Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Leaf and Bark Samples of Sambucus nigra Using High-Performance Liquid Chromatography (HPLC)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Treatment
2.3. PAH Extraction
2.4. Clean-Up and Final Concentration
2.5. PAH Analysis
2.6. Method Validation
3. Results and Discussion
3.1. Method Validation
3.2. Real Contaminated Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moret, S.; Conte, L.S. Polycyclic aromatic hydrocarbons in edible fats and oils: Occurrence and analytical methods. J. Chromatogr. A 2000, 882, 245–253. [Google Scholar] [CrossRef]
- Moret, S.; Conte, L. A rapid method for polycyclic aromatic hydrocarbon determination in vegetable oils. J. Sep. Sci. 2002, 25, 96–100. [Google Scholar] [CrossRef]
- World Health Organization–Office for Europe (EURO-OMS). Air Quality Guidelines, 2nd ed.; WHO Regional Office for Europe: Copenhagen, Denmark, 2000. [Google Scholar]
- Dybing, E.; Schwarze, P.E.; Nafstad, P.; Victorin, K.; Penning, T.M. Polycyclic Aromatic Hydrocarbons in ambient air and cancer. Air Pollut.Cancer 2013, 161, 75. [Google Scholar]
- U. S. Environmental Protection Agency Team. Health Assessment Document for Diesel Engine Exhaust; EPA/600/8-90/057F Report for National Center for Environmental Assessment Environmental Protection Agency (EPA): Washington, DC, USA, 2002. [Google Scholar]
- Li, Q.; Li, Y.; Zhu, L.; Xing, B.; Chen, B. Dependence of plant uptake and diffusion of polycyclic aromatic hydrocarbons on the leaf surface morphology and micro-structures of cuticular waxes. Sci. Rep. 2017, 7, 46235. [Google Scholar] [CrossRef]
- Fellet, G.; Pošćić, F.; Licen, S.; Marchiol, L.; Musetti, R.; Tolloi, A.; Barbieri, P.; Zerbi, G. PAHs accumulation on leaves of six evergreen urban shrubs: A field experiment. Atmos. Pollut. Res. 2016, 7, 915–924. [Google Scholar] [CrossRef]
- Ratola, N.; Amigo, J.M.; Alves, A. Levels and Sources of PAHs in Selected Sites from Portugal: Biomonitoring with Pinus pinea and Pinus pinaster Needles. Arch. Environ. Contam. Toxicol. 2010, 58, 631–647. [Google Scholar] [CrossRef]
- Huang, S.; Dai, C.; Zhou, Y.; Peng, H.; Yi, K.; Qin, P.; Luo, S.; Zhang, X. Comparisons of three plant species in accumulating polycyclic aromatic hydrocarbons (PAHs) from the atmosphere: A review. Environ. Sci. Pollut. Res. 2018, 25, 16548–16566. [Google Scholar] [CrossRef]
- De Nicola, F.; Claudia, L.; MariaVittoria, P.; Giulia, M.; Anna, A. Biomonitoring of PAHs by using Quercus ilex leaves: Source diagnostic and toxicity assessment. Atmos. Environ. 2011, 45, 1428–1433. [Google Scholar] [CrossRef]
- Ratola, N.; Lacorte, S.; Barceló, D.; Alves, A. Microwave-assisted extraction and ultrasonic extraction to determine polycyclic aromatic hydrocarbons in needles and bark of Pinus pinaster Ait. and Pinus pinea L. by GC-MS. Talanta 2009, 77, 1120–1128. [Google Scholar] [CrossRef]
- Pereira, G.M.; da Silva, S.E.; Mota, E.Q.; Parra, Y.J.; Castro, P. Polycyclic aromatic hydrocarbons in tree barks, gaseous and particulate phase samples collected near an industrial complex in Sao Paulo (Brazil). Chemosphere 2019, 237, 124499. [Google Scholar] [CrossRef]
- Niu, L.; Xu, C.; Zhou, Y.; Liu, W. Tree bark as a biomonitor for assessing the atmospheric pollution and associated human inhalation exposure risks of polycyclic aromatic hydrocarbons in rural China. Environ. Pollut. 2019, 246, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Ortega, L.M.; Uribe, D.M.; Grassi, M.T.; Garrett, R.; Sánchez, N.E. Determination of polycyclic aromatic hydrocarbons extracted from lichens by gas chromatography–mass spectrometry. MethodsX 2022, 9, 101836. [Google Scholar] [CrossRef] [PubMed]
- Blasco, M.; Domeño, C.; López, P.; Nerín, C. Behaviour of different lichen species as biomonitors of air pollution by PAHs in natural ecosystems. J. Environ. Monit. 2011, 13, 2588–2596. [Google Scholar] [CrossRef]
- Van der Wat, L.; Forbes, P.B.C. Comparison of extraction techniques for polycyclic aromatic hydrocarbons from lichen biomonitors. Environ. Sci. Pollut. Res. 2019, 26, 11179–11190. [Google Scholar] [CrossRef]
- Protano, C.; Guidotti, M.; Owczarek, M.; Fantozzi, L.; Blasi, G.; Vitali, M. Polycyclic Aromatic Hydrocarbons and Metals in Transplanted Lichen (Pseudovernia furfuracea) at Sites Adjacent to a Solid-waste Landfill in Central Italy. Arch. Environ. Contam. Toxicol. 2014, 66, 471–481. [Google Scholar] [CrossRef]
- Yang, M.; Tian, S.; Liu, Q.; Yang, Z.; Yang, Y.; Shao, P.; Liu, Y. Determination of 31 Polycyclic Aromatic Hydrocarbons in Plant Leaves Using Internal Standard Method with Ultrasonic Extraction–Gas Chromatography–Mass Spectrometry. Toxics 2022, 10, 634. [Google Scholar] [CrossRef] [PubMed]
- Landis, M.S.; Studabaker, W.B.; Pancras, J.P.; Graney, J.R.; Puckett, K.; White, E.M.; Edgerton, E.S. Source apportionment of an epiphytic lichen biomonitor to elucidate the sources and spatial distribution of polycyclic aromatic hydrocarbons in the Athabasca Oil Sands Region, Alberta, Canada. Sci. Total Environ. 2019, 654, 1241–1257. [Google Scholar] [CrossRef]
- Fasani, D.; Fermo, P.; Barroso, P.J.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Analytical Method for Biomonitoring of PAH Using Leaves of Bitter Orange Trees (Citrus aurantium): A Case Study in South Spain. Water Air Soil Pollut. 2016, 227, 360. [Google Scholar] [CrossRef]
- Shukla, V.; Upreti, D.K. Polycyclic aromatic hydrocarbon (PAH) accumulation in lichen, Phaeophyscia hispidula of DehraDun City, Garhwal Himalayas. Environ. Monit. Assess. 2009, 149, 1–7. [Google Scholar] [CrossRef]
- Lehndorff, E.; Schwark, L. Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler—Part II: Polycyclic aromatic hydrocarbons (PAH). Atmos. Environ. 2004, 38, 3793–3808. [Google Scholar] [CrossRef]
- Nascimbene, J.; Tretiach, M.; Corana, F.; Schiavo, F.L.; Kodnik, D.; Dainese, M.; Mannucci, B. Patterns of traffic polycyclic aromatic hydrocarbon pollution in mountain areas can be revealed by lichen biomonitoring: A case study in the Dolomites (Eastern Italian Alps). Sci. Total Environ. 2014, 475, 90–96. [Google Scholar] [CrossRef]
- St-Amand, A.D.; Mayer, P.M.; Blais, J.M. Modeling PAH uptake by vegetation from the air using field measurements. Atmos. Environ. 2009, 43, 4283–4288. [Google Scholar] [CrossRef]
- Ratola, N.; Herbert, P.; Alves, A. Microwave-assisted headspace solid-phase microextraction to quantify polycyclic aromatic hydrocarbons in pine trees. Anal. Bioanal. Chem. 2012, 403, 1761–1769. [Google Scholar] [CrossRef]
- Navarro, P.; Cortazar, E.; Bartolomé, L.; Deusto, M.; Raposo, J.; Zuloaga, O.; Arana, G.; Etxebarria, N. Comparison of solid phase extraction, saponification and gel permeation chromatography for the clean-up of microwave-assisted biological extracts in the analysis of polycyclic aromatic hydrocarbons. J. Chromatogr. A 2006, 1128, 10–16. [Google Scholar] [CrossRef]
- Schenck, F.J.; Lehotay, S.J.; Vega, V. Comparison of solid-phase extraction sorbents for cleanup in pesticide residue analysis of fresh fruits and vegetables. J. Sep. Sci. 2002, 25, 883–890. [Google Scholar] [CrossRef]
- Navarro-Ortega, A.; Ratola, N.; Hildebrandt, A.; Alves, A.; Lacorte, S.; Barceló, D. Environmental distribution of PAHs in pine needles, soils, and sediments. Environ. Sci. Pollut. Res. 2012, 19, 677–688. [Google Scholar] [CrossRef]
- Rodriguez, J.H.; Pignata, M.L.; Fangmeier, A.; Klumpp, A. Accumulation of polycyclic aromatic hydrocarbons and trace elements in the bioindicator plants Tillandsia capillaris and Lolium multiflorum exposed at PM10 monitoring stations in Stuttgart (Germany). Chemosphere 2010, 80, 208–215. [Google Scholar] [CrossRef]
- Amigo, J.M.; Ratola, N.; Alves, A. Study of geographical trends of polycyclic aromatic hydrocarbons using pine needles. Atmos. Environ. 2011, 45, 5988–5996. [Google Scholar] [CrossRef]
- van Drooge, B.L.; Garriga, G.; Grimalt, J.O. Polycyclic aromatic hydrocarbons in pine needles (Pinus halepensis) along a spatial gradient between a traffic intensive urban area (Barcelona) and a nearby natural park. Atmos. Pollut. Res. 2014, 5, 398–403. [Google Scholar] [CrossRef]
- Rodriguez, J.; Wannaz, E.; Salazar, M.; Pignata, M.; Fangmeier, A.; Franzaring, J. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the tree foliage of Eucalyptus rostrata, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina. Atmos. Environ. 2012, 55, 35–42. [Google Scholar] [CrossRef]
- Krauss, M.; Wilcke, W.; Martius, C.; Bandeira, A.G.; Garcia, M.V.; Amelung, W. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment. Environ. Pollut. 2005, 135, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, B.; Antonkiewicz, J.; Maksymiec, N.; Drożdżal, K. Effect of traffic pollution on chemical composition of raw elderberry (Sambucus nigra L.). J. Elem. 2012, 17, 67–78. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Wianowska, D.; Baraniak, B. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). Lwt 2006, 39, 308–315. [Google Scholar] [CrossRef]
- Schmitzer, V.; Veberic, R.; Slatnar, A.; Stampar, F. Elderberry (Sambucus nigra L.) Wine: A Product Rich in Health Promoting Compounds. J. Agric. Food Chem. 2010, 58, 10143–10146. [Google Scholar] [CrossRef] [PubMed]
- Gentscheva, G.; Milkova-Tomova, I.; Buhalova, D.; Pehlivanov, I.; Stefanov, S.; Nikolova, K.; Andonova, V.; Panova, N.; Gavrailov, G.; Dikova, T.; et al. Incorporation of the Dry Blossom Flour of Sambucus nigra L. in the Production of Sponge Cakes. Molecules 2022, 27, 1124. [Google Scholar] [CrossRef] [PubMed]
- Dugay, A.; Herrenknecht, C.; Czok, M.; Guyon, F.; Pages, N. New procedure for selective extraction of polycyclic aromatic hydrocarbons in plants for gas chromatographic-mass spectrometric analysis. J. Chromatogr. A 2002, 958, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fernández, R.; Galarraga, F.; Benzo, Z.; Márquez, G.; Fernández, A.J.; Requiz, M.G.; Hernández, J. Lichens as biomonitors for the determination of polycyclic aromatic hydrocarbons (PAHs) in Caracas Valley, Venezuela. Int. J. Environ. Anal. Chem. 2014, 91, 230–240. [Google Scholar] [CrossRef]
- Solgi, E.; Keramaty, M.; Solgi, M. Biomonitoring of airborne Cu, Pb, and Zn in an urban area employing a broad leaved and a conifer tree species. J. Geochem. Explor. 2020, 208, 106400. [Google Scholar] [CrossRef]
- Fukuma. Resolution of the Collegiate Board–RDC Nº 166. Available online: http://en.fukumaadvogados.com.br/wp-content/uploads/2017/08/RDC-166_2017-Analytical-Methods-Validation.pdf (accessed on 20 July 2022).
- Lee, Y.-N.; Lee, S.; Kim, J.-S.; Patra, J.K.; Shin, H.-S. Chemical analysis techniques and investigation of polycyclic aromatic hydrocarbons in fruit, vegetables and meats and their products. Food Chem. 2019, 277, 156–161. [Google Scholar] [CrossRef]
- Thermo Scientific. Matrix Spiking—Why Spike and How to Do It; Environmental & Process Instruments Division; Water Analysis Instruments: Illawong, Australia, 2011. [Google Scholar]
- Ratola, N.; Alves, A.; Psillakis, E. Biomonitoring of Polycyclic Aromatic Hydrocarbons Contamination in the Island of Crete Using Pine Needles. Water Air Soil Pollut. 2011, 215, 189–203. [Google Scholar] [CrossRef]
- Tham, Y.W.; Takeda, K.; Sakugawa, H. Polycyclic aromatic hydrocarbons (PAHs) associated with atmospheric particles in Higashi Hiroshima, Japan: Influence of meteorological conditions and seasonal variations. Atmos. Res. 2008, 88, 224–233. [Google Scholar] [CrossRef]
- Ratola, N.; Lacorte, S.; Alves, A.; Barceló, D. Analysis of polycyclic aromatic hydrocarbons in pine needles by gas chromatography–mass spectrometry: Comparison of different extraction and clean-up procedures. J. Chromatogr. A 2006, 1114, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Bakker, M.I.; Koerselman, J.W.; Tolls, J.; Kollöffel, C. Localization of deposited polycyclic aromatic hydrocarbons in leaves of Plantago. Environ. Toxicol. Chem. 2001, 20, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency (EPA). Compendium Methods for the Determination of Toxic Organic Compounds in Ambient Air: Compendium Method TO-11A. Available online: https://www3.epa.gov/ttnamti1/files/ambient/airtox/to-11ar.pdf (accessed on 4 February 2023).
- IARC-International Agency for Research on Cancer. Outdoor Air Pollution/IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC-International Agency for Research on Cancer: Lyon, France, 2013. Available online: https://publications.iarc.fr/_publications/media/download/4317/b1f528f1fca20965a2b48a220f47447c1d94e6d1.pdf (accessed on 30 September 2019).
- Wu, C.Y.; Cabrera-Rivera, O.; Dettling, J.; Asselmeier, D.; McGeen, D.; Ostrander, A.; Lax, J.; Mancilla, C.; Velalis, T.; Bates, J.; et al. An Assessment of Benzo (a) pyrene Air Emissions in the Great Lakes Region. Arbor 2007, 1001, 48104. [Google Scholar]
- Alexandrino, K.; Sánchez, N.E.; Zalakeviciute, R.; Acuña, W.; Viteri, F. Polycyclic Aromatic Hydrocarbons in Araucaria heterophylla Needles in Urban Areas: Evaluation of Sources and Road Characteristics. Plants 2022, 11, 1948. [Google Scholar] [CrossRef]
- Pulster, E.L.; Johnson, G.; Hollander, D.; McCluskey, J.; Harbison, R. Levels and Sources of Atmospheric Polycyclic Aromatic Hydrocarbons Surrounding an Oil Refinery in Curaçao. J. Environ. Prot. 2019, 10, 431–453. [Google Scholar] [CrossRef] [Green Version]
Retention Time (min) | λ (nm) | |
---|---|---|
Naphthalene (Naph) | 3.0 | 220.0 |
Acenaphthylene (Acy) | 3.4 | 230.0 |
Acenaphthene (Ace) | 3.8 | 220.0 |
Fluorene (FLuo) | 4.0 | 254.0 |
Phenanthrene (Phen) | 4.3 | 254.0 |
Anthracene (Ant) | 4.7 | 254.0 |
Fluoranthene (Flt) | 5.0 | 230.0 |
Pyrene (Pyr) | 5.2 | 230.0 |
Benzo[a]anthracene (BaA) | 6.1 | 220.0 |
Chrysene (Chry) | 6.3 | 254.0 |
Benzo[b]fluoranthene (BbF) | 6.9 | 254.0 |
Benzo[k]fluoranthene (BkF) | 7.3 | 230.0 |
Benzo[a]pyrene (BaP) | 7.5 | 254.0 |
Dibenzo[a,h]anthracene (DahA) | 8.2 | 220.0 |
Benzo[g,h,i]perylene (BghiP) | 8.5 | 220.0 |
Indeno [1,2,3-cd]pyrene (IcdP) | 9.1 | 230.0 |
PAH | Linearity | %RSDinst | LOD (μg L−1) | LOQ (μg L−1) | ||
---|---|---|---|---|---|---|
Concentration Range of Calibration (μg L−1) | Regression Equation a | R2 | ||||
Naphthalene (Naph) | 7.5–2500 | y = 2.4 ± 0.02x − 35.9 ± 21.53 | 0.9998 | 0.3 | 0.2 | 0.6 |
Acenaphthylene (Acy) | 5.0–2500 | y = 1.1 ± 0.008x − 8.2 ± 9.0 | 0.9997 | 1.7 | 0.8 | 2.5 |
Acenaphthene (Ace) | 10–2500 | y = 0.8 ± 0.008x − 6.8 ± 9.6 | 0.9996 | 0.2 | 2.6 | 7.8 |
Fluorene (FLuo) | 10–2500 | y = 0.2 ± 0.004x − 3.7 ± 4.63 | 0.9993 | 0.006 | 5.5 | 16.8 |
Phenanthrene (Phen) | 5.0–2500 | y = 0.9 ± 0.007x − 8.2 ± 7.14 | 0.9998 | 0.1 | 0.8 | 2.6 |
Anthracene (Ant) | 2.5–2500 | y = 1.9 ± 0.02x + 1.3 ± 9.0 | 0.9996 | 3.8 | 0.7 | 2.2 |
Fluoranthene (Flt) | 5.0–2500 | y = 0.6 ± 0.006x − 9.9 ± 6.4 | 0.9996 | 1.1 | 6.3 | 19.0 |
Pyrene (Pyr) | 5.0–2500 | y = 0.7 ± 0.005x − 7.6 ± 5.6 | 0.9997 | 0.3 | 7.8 | 23.8 |
Benzo[a]anthracene (BaA) | 10–2500 | y = 0.6 ± 0.006x + 0.4 ± 7.1 | 0.9996 | 1.0 | 1.6 | 4.9 |
Chrysene (Chry) | 7.5–2500 | y = 1.2 ± 0.01x − 14.5 ± 11.1 | 0.9997 | 0.5 | 1.4 | 4.2 |
Benzo[b]fluoranthene (BbF) | 7.5–2500 | y = 0.6 ± 0.006x − 5.3 ± 5.1 | 0.9996 | 4.6 | 4.8 | 14.7 |
Benzo[k]fluoranthene (BkF) | 7.5–2500 | y = 0.5 ± 0.004x − 6.8 ± 5.2 | 0.9996 | 0.4 | 6.3 | 19.0 |
Benzo[a]pyrene (BaP) | 7.5–2500 | y = 0.4 ± 0.004x − 1.4 ± 4.8 | 0.9995 | 4.3 | 1.2 | 3.7 |
Dibenzo[a,h]anthracene (DahA) | 7.5–2500 | y = 0.6 ± 0.005x − 6.4 ± 5.8 | 0.9997 | 0.9 | 6.1 | 18.4 |
Benzo[g,h,i]perylene (BghiP) | 25.0–2500 | y = 0.7 ± 0.008x − 14.4 ± 9.3 | 0.9997 | 1.2 | 6.5 | 19.6 |
Indeno[1,2,3-cd]pyrene (IcdP) | 25.0–2500 | y = 0.4 ± 0.003x − 9.2 ± 3.8 | 0.9997 | 0.4 | 13.7 | 41.5 |
PAH | Leaves | Bark | ||
---|---|---|---|---|
%R | %RSDmethod | %R | %RSDmethod | |
Naphthalene (Naph) | 74.8 | 3.7 | 56.7 | 6.3 |
Acenaphthylene (Acy) | 64.8 | 1.3 | 58.6 | 5.5 |
Acenaphthene (Ace) | 67.9 | 3.9 | 55.2 | 12.8 |
Fluorene (FLuo) | 75.1 | 1.9 | 72.1 | 13.8 |
Phenanthrene (Phen) | 106.4 | 2.3 | 100.6 | 4.5 |
Anthracene (Ant) | 88.9 | 1.7 | 92.4 | 3.1 |
Fluoranthene (Flt) | 90.2 | 3.3 | 79.9 | 1.0 |
Pyrene (Pyr) | 77.4 | 1.7 | 69.8 | 3.2 |
Benzo[a]anthracene (BaA) | 85.1 | 1.2 | 86.7 | 2.9 |
Chrysene (Chry) | 95.7 | 2.7 | 82.1 | 5.0 |
Benzo[b]fluoranthene (BbF) | 72.1 | 3.1 | 75.7 | 1.6 |
Benzo[k]fluoranthene (BkF) | 70.0 | 7.6 | 73.2 | 5.8 |
Benzo[a]pyrene (BaP) | 91.2 | 16.9 | 69.3 | 11.0 |
Dibenzo[a,h]anthracene (DahA) | 83.9 | 5.1 | 74.7 | 10.1 |
Benzo[g,h,i]perylene (BghiP) | 76.4 | 24.0 | 82.8 | 10.5 |
Indeno [1,2,3-cd]pyrene (IcdP) | 75.7 | 32.8 | 64.3 | 45.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viteri, F.; Sánchez, N.E.; Alexandrino, K. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Leaf and Bark Samples of Sambucus nigra Using High-Performance Liquid Chromatography (HPLC). Methods Protoc. 2023, 6, 17. https://doi.org/10.3390/mps6010017
Viteri F, Sánchez NE, Alexandrino K. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Leaf and Bark Samples of Sambucus nigra Using High-Performance Liquid Chromatography (HPLC). Methods and Protocols. 2023; 6(1):17. https://doi.org/10.3390/mps6010017
Chicago/Turabian StyleViteri, Fausto, Nazly E. Sánchez, and Katiuska Alexandrino. 2023. "Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Leaf and Bark Samples of Sambucus nigra Using High-Performance Liquid Chromatography (HPLC)" Methods and Protocols 6, no. 1: 17. https://doi.org/10.3390/mps6010017