eDNA-Based Survey of Fish Species in Water Bodies Using Loop-Mediated Isothermal Amplification (LAMP) for Application of Developing Automatic Sampler
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehrenfeld, J.G. Ecosystem Consequences of Biological Invasions. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 59–80. [Google Scholar] [CrossRef]
- Chucholl, F.; Fiolka, F.; Segelbacher, G.; Epp, L.S. eDNA Detection of Native and Invasive Crayfish Species Allows for Year-Round Monitoring and Large-Scale Screening of Lotic Systems. Front. Environ. Sci. 2021, 9, 639380. [Google Scholar] [CrossRef]
- Hernandez, C.; Bougas, B.; Perreault-Payette, A.; Simard, A.; Côté, G.; Bernatchez, L. 60 specific eDNA qPCR assays to detect invasive, threatened, and exploited freshwater vertebrates and invertebrates in Eastern Canada. Environ. DNA 2020, 2, 373–386. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef]
- Porco, D.; Hermant, S.; Purnomo, C.A.; Horn, M.; Marson, G.; Colling, G. eDNA-based detection of the invasive crayfish Pacifastacus leniusculus in streams with a LAMP assay using dependent replicates to gain higher sensitivity. Sci. Rep. 2022, 12, 6553. [Google Scholar] [CrossRef]
- Nagamine, K.; Hase, T.; Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 2002, 16, 223–229. [Google Scholar] [CrossRef]
- Williams, M.R.; Stedtfeld, R.D.; Engle, C.; Salach, P.; Fakher, U.; Stedtfeld, T.; Dreelin, E.; Stevenson, R.J.; Latimore, J.; Hashsham, S.A. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 2017, 12, e0186462. [Google Scholar] [CrossRef]
- Jothinarayanan, N.; Karlsen, F.; Roseng, L.E. Comparative evaluation of loop-mediated isothermal amplification and PCR for detection of Esox lucius housekeeping genes for use in on-site environmental monitoring. J. Fish Biol. 2023, 103, 897–905. [Google Scholar] [CrossRef]
- Jothinarayanan, N.; Karlsen, F.; Roseng, L.E. Characterization and Validation of a Lyophilized Loop-Mediated Isothermal Amplification Method for the Detection of Esox lucius. Appl. Biochem. Biotechnol. 2023, 196, 5249–5264. [Google Scholar] [CrossRef]
- IUCN. IUCN Red List 2017–2020 Report. 2020. [Online]. Available online: https://nc.iucnredlist.org/redlist/resources/files/1630480997-IUCN_RED_LIST_QUADRENNIAL_REPORT_2017-2020.pdf (accessed on 5 April 2023).
- Bardal, H. Small- and large-scale eradication of invasive fish and fish parasites in freshwater systems in Norway. Aquatic 2019, 62, 447–451. [Google Scholar]
- Barnes, M.A.; Turner, C.R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 2015, 17, 1–17. [Google Scholar] [CrossRef]
- Goldberg, C.S.; Pilliod, D.S.; Arkle, R.S.; Waits, L.P. Molecular Detection of Vertebrates in Stream Water: A Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders. PLoS ONE 2011, 6, e22746. [Google Scholar] [CrossRef] [PubMed]
- Foo, P.C.; Najian, A.B.N.; Muhamad, N.A.; Ahamad, M.; Mohamed, M.; Yean, C.Y.; Lim, B.H. Loop-mediated isothermal amplification (LAMP) reaction as viable PCR substitute for diagnostic applications: A comparative analysis study of LAMP, conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR) based on Entamoeba histolytica DNA derived from faecal sample. BMC Biotechnol. 2020, 20, 34. [Google Scholar] [CrossRef]
- Khodaparast, M.; Sharley, D.; Best, N.; Marshall, S.; Beddoe, T. In-field LAMP assay for rapid detection of human faecal contamination in environmental water. Environ. Sci. Water Res. Technol. 2022, 8, 2641–2651. [Google Scholar] [CrossRef]
- Santas, A.J.; Persaud, T.; Wolfe, B.A.; Bauman, J.M. Noninvasive Method for a Statewide Survey of Eastern Hellbenders Cryptobranchus alleganiensis Using Environmental DNA. Int. J. Zool. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Nayak, V.; Cuhorka, J.; Mikulášek, P. Separation of Drugs by Commercial Nanofiltration Membranes and Their Modelling. Membranes 2022, 12, 528. [Google Scholar] [CrossRef]
- Abdel-Fatah, M.A. Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng. J. 2018, 9, 3077–3092. [Google Scholar] [CrossRef]
- Hinlo, R.; Gleeson, D.; Lintermans, M.; Furlan, E. Methods to maximise recovery of environmental DNA from water samples. PLoS ONE 2017, 12, e0179251. [Google Scholar] [CrossRef]
- Wilcox, T.M.; McKelvey, K.S.; Young, M.K.; Sepulveda, A.J.; Shepard, B.B.; Jane, S.F.; Whiteley, A.R.; Lowe, W.H.; Schwartz, M.K. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Biol. Conserv. 2016, 194, 209–216. [Google Scholar] [CrossRef]
- Hinlo, R.; Lintermans, M.; Gleeson, D.; Broadhurst, B.; Furlan, E. Performance of eDNA assays to detect and quantify an elusive benthic fish in upland streams. Biol. Invasions 2018, 20, 3079–3093. [Google Scholar] [CrossRef]
- Ayala-Torres, S.; Chen, Y.; Svoboda, T.; Rosenblatt, J.; Van Houten, B. Analysis of Gene-Specific DNA Damage and Repair Using Quantitative Polymerase Chain Reaction. Methods 2000, 22, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Dejean, T.; Valentini, A.; Duparc, A.; Pellier-Cuit, S.; Pompanon, F.; Taberlet, P.; Miaud, C. Persistence of Environmental DNA in Freshwater Ecosystems. PLoS ONE 2011, 6, e23398. [Google Scholar] [CrossRef] [PubMed]
- Deliveyne, N.; Young, J.M.; Austin, J.J.; Cassey, P. Shining a LAMP on the applications of isothermal amplification for monitoring environmental biosecurity. NeoBiota 2023, 82, 119–144. [Google Scholar] [CrossRef]
- Darling, J.A. How to learn to stop worrying and love environmental DNA monitoring. Aquat. Ecosyst. Heal. Manag. 2019, 22, 440–451. [Google Scholar] [CrossRef]
Name of the Species | Name of the Gene and Primer Sequence | Name of the Primers | |
---|---|---|---|
CYT B (Gene ID:NC_004593.1) | GAPDH (Gene ID: XM_010884975.4) | ||
Esox Lucius | TACACCACAGGGCTTGATA | CAGAGGACCAAGTT GTGTC | F3 |
GCATGGGCTGTAACGATAA | CAAGTCGAGGGCTA GAGT | B3 | |
AGGGTGCCAATATCTTT GTGGTTCTCAGCCATCCTA CCTG | GCTTGACAAAGTGGTCGTTCAG ACATTCGCTCCTCCATCT | FIP | |
AGTCGGCACAGCCTTA AGCCTGGTCGTCACCTA AGAGA | TACAGCAACCGCGTCATT GAGGTCGATTGGCTTTACTCC | BIP | |
ATCAGCGTGTGATTGCCA | GCAATTCCAGCACCAGCATC | Loop F | |
CCGAACTAAGCCAGCCAG | GATGGCTCACATGACCAC CAA | Loop B | |
PIII (Gene ID:NC_049201.1) | |||
Anguilla Anguilla | GTGCTGTTTGCTGGGTAT | F3 | |
TGGAGGATAATGAGAACAGGA | B3 | ||
CTGATGAGGTCGGTGATGGCATCGTAATTCGTGTCCAGAC | FIP | ||
CGAGTTGTCCTTGCTGGAAGAAA CTACAGCCTTCATTCAATCC | BIP | ||
ATTGGTGAAGGCCTCCTG | Loop F | ||
GCCATCAAAGACAAACAGGAAG | Loop B | ||
Cyt B (Gene ID:AF053591.1) | |||
Salmo Salar | TTCTGAGGAGCCACTGTAA | F3 | |
AGGATGTTAGGCCAAGTAGTA | B3 | ||
GGAATAGGAAGTGGAAGGCGAAGCCCTTGTACAATGAATTTGAG | FIP | ||
GCTGCCACAGTACTCCATCTTCTATCGGCATCGGAGTTGA | BIP | ||
GGTGGCGTTGTCTACAGAA | Loop F | ||
GTCTAATAACCCAGCAGGCA | Loop B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jothinarayanan, N.; Pham, C.H.; Karlsen, F.; Roseng, L.E. eDNA-Based Survey of Fish Species in Water Bodies Using Loop-Mediated Isothermal Amplification (LAMP) for Application of Developing Automatic Sampler. Methods Protoc. 2024, 7, 85. https://doi.org/10.3390/mps7060085
Jothinarayanan N, Pham CH, Karlsen F, Roseng LE. eDNA-Based Survey of Fish Species in Water Bodies Using Loop-Mediated Isothermal Amplification (LAMP) for Application of Developing Automatic Sampler. Methods and Protocols. 2024; 7(6):85. https://doi.org/10.3390/mps7060085
Chicago/Turabian StyleJothinarayanan, Nivedhitha, Chau Ha Pham, Frank Karlsen, and Lars Eric Roseng. 2024. "eDNA-Based Survey of Fish Species in Water Bodies Using Loop-Mediated Isothermal Amplification (LAMP) for Application of Developing Automatic Sampler" Methods and Protocols 7, no. 6: 85. https://doi.org/10.3390/mps7060085
APA StyleJothinarayanan, N., Pham, C. H., Karlsen, F., & Roseng, L. E. (2024). eDNA-Based Survey of Fish Species in Water Bodies Using Loop-Mediated Isothermal Amplification (LAMP) for Application of Developing Automatic Sampler. Methods and Protocols, 7(6), 85. https://doi.org/10.3390/mps7060085