A Simple, Rapid, and Effective Heparinase Protocol to Enable Nucleic Acid Study from Frozen Heparinized Plasma
Abstract
:1. Introduction
2. Experimental Design
2.1. Materials
Human Plasma
3. Procedure
3.1. Extraction of RNA
3.1.1. Treatment with Heparinase I Enzyme
3.1.2. cDNA Synthesis, Library Preparation, and Sequencing
3.1.3. Data Analysis
4. Expected Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sotelo-Orozco, J.; Chen, S.-Y.; Hertz-Picciotto, I.; Slupsky, C.M. A comparison of serum and plasma blood collection tubes for the integration of epidemiological and metabolomics data. Front. Mol. Biosci. 2021, 8, 682134. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.L.; Navanukraw, C.; Grazul-Bilska, A.T.; Reynolds, L.P.; Redmer, D.A. Heparinase treatment of RNA before quantitative real-time RT-PCR. Biotechniques 2003, 35, 1140–1144. [Google Scholar] [CrossRef] [PubMed]
- Kondratov, K.; Kurapeev, D.; Popov, M.; Sidorova, M.; Minasian, S.; Galagudza, M.; Kostareva, A.; Fedorov, A. Heparinase treatment of heparin-contaminated plasma from coronary artery bypass grafting patients enables reliable quantification of microRNAs. Biomol. Detect. Quantif. 2016, 8, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Cabús, L.; Lagarde, J.; Curado, J.; Lizano, E.; Pérez-Boza, J. Current challenges and best practices for cell-free long RNA biomarker discovery. Biomark. Res. 2022, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Pös, O.; Biró, O.; Szemes, T.; Nagy, B. Circulating cell-free nucleic acids: Characteristics and applications. Eur. J. Hum. Genet. 2018, 26, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Larson, M.H.; Pan, W.; Kim, H.J.; Mauntz, R.E.; Stuart, S.M.; Pimentel, M.; Zhou, Y.; Knudsgaard, P.; Demas, V.; Aravanis, A.M. A comprehensive characterization of the cell-free transcriptome reveals tissue-and subtype-specific biomarkers for cancer detection. Nat. Commun. 2021, 12, 2357. [Google Scholar] [CrossRef] [PubMed]
- Nganou-Makamdop, K.; Talla, A.; Sharma, A.A.; Darko, S.; Ransier, A.; Laboune, F.; Chipman, J.G.; Beilman, G.J.; Hoskuldsson, T.; Fourati, S. Translocated microbiome composition determines immunological outcome in treated HIV infection. Cell 2021, 184, 3899–3914.e16. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-J.; Linnstaedt, S.; Palma, J.; Park, J.C.; Ntrivalas, E.; Kwak-Kim, J.Y.; Gilman-Sachs, A.; Beaman, K.; Hastings, M.L.; Martin, J.N. Plasma components affect accuracy of circulating cancer-related microRNA quantitation. J. Mol. Diagn. 2012, 14, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Roest, H.P.; IJzermans, J.N.; van der Laan, L.J. Evaluation of RNA isolation methods for microRNA quantification in a range of clinical biofluids. BMC Biotechnol. 2021, 21, 48. [Google Scholar] [CrossRef]
- Engler, A.; Dreja, F.; Köberle, S.; Thielmann, M.; Peters, J.; Frey, U.H. Establishment of an easy and straight forward heparinase protocol to analyse circulating and myocardial tissue micro-RNA during coronary artery-bypass-graft surgery. Sci. Rep. 2018, 8, 1361. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.O.; Quinn, G.M.; Umarova, R.; Haddad, J.A.; Zhang, G.Y.; Townsend, E.C.; Scheuing, L.; Hill, K.L.; Gewirtz, M.; Rampertaap, S. Longitudinal multi-omics analyses of the gut–liver axis reveals metabolic dysregulation in hepatitis C infection and cirrhosis. Nat. Microbiol. 2023, 8, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Breitwieser, F.P.; Salzberg, S.L. Pavian: Interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics 2020, 36, 1303–1304. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jin, Y.; Wang, S.; Xing, S.; Wu, Y.; Tao, Y.; Ma, Y.; Zuo, S.; Liu, X.; Hu, Y. Cancer type classification using plasma cell-free RNAs derived from human and microbes. eLife 2022, 11, e75181. [Google Scholar] [CrossRef] [PubMed]
- Tosevska, A.; Morselli, M.; Basak, S.K.; Avila, L.; Mehta, P.; Wang, M.B.; Srivatsan, E.S.; Pellegrini, M. Cell-Free RNA as a Novel Biomarker for Response to Therapy in Head & Neck Cancer. Front. Oncol. 2022, 12, 869108. [Google Scholar] [PubMed]
- Zozaya-Valdés, E.; Wong, S.Q.; Raleigh, J.; Hatzimihalis, A.; Ftouni, S.; Papenfuss, A.T.; Sandhu, S.; Dawson, M.A.; Dawson, S.-J. Detection of cell-free microbial DNA using a contaminant-controlled analysis framework. Genome Biol. 2021, 22, 187. [Google Scholar] [CrossRef] [PubMed]
- Benamu, E.; Gajurel, K.; Anderson, J.N.; Lieb, T.; Gomez, C.A.; Seng, H.; Aquino, R.; Hollemon, D.; Hong, D.K.; Blauwkamp, T.A. Plasma microbial cell-free DNA next-generation sequencing in the diagnosis and management of febrile neutropenia. Clin. Infect. Dis. 2022, 74, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Plieskatt, J.L.; Feng, Y.; Rinaldi, G.; Mulvenna, J.P.; Bethony, J.M.; Brindley, P.J. Circumventing qPCR inhibition to amplify miRNAs in plasma. Biomark. Res. 2014, 2, 13. [Google Scholar] [CrossRef] [PubMed]
Concentrations or Units | Volume Added (μL) | Final Volume per Sample (μL) | |
---|---|---|---|
Sample | 1.7–27.3 ng/mL plasma | 4 | 11.8 |
Bacteroides Heparinase I | 12,000 Units/mL | 1.5 | |
Heparinase Buffer | 10X | 1.2 | |
RNAse inhibitor | 20 Units/mL | 0.5 | |
NEBNext First Strand Synthesis Reaction Buffer | 5X | 4.6 |
Step | Temperature | Time | Cycles |
---|---|---|---|
Initial Denaturation | 98 °C | 30 s | 1 |
Denaturation | 98 °C | 10 s | 14 |
Annealing/Extension | 65 °C | 75 s | |
Final Extension | 65 °C | 5 min | 1 |
Hold | 4 °C | 10 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afruza, R.; Minerva, N.; Lack, J.B.; Chakraborty, M.; Haddad, J.A.; Ali, R.O.; Koh, C.; Levy, E.B.; Etzion, O.; Heller, T. A Simple, Rapid, and Effective Heparinase Protocol to Enable Nucleic Acid Study from Frozen Heparinized Plasma. Methods Protoc. 2023, 6, 112. https://doi.org/10.3390/mps6060112
Afruza R, Minerva N, Lack JB, Chakraborty M, Haddad JA, Ali RO, Koh C, Levy EB, Etzion O, Heller T. A Simple, Rapid, and Effective Heparinase Protocol to Enable Nucleic Acid Study from Frozen Heparinized Plasma. Methods and Protocols. 2023; 6(6):112. https://doi.org/10.3390/mps6060112
Chicago/Turabian StyleAfruza, Rownock, Nicole Minerva, Justin B. Lack, Moumita Chakraborty, James A. Haddad, Rabab O. Ali, Christopher Koh, Elliot B. Levy, Ohad Etzion, and Theo Heller. 2023. "A Simple, Rapid, and Effective Heparinase Protocol to Enable Nucleic Acid Study from Frozen Heparinized Plasma" Methods and Protocols 6, no. 6: 112. https://doi.org/10.3390/mps6060112
APA StyleAfruza, R., Minerva, N., Lack, J. B., Chakraborty, M., Haddad, J. A., Ali, R. O., Koh, C., Levy, E. B., Etzion, O., & Heller, T. (2023). A Simple, Rapid, and Effective Heparinase Protocol to Enable Nucleic Acid Study from Frozen Heparinized Plasma. Methods and Protocols, 6(6), 112. https://doi.org/10.3390/mps6060112