/2025
- 14-plex Beads: Lot 432882-000 Expiry date: 01/12/2025
- 14-plex Detection Antibody: Lot 432883-000 Expiry date: 2025-12
- Wash Buffer (10×): Component # WBEX/28, Lot 24022582
- Streptavidin–PE: Component # SA-PE, Lot 404758-000
- Flat bottom 96-well Plate (Black): Component # SVM182
- Black Microplate Lid: Component # SVM104
- Plate Covers, Component #SVM16
- Platinum Assay Buffer (1×): Catalog Number: EPXP-11113-000, Lot number: 423690-000 (Thermo Fisher Scientific, Vienna, Austria)
- Hand-Held Magnetic Plate Washer: Catalog Number: EXP-55555-000, Lot#20190429 (Thermo Fisher Scientific)
- Costar® 24-well Clear Flat Bottom Ultra-Low Attachment Multiple Well Plates, Individually Wrapped, With Lid, Sterile (Corning, Glendale, AZ, USA, Catalog Number: 3473)
- Sodium heparin-coated Vacutainer® Plastic Tubes (BD, Franklin Lakes, NJ, USA; Catalog Number: 367878)
- Falcon® 50 mL High Clarity Polypropylene Centrifuge Tube, Conical Bottom, Sterile (Corning, Reynosa, Tamaulipas, Mexico, Catalog Number: 352098)
- Eppendorf™ Safe-Lock Tubes 2.0 mL—Microtube (Thermo Fisher Scientific, Waltham, MA, USA, Catalog Number: 05-402-7)
- Tubes, 0.2 mL, flat cap (Thermo Fisher Scientific, Waltham, MA, USA, Catalog Number: AB0620)
- Reversible Microtube Racks with Lid (Thermo Fisher Scientific, Waltham, MA, USA, Catalog Number: 8660)
2.2. Equipment
- Sonicator ultrasonic processor (Qsonica, Newtown, CT, USA; Part Number: Q500)
- Cup horn (Qsonica, Newtown, CT, USA; Model Number: 431C2)
- Thermo Scientific™ 1300 Series Class II, Type A2 Biological Safety Cabinet (Thermo Fisher Scientific, Carlsbad, CA, USA; Catalog Number: 1377)
- Luminex™ 200™ Instrument System (Thermo Fisher Scientific, Carlsbad, CA, USA; Catalog Number: APX10031)
- Forma™ Direct Heat CO2 Incubator (Thermo Fisher Scientific, Carlsbad, CA, USA; Catalog Number: 320)
- Eppendorf 5810 R refrigerated centrifuge (Eppendorf AG, Hamburg, Germany; Catalog Number: 5811000020)
- Sorvall™ Legend Micro 21R Centrifuge, Refrigerated (Thermo Fisher Scientific, Carlsbad, CA, USA; Catalog Number: 75002447)
- Digital Microplate Shaker (Thermo Fisher Scientific, Carlsbad, CA, USA; Catalog Number: 88882005)
- Basic Vortex Mixer (Thermo Fisher Scientific, Carlsbad, CA, USA; Catalog Number: 88882011)
3. Procedure
3.1. Baseline Blood Processing: Preparation of Blood Cell Lysates, Supernatants, and Plasma
3.1.1. Blood Collection and Handling
- Collect 12 mL of whole blood per subject into sodium heparin-coated Vacutainer® plastic tubes (BD, 367878).
- Immediately after collection, gently invert the tubes 8–10 times to ensure proper mixing with sodium heparin and prevent clotting.
- Place the tubes on ice immediately to minimize blood cell degeneration.
- Maintain blood on ice for less than 15 min while transferring it from the hospital to the laboratory for processing.
3.1.2. Sample Preparation for Blood Cell Lysates and Supernatants
- Label six 2 mL tubes in advance as follows:
- Control (CTL) 0 h Supernatants: CTL 0 h #1, CTL 0 h #2, CTL 0 h #3
- Control (CTL) 0 h Cell Lysates: CTL 0 h #1, CTL 0 h #2, CTL 0 h #3
- Prepare the fresh cold RIPA buffer (~15 min in advance) and keep on ice:
- 10 mL of the RIPA buffer (150 mM NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0; Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: R0278)
- 100 µL of the protease inhibitor cocktail (1:100; Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P8340)
- 100 µL of the phosphatase inhibitor cocktail 3 (1:100; Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P0044)
- c.
- Using sterile serological pipettes, on ice, gently add 1 mL of whole blood into each labeled ‘Cell Lysate’ tube.Add 10 µL of the protease inhibitor cocktail (1:100, Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P8340) and 10 µL of the phosphatase inhibitor cocktail 3 (1:100, Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P0044) to each tube.
- d.
- Add 1 mL of the cold RIPA buffer with the protease and phosphatase inhibitors to each tube.
- e.
- Vortex briefly for 2–3 s and centrifuge at 9500× g, 4 °C, for 5 min.
- f.
- Carefully collect the supernatant (on ice) into the ‘Supernatant’ tubes, avoiding the pellet.
- g.
- Place ‘Supernatant’ tubes on dry ice, then transfer them to a −80 °C freezer.
- h.
- Remove remaining liquid from the ‘Cell Lysate’ tubes by gently tapping them onto absorbent paper to eliminate residual blood.
- i.
- Return the tubes to the ice and add 150 µL of the cold RIPA buffer (with the protease and phosphatase inhibitors).
- j.
- Vortex for 30 s and incubate on ice for 15 min.
- k.
- Sonication: using an ultrasonic processor with a cup horn water bath (1/3 ice, 2/3 cold water), sonicate each tube twice for 30 s at 40% amplitude, ensuring a 30-s cooling period on ice between sonication steps to prevent overheating.
- l.
- Centrifuge at 15,000× g, 4 °C, for 30 min.
- m.
- Transfer the supernatant to new ‘Cell Lysate’ tubes, place them on dry ice, and store at −80 °C for further analysis.
3.1.3. Plasma Preparation
- Centrifuge one sodium heparin-coated Vacutainer® Plastic tube containing 2–3 mL of whole blood using an Eppendorf 5810 R centrifuge at 2000× g, 4 °C, for 15 min (acceleration 9, brake 0). Total centrifugation time: ~26 min.
- On ice, use a 1000 µL pipette with barrier tips to carefully collect plasma, avoiding the buffy coat.
- Aliquot 0.5 mL of plasma into labeled 1.5 mL tubes.
- Add 5 µL of the protease inhibitor cocktail (1:100, Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P8340) and 5 µL of the phosphatase inhibitor cocktail 3 (1:100, Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P0044) to each tube.
- Immediately place the tubes on dry ice, then transfer them to a −80 °C freezer.
3.2. Neat Whole Blood Culture and In Vitro Stimulation of Whole Blood by Lipopolysaccharide (LPS) and Sample Processing
3.2.1. Neat Whole Blood Culture Preparation and LPS Stimulation
- Within 15 min after blood drawing, place a 24-well culture plate (Corning, Glendale, AZ, USA, Catalog Number: 3473, ultra-low attachment surface) on ice inside a biosafety cabinet to maintain sterility.
- Label six wells as follows:
- Control (CTL) 4 h: CTL 4 h #1, CTL 4 h #2, CTL 4 h #3
- LPS 4 h: LPS 4 h #1, LPS 4 h #2, LPS 4 h #3
- Using sterile serological pipettes, gently add 1 mL of whole blood into each well.
- Add 5 µL of the cell culture protease inhibitor (Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P1860, 1:200) to each well and gently mix by turning a pipette tip 1–2 circles inside the blood to distribute the inhibitor evenly.
- Add 10 µL of the LPS stock solution (1 mg/mL in sterile water) to the designated LPS wells to achieve a final concentration of 10 µg/mL. Again, gently mix by turning a pipette tip 1–2 circles inside the blood.
- f.
- Gently transfer the plate to a cell culture incubator (37 °C, 5% CO2) and incubate for 4 h.
3.2.2. Post-Incubation Sample Processing
- After 4 h, place the plate on ice and transfer it back to the biosafety cabinet for further processing.
- Label the following tubes in advance (3 of each type):
- ‘CTL 4 h Supernatant’
- ‘CTL 4 h Cell Lysate’
- ‘LPS 4 h Supernatant’
- ‘LPS 4 h Cell Lysate’
- Prepare the fresh cold RIPA buffer (~15 min in advance) and keep on ice:
- 20 mL of the RIPA buffer (Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: R0278)
- 200 µL of the protease inhibitor cocktail (1:100, Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P8340)
- 200 µL of the phosphatase inhibitor cocktail 3 (1:100, Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P0044)
- Add 10 µL of the protease inhibitor cocktail (1:100, Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P8340) and 10 µL of the phosphatase inhibitor cocktail 3 (1:100, Sigma-Aldrich, St. Louis, MO, USA, Catalog Number: P0044) to each well. Mix with a pipette tip.
- Add 1 mL of the cold RIPA buffer (with inhibitors) to each well containing 1ml of blood and mix using a pipette tip.
- Transfer the contents into the ‘Cell Lysate’ tubes (placed on ice).
3.2.3. Biosafety Cleanup
- Disinfect the biosafety cabinet with 70% ethanol or an appropriate disinfectant.
- Dispose of biohazardous waste following institutional biosafety guidelines.
3.3. Luminex Assay Protocol for 14-Plex Beads
3.3.1. Prepare Antigen Standards on Ice
- Centrifuge each antigen standard (Std) vial at 2000× g for 10 s.
- Add 50 µL of 1× the Platinum assay buffer to each antigen standard vial.
- Gently vortex for 10 s and centrifuge at 2000× g for 10 s to collect the contents.
- Incubate on ice for 10 min to ensure complete reconstitution.
- Pool the contents of all vials (total 5 vials) into one and fill with the Platinum assay buffer to a total volume of 250 µL.
- Gently vortex for 10 s and centrifuge at 2000× g for 10 s to collect the contents. This original antigen standard vial contains Std1.
Perform a 4-Fold Standard Serial Dilution
- Add 50 µL from the original antigen standard vial (Std1) to Std2 and add 150 µL of the Platinum assay buffer.
- Continue diluting for vials Std3–Std9 by transferring 50 µL from one vial to the next with 150 µL of the Platinum buffer in each.
- Mix each vial thoroughly by pipetting up and down 10 times.
3.3.2. Prepare Dilutions for Blood Cell Lysate and Supernatant Samples
- For each condition, add 50 µL of cell lysates or supernatants into 0.2 mL tubes and add 100 µL of the Platinum buffer.
- Preincubate for 2 h at 4 °C while shaking at 600 rpm.
3.3.3. Assay Protocol
- Plate Setup and Wash Buffer Preparation
- Define plate map: standards, background, and samples
- b.
- Wash Buffer Preparation
- Bring Wash buffer (10×) to room temperature and vortex for 15 s.
- Add 5 mL of the Wash buffer concentrate (10×) to 45 mL of double-distilled water (ddH2O).
- Store at 2–8 °C for up to 6 months.
- c.
- Bead Preparation
- Vortex the 1× Capture Bead Mix vial for 30 s at high speed.
- Add 50 µL of the Capture Bead mix to each well of the 96-well plate.
- d.
- Wash Magnetic Beads
- Insert the 96-well plate with beads into the hand-held magnetic plate washer and allow beads to settle for 2 min.
- Remove liquid from the wells by inverting the magnetic plate over the waste container. Blot the plate on paper towels.
- Add 150 µL of the Wash buffer (1×) to each well, wait 2 min, and repeat the washing procedure.
- Remove the 96-well plate with beads from the magnetic plate washer.
- e.
- Add Standards, Background, and Samples
- For standards and background: add 100 µL of the Platinum buffer and then 50 µL of the standards or background (Platinum buffer) to the appropriate wells of the 96-well plate.
- For blood cell lysates and supernatants: add 150 µL of the preincubated samples (see Section 3.3.2) to the respective wells of the 96-well plate.
- f.
- Plate Sealing and Incubation
- Seal the plate with the provided plate seal and cover it with the black microplate lid.
- Incubate the plate while shaking at 600 rpm for 30 min at room temperature.
- Transfer the plate to 4 °C while shaking at 600 rpm overnight, ensuring it is protected from light.
- g.
- Warm-Up and Wash the Plate
- In the morning, shake the plate at 600 rpm for 30 min to warm it to room temperature.
- Wash the 96-well plate twice using the magnetic plate washer (see Section 3.3.3 (d)).
- h.
- Add Detection Antibody Mixture
- Add 25 µL of the Detection Antibody Mixture (1×) to each well.
- Seal the plate and cover it with the black microplate lid.
- Incubate for 1 h on a shaker at 600 rpm at room temperature.
- i.
- Streptavidin–PE Addition
- Wash the plate twice using the magnetic plate washer (see Section 3.3.3 (d)).
- Add 50 µL of Streptavidin–PE to each well.
- Seal and incubate for 30 min on a shaker at 600 rpm at room temperature.
- j.
- Final Plate Wash and Reading
- Wash the plate twice using the magnetic plate washer (see Section 3.3.3 (d)).
- Add 120 µL of the Wash buffer (1×) to each well for reading.
- Seal and incubate for 5 min on a shaker at 600 rpm at room temperature.
- Remove the plate seal and run the plate on a Luminex-200 instrument.
- k.
- Data Analysis Using ProcartaPlex Luminex Thermo Fisher App
- Open the ProcartaPlex Luminex App and upload the raw xPONENT CSV files containing fluorescence intensity data.
- The app will automatically assign analytes to their corresponding bead regions.
- Verify and adjust the standard curves, ensuring proper curve fitting for accurate quantification.
- Apply dilution factors, sample layouts, and normalization as needed.
- Inspect the real-time plots of the standard curves, flag potential outliers, and confirm sample quantifications.
- Save the analyzed data in Excel, CSV, or PDF format for further statistical analysis and reporting.
4. Expected Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Platchek, M.; Lu, Q.; Tran, H.; Xie, W. Comparative Analysis of Multiple Immunoassays for Cytokine Profiling in Drug Discovery. SLAS Discov. 2020, 25, 1197–1213. [Google Scholar] [CrossRef]
- Bloemena, E.; Roos, M.T.L.; Van Heijst, J.L.A.M.; Vossen, J.M.J.J.; Schellekens, P.T.A. Whole-blood lymphocyte cultures. J. Immunol. Methods 1989, 122, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Damsgaard, C.T.; Lauritzen, L.; Calder, P.C.; Kjær, T.M.R.; Frøkiær, H. Whole-blood culture is a valid low-cost method to measure monocytic cytokines—A comparison of cytokine production in cultures of human whole-blood, mononuclear cells and monocytes. J. Immunol. Methods 2009, 340, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.M.G.; Severn, A.; Rapson, N.T.; Chana, J.; Hopkins, P. A convenient human whole blood culture system for studying the regulation of tumour necrosis factor release by bacterial lipopolysaccharide. J. Immunol. Methods 1991, 139, 233–240. [Google Scholar] [CrossRef]
- Balan, I.; Patterson, R.; Boero, G.; Krohn, H.; O’Buckley, T.K.; Meltzer-Brody, S.; Morrow, A.L. Brexanolone therapeutics in post-partum depression involves inhibition of systemic inflammatory pathways. EBioMedicine 2023, 89, 104473. [Google Scholar] [CrossRef] [PubMed]
- Østergaard, A.A.; Feddersen, S.; Barnkob, M.B.; Lynggaard, R.B.; Karstoft, A.C.A.; Borup, M.; Titlestad, I.L.; Jensen, T.T.; Hilberg, O.; Wejse, C.; et al. Whole-blood culture-derived cytokine combinations for the diagnosis of tuberculosis. Front. Immunol. 2024, 15, 1397941. [Google Scholar] [CrossRef]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, e2004433. [Google Scholar] [CrossRef]
- Zhou, X.; Fragala, M.S.; McElhaney, J.E.; Kuchel, G.A. Conceptual and methodological issues relevant to cytokine and inflammatory marker measurements in clinical research. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 541–547. [Google Scholar] [CrossRef]
- Fitzgerald, W.; Freeman, M.L.; Lederman, M.M.; Vasilieva, E.; Romero, R.; Margolis, L. A System of Cytokines Encapsulated in ExtraCellular Vesicles. Sci. Rep. 2018, 8, 8973. [Google Scholar] [CrossRef]
- Hong, C.S.; Diergaarde, B.; Whiteside, T.L. Small extracellular vesicles in plasma carry luminal cytokines that remain undetectable by antibody-based assays in cancer patients and healthy donors. BJC Rep. 2024, 2, 16. [Google Scholar] [CrossRef]
- Adams, C.; Conigrave, J.H.; Lewohl, J.; Haber, P.; Morley, K.C. Alcohol use disorder and circulating cytokines: A systematic review and meta-analysis. Brain Behav. Immun. 2020, 89, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, N.; Wallen, G.R.; Yang, L.; Alkhatib, J.; Schwandt, M.L.; Feng, D.; Gao, B.; Diazgranados, N.; Ramchandani, V.A.; Barb, J.J. An exploratory study of pro-inflammatory cytokines in individuals with alcohol use disorder: MCP-1 and IL-8 associated with alcohol consumption, sleep quality, anxiety, depression, and liver biomarkers. Front. Psychiatry 2022, 13, 931280. [Google Scholar] [CrossRef] [PubMed]
- Achur, R.N.; Freeman, W.M.; Vrana, K.E. Circulating Cytokines as Biomarkers of Alcohol Abuse and Alcoholism. J. Neuroimmune Pharmacol. 2010, 5, 83–91. [Google Scholar] [CrossRef]
- González-Quintela, A.; Otero-Antón, E.; Barrio, E.; Vidal, C.; Lojo, S.; Pérez, L.F.; Gude, F. Serum cytokines and increased total serum IgE in alcoholics. Ann. Allergy Asthma Immunol. 1999, 83, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Heberlein, A.; Käser, M.; Lichtinghagen, R.; Rhein, M.; Lenz, B.; Kornhuber, J.; Bleich, S.; Hillemacher, T. TNF-α and IL-6 serum levels: Neurobiological markers of alcohol consumption in alcohol-dependent patients? Alcohol. 2014, 48, 671–676. [Google Scholar] [CrossRef]
- Leclercq, S.; Cani, P.D.; Neyrinck, A.M.; Starkel, P.; Jamar, F.; Mikolajczak, M.; Delzenne, N.M.; de Timary, P. Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects. Brain Behav. Immun. 2012, 26, 911–918. [Google Scholar] [CrossRef]
- Czerwińska-Błaszczyk, A.; Pawlak, E.; Pawłowski, T. The Significance of Toll-Like Receptors in the Neuroimmunologic Background of Alcohol Dependence. Front. Psychiatry 2021, 12, 797123. [Google Scholar] [CrossRef]
- Balan, I.; Boero, G.; Chéry, S.L.; McFarland, M.H.; Lopez, A.G.; Morrow, A.L. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life 2024, 14, 582. [Google Scholar] [CrossRef] [PubMed]
- Crews, F.T.; Walter, T.J.; Coleman, L.G., Jr.; Vetreno, R.P. Toll-like receptor signaling and stages of addiction. Psychopharmacology 2017, 234, 1483–1498. [Google Scholar] [CrossRef]
- Flower, L.; Ahuja, R.H.; Humphries, S.E.; Mohamed-Ali, V. Effects of sample handling on the stability of interleukin 6, tumour necrosis factor-alpha and leptin. Cytokine 2000, 12, 1712–1716. [Google Scholar] [CrossRef]
- Kwon, Y.C.; Jewett, M.C. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci. Rep. 2015, 5, 8663. [Google Scholar] [CrossRef] [PubMed]
- Khalifian, S.; Raimondi, G.; Brandacher, G. The Use of Luminex Assays to Measure Cytokines. J. Investig. Dermatol. 2015, 135, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Higgins-Biddle, J.C.; Babor, T.F. A review of the Alcohol Use Disorders Identification Test (AUDIT), AUDIT-C, and USAUDIT for screening in the United States: Past issues and future directions. Am. J. Drug Alcohol. Abus. 2018, 44, 578–586. [Google Scholar] [CrossRef]
- Peach, M.; Marsh, N.; Miskiewicz, E.I.; MacPhee, D.J. Solubilization of proteins: The importance of lysis buffer choice. Methods Mol. Biol. 2015, 1312, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Baran, J.; Kowalczyk, D.; Ożóg, M.; Zembala, M. Three-Color Flow Cytometry Detection of Intracellular Cytokines in Peripheral Blood Mononuclear Cells: Comparative Analysis of Phorbol Myristate Acetate-Ionomycin and Phytohemagglutinin Stimulation. Clin. Diagn. Lab. Immunol. 2001, 8, 303–313. [Google Scholar] [CrossRef]
- Antinolfi, P. IL-1 Induces NF-kB in Infectious Diseases. Int. J. Infect. 2022, 6, 10–14. [Google Scholar]
- Aziz, N.; Nishanian, P.; Mitsuyasu, R.; Detels, R.; Fahey, J.L. Variables that affect assays for plasma cytokines and soluble activation markers. Clin. Diagn. Lab. Immunol. 1999, 6, 89–95. [Google Scholar] [CrossRef]
- Procopio, A.; Saggini, R. Molecular Mechanisms of Cytokine Receptor Signaling in Infection. Int. J. Infect. 2022, 6, 5–9. [Google Scholar]
Biomarkers | Cell Lysates | Supernatants | Plasma | |||
---|---|---|---|---|---|---|
Mean | SEM | Mean | SEM | Mean | SEM | |
BDNF | 75.12 | 20.07 | 1700.47 | 479.53 | 10.96 | 2.51 |
CCL11 | 3.99 | 0.97 | 116.33 | 27.83 | 50.91 | 4.91 |
HMGB1 | 1070.26 | 301.18 | 225,807.8 | 42,814.3 | 3558.36 | 1672.15 |
IL-1β | 0.65 | 0.14 | 11.18 | 2.83 | 10.56 | 3.29 |
IL-3 | 0.72 | 0.34 | 68.81 | 48.7 | 60.25 | 15.91 |
IL-5 | 0.26 | 0.01 | 5.11 | 3.12 | 2.93 | 0.81 |
IL-6 | 0.65 | 0.14 | 3.05 | 1.04 | 2.46 | 0.91 |
IL-7 | 0.02 | 0.004 | 2.87 | 0.43 | 0.34 | 0.15 |
IL-8 | 1.1 | 0.41 | 5.9 | 1.57 | 0.30 | 0.16 |
IL-17A | 0.13 | 0.03 | 4.98 | 2.24 | 5.84 | 2.34 |
IL-18 | 68.25 | 32.01 | 824.81 | 145.29 | 133.70 | 19.13 |
MCP-1 | 80.67 | 13.8 | 1298.58 | 296.7 | 314.72 | 65.25 |
MIP-1β | 1.48 | 0.34 | 76.05 | 17.98 | 42.63 | 9.49 |
TNF-α | 0.8 | 0.43 | 22.95 | 14.22 | 35.05 | 12.63 |
Biomarkers | Cell Lysates | Supernatants | ||||||
---|---|---|---|---|---|---|---|---|
Baseline In Vitro | LPS-Induced In Vitro | Baseline In Vitro | LPS-Induced In Vitro | |||||
Mean | SEM | Mean | SEM | Mean | SEM | Mean | SEM | |
BDNF | 48.82 | 9.73 | 48.86 | 8.00 | 1928.55 | 448.99 | 1739.00 | 441.25 |
CCL11 | 2.70 | 0.52 | 2.82 | 0.52 | 75.61 | 19.77 | 92.21 | 19.72 |
HMGB1 | 6055.51 | 538.94 | 6073.42 | 1466.23 | 323,592.92 | 33,967.29 | 279,486.67 | 30,428.08 |
IL-1β | 14.91 | 2.97 | 90.16 | 14.40 | 874.83 | 139.40 | 5116.55 | 962.42 |
IL-3 | 1.01 | 0.85 | 0.33 | 0.13 | 41.68 | 30.14 | 48.08 | 34.79 |
IL-5 | 0.21 | 0.08 | 0.53 | 0.17 | 8.81 | 2.06 | 25.05 | 5.85 |
IL-6 | 13.12 | 5.12 | 221.99 | 52.97 | 2128.47 | 1098.80 | 16,590.56 | 3766.35 |
IL-7 | 0.03 | 0.01 | 0.10 | 0.02 | 1.96 | 0.33 | 2.77 | 0.41 |
IL-8 | 33.03 | 7.00 | 67.49 | 7.83 | 2699.08 | 412.33 | 5088.91 | 663.33 |
IL-17A | 0.04 | 0.02 | 0.05 | 0.01 | 3.35 | 1.30 | 5.68 | 2.29 |
IL-18 | 6.88 | 1.24 | 7.60 | 1.66 | 535.49 | 132.12 | 2712.32 | 1869.04 |
MCP-1 | 52.42 | 10.54 | 37.59 | 9.20 | 4082.80 | 1162.86 | 2854.52 | 875.79 |
MIP-1β | 26.72 | 8.00 | 80.26 | 9.30 | 1514.85 | 477.65 | 7088.30 | 2034.22 |
TNF-α | 0.40 | 0.36 | 0.70 | 0.53 | 20.63 | 17.18 | 129.70 | 112.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balan, I.; Lopez, A.G.; Morrow, A.L. Multiplex Immunoassay for Biomarker Profiling of Whole Blood Cell Lysates and Supernatants and Pathogen Response in Neat Whole Blood Cultures. Methods Protoc. 2025, 8, 46. https://doi.org/10.3390/mps8030046
Balan I, Lopez AG, Morrow AL. Multiplex Immunoassay for Biomarker Profiling of Whole Blood Cell Lysates and Supernatants and Pathogen Response in Neat Whole Blood Cultures. Methods and Protocols. 2025; 8(3):46. https://doi.org/10.3390/mps8030046
Chicago/Turabian StyleBalan, Irina, Alejandro G. Lopez, and A. Leslie Morrow. 2025. "Multiplex Immunoassay for Biomarker Profiling of Whole Blood Cell Lysates and Supernatants and Pathogen Response in Neat Whole Blood Cultures" Methods and Protocols 8, no. 3: 46. https://doi.org/10.3390/mps8030046
APA StyleBalan, I., Lopez, A. G., & Morrow, A. L. (2025). Multiplex Immunoassay for Biomarker Profiling of Whole Blood Cell Lysates and Supernatants and Pathogen Response in Neat Whole Blood Cultures. Methods and Protocols, 8(3), 46. https://doi.org/10.3390/mps8030046