MALDI Mass Spectrometry Imaging Linked with Top-Down Proteomics as a Tool to Study the Non-Small-Cell Lung Cancer Tumor Microenvironment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tissue Sectioning and Preparation
2.3. Mass Spectrometry Imaging
2.4. H&E Staining
2.5. Peptide and Intact Small Protein Identification
2.6. LC-MS/MS Analysis
3. Results
3.1. Comparison of Different Chemical Treatment Steps of Lung Cancer Tissues
3.2. Evaluation of Peptide Delocalization: Cancerous from Noncancerous Lung Tissue
3.3. Identification of Discriminative Peptides by Top-Down Peptidomics
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
m/z Value | AUC |
---|---|
841.5 | 0.802 |
909.5 | 0.844 |
925.4 | 0.836 |
931.4 | 0.869 |
947.4 | 0.930 |
963.4 | 0.831 |
1054.3 | 0.891 |
4937.6 | 0.823 |
4961.6 | 0.841 |
4985.6 | 0.852 |
5001.6 | 0.828 |
Appendix B
Thymosin β4 | |||||
---|---|---|---|---|---|
s1DKPDMAEIEKFDKSKLKKTETQEKNPLPSKETIEQEKQAGES | |||||
m/z 993.1035; z = 5; Retention Time 39.05 min−10lgP = 60.21 | |||||
Ion Type | Ion Number | Theoretical Mass | Observed Mass | Mass Difference (Da) | Mass Difference (ppm) |
b | 3 | 373.17126 | 373.17114 | −0.00012 | −0.32156828 |
b | 4 | 470.22402 | 470.22437 | 0.00035 | 0.74432552 |
b | 5 | 585.25096 | 585.24677 | −0.00419 | −7.15937313 |
b | 6 | 716.29145 | 716.29169 | 0.00024 | 0.33505903 |
b | 7 | 787.32856 | 787.33191 | 0.00335 | 4.25487645 |
b | 8 | 916.37115 | 916.37463 | 0.00348 | 3.79757349 |
b | 11 | 1286.59277 | 1286.59692 | 0.00415 | 3.22556345 |
b | 12 | 1433.66119 | 1433.67078 | 0.00959 | 6.68912287 |
b | 13 | 1548.68813 | 1548.69702 | 0.00889 | 5.74030936 |
b | 14 | 1676.78309 | 1676.7926 | 0.00951 | 5.67154221 |
b | 18 | 2133.08911 | 2133.0896 | 0.00049 | 0.22971374 |
b | 19 | 2261.18407 | 2261.18188 | −0.00219 | −0.96852006 |
b | 26 | 3091.56108 | 3091.55322 | −0.00786 | −2.54241135 |
b | 27 | 3188.61384 | 3188.62012 | 0.00628 | 1.96950397 |
b | 28 | 3301.69791 | 3301.68945 | −0.00846 | −2.56232457 |
b | 42 | 4856.45047 | 4856.45654 | 0.00607 | 1.24988249 |
y | 4 | 363.15108 | 363.1499 | −0.00118 | −3.24934689 |
y | 5 | 491.20966 | 491.20959 | −0.00007 | −0.14250536 |
y | 6 | 619.30462 | 619.30371 | −0.00091 | −1.46939213 |
y | 7 | 748.34722 | 748.34229 | −0.00493 | −6.58789442 |
y | 8 | 876.40579 | 876.40027 | −0.00552 | −6.29849190 |
y | 9 | 1005.44839 | 1005.44604 | −0.00235 | −2.33727113 |
y | 10 | 1118.53245 | 1118.54578 | 0.01333 | 11.91725921 |
y | 11 | 1219.58013 | 1219.5752 | −0.00493 | −4.04239115 |
y | 12 | 1348.62272 | 1348.61426 | −0.00846 | −6.27310585 |
y | 13 | 1476.71768 | 1476.72546 | 0.00778 | 5.26841326 |
y | 14 | 1563.74971 | 1563.73926 | −0.01045 | −6.68269977 |
y | 15 | 1660.80248 | 1660.80469 | 0.00221 | 1.33068025 |
y | 17 | 1870.9393 | 1870.9425 | 0.00320 | 1.71036790 |
y | 40 | 4589.32913 | 4589.32129 | −0.00784 | −1.70831361 |
Thymosin β10 | |||||
---|---|---|---|---|---|
a1DKPDMGEIASFDKAKLKKTETQEKNTLPTKETIEQEKRSEIS | |||||
m/z 705.7958; z = 7; Retention Time 43.20 min−10lgP = 42.12 | |||||
Ion Type | Ion Number | Theoretical Mass | Observed Mass | Mass Difference (Da) | Mass Difference (ppm) |
b | 5 | 569.25605 | 569.25623 | 0.00018 | 0.31620207 |
b | 7 | 757.31800 | 757.32349 | 0.00549 | 7.24921394 |
b | 8 | 886.36059 | 886.35828 | −0.00231 | −2.60616960 |
y | 5 | 591.30971 | 591.31244 | 0.00273 | 4.61684858 |
y | 6 | 719.40467 | 719.40491 | 0.00024 | 0.33360907 |
y | 7 | 848.44726 | 848.44885 | 0.00159 | 1.87400808 |
y | 9 | 1105.54843 | 1105.54248 | −0.00595 | −5.38197320 |
y | 12 | 1448.72277 | 1448.73096 | 0.00819 | 5.65322356 |
y | 15 | 1774.91817 | 1774.91760 | −0.00057 | −0.32114167 |
Fibrinopeptide A | |||||
---|---|---|---|---|---|
ADSGEGDFLAEGGGVR | |||||
m/z 768.8489; z = 2; Retention Time 37.97 min−10lgP = 38.52 | |||||
Ion Type | Ion Number | Theoretical Mass | Observed Mass | Mass DIFFERENCE (Da) | Mass Difference (ppm) |
b | 2 | 187.07138 | 187.07034 | −0.00104 | −5.55940616 |
b | 3 | 274.10341 | 274.10114 | −0.00227 | −8.28161459 |
b | 4 | 331.12487 | 331.12225 | −0.00262 | −7.91248549 |
b | 5 | 460.16746 | 460.16306 | −0.00440 | −9.56182793 |
y | 1 | 175.11900 | 175.11807 | −0.00093 | −5.31070266 |
y | 4 | 388.23034 | 388.22778 | −0.00256 | −6.59406702 |
y | 5 | 445.25180 | 445.2489 | −0.00290 | −6.51321093 |
y | 6 | 574.29439 | 574.29095 | −0.00344 | −5.98999514 |
y | 7 | 645.33151 | 645.32892 | −0.00259 | −4.01345720 |
y | 8 | 758.41557 | 758.41156 | −0.00401 | −5.28736666 |
y | 9 | 905.48398 | 905.48047 | −0.00351 | −3.87639504 |
y | 10 | 1020.51093 | 1020.5094 | −0.00153 | −1.49925126 |
y | 11 | 1077.53239 | 1077.52368 | −0.00871 | −8.08334904 |
y | 12 | 1206.57498 | 1206.55847 | −0.01651 | −13.68354739 |
y | 13 | 1263.59645 | 1263.58936 | −0.00709 | −5.61100008 |
y | 14 | 1350.62848 | 1350.62463 | −0.00385 | −2.85053294 |
References
- Rolfo, C.; Sortino, G.; Smits, E.; Passiglia, F.; Bronte, G.; Castiglia, M.; Russo, A.; Santos, E.S.; Janssens, A.; Pauwels, P.; et al. Immunotherapy: Is a minor god yet in the pantheon of treatments for lung cancer? Expert Rev. Anticancer Ther. 2014, 14, 1173–1187. [Google Scholar] [CrossRef]
- Gerdes, M.J.; Sood, A.; Sevinsky, C.; Pris, A.D.; Zavodszky, M.I.; Ginty, F. Emerging understanding of multiscale tumor heterogeneity. Front. Oncol. 2014, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gubin, M.M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J.P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C.D.; Krebber, W.-J.; et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014, 515, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Teixidó, C.; Karachaliou, N.; González-Cao, M.; Morales-Espinosa, D.; Rosell, R. Assays for predicting and monitoring responses to lung cancer immunotherapy. Cancer Biol. Med. 2015, 12, 87–95. [Google Scholar] [PubMed]
- Riley, J.L. PD-1 signaling in primary T cells. Immunol. Rev. 2009, 229, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.-T.; Ahmed, R.; Okazaki, T. Role of PD-1 in regulating T-cell immunity. Curr. Top. Microbiol. Immunol. 2011, 350, 17–37. [Google Scholar] [PubMed]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the treatment of non–small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Ghirelli, C.; Hagemann, T. Targeting immunosuppression for cancer therapy. J. Clin. Investig. 2013, 123, 2355–2357. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, H.; Silakari, O. Kinases inhibitors in lung cancer: From benchside to bedside. Biochim. Biophys. Acta Rev. Cancer 2016, 1866, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Montironi, R.; Santoni, M.; Tartari, F.; Lopez-Beltran, A.; Cheng, L.; Berardi, R.; Scarpelli, M. Testing PD-1/PD-L1 expression in cancer therapy: Pathologic insights and economic sustainability. Arch. Pathol. Lab. Med. 2016, 140, 501–502. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration (FDA). Available online: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm617471.htm (accessed on 7 January 2019).
- U.S. Food & Drug Administration (FDA). Available online: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm617370.htm (accessed on 7 January 2019).
- U.S. Food & Drug Administration (FDA). Available online: https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm525780.htm (accessed on 7 January 2019).
- Davies, M. New modalities of cancer treatment for NSCLC: Focus on immunotherapy. Cancer Manag. Res. 2014, 6, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, M.L.; Tattersall, M.H.N. Counting the costs of cancer therapy. Eur. J. Cancer Clin. Oncol. 1982, 18, 1237–1241. [Google Scholar] [CrossRef]
- Vaysse, P.-M.; Heeren, R.M.A.; Porta, T.; Balluff, B. Mass spectrometry imaging for clinical research—Latest developments, applications, and current limitations. Analyst 2017, 142, 2690–2712. [Google Scholar] [CrossRef] [PubMed]
- Rompp, A.; Spengler, B. Mass spectrometry imaging with high resolution in mass and space. Histochem. Cell Biol. 2013, 139, 759–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heijs, B.; Holst, S.; Briaire-De Bruijn, I.H.; Van Pelt, G.W.; De Ru, A.H.; Van Veelen, P.A.; Drake, R.R.; Mehta, A.S.; Mesker, W.E.; Tollenaar, R.A.; et al. Multimodal mass spectrometry imaging of n-glycans and proteins from the same tissue section. Anal. Chem. 2016, 88, 7745–7753. [Google Scholar] [CrossRef] [PubMed]
- Chughtai, K.; Heeren, R.M.A. Mass spectrometric imaging for biomedical tissue analysis—Chemical reviews (ACS Publications). Chem. Rev. 2011, 110, 3237–3277. [Google Scholar] [CrossRef]
- Ahlf Wheatcraft, D.R.; Liu, X.; Hummon, A.B. Sample preparation strategies for mass spectrometry imaging of 3D cell culture models. J. Vis. Exp. 2014, 94, e52313. [Google Scholar] [CrossRef]
- Minerva, L.; Clerens, S.; Baggerman, G.; Arckens, L. Direct profiling and identification of peptide expression differences in the pancreas of control and ob/ob mice by imaging mass spectrometry. Proteomics 2008, 8, 3763–3774. [Google Scholar] [CrossRef]
- Aichler, M.; Walch, A. MALDI Imaging mass spectrometry: Current frontiers and perspectives in pathology research and practice. Lab. Investig. 2015, 95, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Stoeckli, M.; Chaurand, P.; Hallahan, D.E.; Caprioli, R.M. Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. Nat. Med. 2001, 7, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Minerva, L.; Ceulemans, A.; Baggerman, G.; Arckens, L. MALDI MS imaging as a tool for biomarker discovery: Methodological challenges in a clinical setting. Proteomics Clin. Appl. 2012, 6, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Kriegsmann, J.; Kriegsmann, M.; Casadonte, R. MALDI TOF imaging mass spectrometry in clinical pathology: A valuable tool for cancer diagnostics. Int. J. Oncol. 2015, 46, 893–906. [Google Scholar] [CrossRef]
- McDonnell, L.A.; Corthals, G.L.; Willems, S.M.; van Remoortere, A.; van Zeijl, R.J.M.; Deelder, A.M. Peptide and protein imaging mass spectrometry in cancer research. J. Proteomics 2010, 73, 1921–1944. [Google Scholar] [CrossRef] [PubMed]
- Aichler, M.; Kunzke, T.; Buck, A.; Sun, N.; Ackermann, M.; Jonigk, D.; Gaumann, A.; Walch, A. Molecular similarities and differences from human pulmonary fibrosis and corresponding mouse model: MALDI imaging mass spectrometry in comparative medicine. Lab. Investig. 2018, 98, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Tsubata, Y.; Hayashi, M.; Tanino, R.; Aikawa, H.; Ohuchi, M.; Tamura, K.; Fujiwara, Y.; Isobe, T.; Hamada, A. Evaluation of the heterogeneous tissue distribution of erlotinib in lung cancer using matrix-assisted laser desorption ionization mass spectrometry imaging. Sci. Rep. 2017, 7, 5–10. [Google Scholar] [CrossRef]
- Berry, K.A.; Hankin, J.A.; Barkley, R.M.; Spraggins, J.M.; Caprioli, R.M.; Murphy, R.C. MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem. Rev. 2011, 111, 6491–6512. [Google Scholar] [CrossRef] [PubMed]
- Kriegsmann, M.; Casadonte, R.; Kriegsmann, J.; Dienemann, H.; Schirmacher, P.; Kobarg, J.H.; Schwamborn, K.; Stenzinger, A.; Warth, A.; Weichert, W. Reliable entity subtyping in non-small cell lung cancer by MALDI imaging mass spectrometry on formalin-fixed paraffin-embedded tissue specimens. Mol. Cell. Proteomics 2016, 15, 3081–3089. [Google Scholar] [CrossRef]
- Lemaire, R.; Wisztorski, M.; Desmons, A.; Tabet, J.C.; Day, R.; Salzet, M.; Fournier, I. MALDI-MS direct tissue analysis of proteins: Improving signal sensitivity using organic treatments. Anal. Chem. 2006, 78, 7145–7153. [Google Scholar] [CrossRef] [PubMed]
- Nimesh, S.; Mohottalage, S.; Vincent, R.; Kumarathasan, P. Current status and future perspectives of mass spectrometry imaging. Int. J. Mol. Sci. 2013, 14, 11277–11301. [Google Scholar] [CrossRef] [PubMed]
- Kaletaş, B.K.; Van Der Wiel, I.M.; Stauber, J.; Dekker, L.J.; Güzel, C.; Kros, J.M.; Luider, T.M.; Heeren, R.M.A. Sample preparation issues for tissue imaging by imaging MS. Proteomics 2009, 9, 2622–2633. [Google Scholar] [CrossRef] [PubMed]
- Seeley, E.H.; Oppenheimer, S.R.; Mi, D.; Chaurand, P.; Caprioli, R.M. Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J. Am. Soc. Mass. Spectrom. 2008, 19, 1069–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Caprioli, R.M. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal. Chem. 2011, 83, 5728–5734. [Google Scholar] [CrossRef] [PubMed]
- Ong, T.-H.; Romanova, E.V.; Roberts-Galbraith, R.H.; Yang, N.; Zimmerman, T.A.; Collins, J.J.; Lee, J.E.; Kelleher, N.L.; Newmark, P.A.; Sweedler, J.V. Mass spectrometry imaging and identification of peptides associated with cephalic ganglia regeneration in schmidtea mediterranea. J. Biol. Chem. 2016, 291, 8109–8120. [Google Scholar] [CrossRef]
- Minerva, L.; Boonen, K.; Menschaert, G.; Landuyt, B.; Baggerman, G.; Arckens, L. Linking mass spectrometric imaging and traditional peptidomics: A validation in the obese mouse model. Anal. Chem. 2011, 83, 7682–7691. [Google Scholar] [CrossRef] [PubMed]
- Aerts, J.; Laeremans, A.; Minerva, L.; Boonen, K.; Harshavardhan, B.; D’hooge, R.; Valkenborg, D.; Baggerman, G.; Arckens, L. MS imaging and mass spectrometric synaptosome profiling identify PEP-19/pcp4 as a synaptic molecule involved in spatial learning in mice. Biochim. Biophys. Acta Proteins Proteomics 2017, 1865, 936–945. [Google Scholar] [CrossRef] [PubMed]
- BE71030031000. Biobank@UZA, Belgian Virtual Tumourbank funded by the National Cancer Plan. No. Access: (1), Last: July 03, 2017. [BIORESOURCE].
- Bemis, K.D.; Harry, A.; Eberlin, L.S.; Ferreira, C.; Van De Ven, S.M.; Mallick, P.; Stolowitz, M.; Vitek, O. Cardinal: An R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics 2015, 31, 2418–2420. [Google Scholar] [CrossRef] [PubMed]
- Ly, A.; Buck, A.; Balluff, B.; Sun, N.; Gorzolka, K.; Feuchtinger, A.; Janssen, K.P.; Kuppen, P.J.K.; Van De Velde, C.J.H.; Weirich, G.; et al. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat. Protoc. 2016, 11, 1428–1443. [Google Scholar] [CrossRef] [PubMed]
- Klein, O.; Hanke, T.; Yan, J.; Nebrich, G.; Krause, S.; Thiele, H.; Mohamed, S.A. Detection and determination of protein network associated with atrial fibrillation phenotypes. J. Clin. Exp. Cardiol. 2015, 6. [Google Scholar] [CrossRef]
- Prentice, B.M.; Chumbley, C.W.; Caprioli, R.M. High-speed MALDI MS/MS imaging mass spectrometry using continuous raster sampling. J. Mass. Spectrom. 2015, 50, 703–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.; Wang, S.; Wang, A.; Chen, X.; Zhang, H. Thymosin beta 4 silencing suppresses proliferation and invasion of non-small cell lung cancer cells by repressing Notch1 activation. Acta Biochim. Biophys. Sin. 2016, 48, 788–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.J.; Gonzalez, A.L.; Kikuchi, T.; Yanagisawa, K.; Massion, P.P.; Wu, H.; Mason, S.E.; Olson, S.J.; Shyr, Y.; Carbone, D.P.; et al. MALDI-MS derived prognostic protein markers for resected non-small cell lung cancer. Proteomics Clin. Appl. 2008, 2, 1508–1517. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wang, C.; Wang, Y.; Qiu, X.; Wang, E. Expression of thymosin β10 and its role in non-small cell lung cancer. Hum. Pathol. 2009, 40, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Rickles, F.R.; Edwards, R.L.; Barb, C.; Cronlund, M. Abnormalities of blood coagulation in patients with cancer. Cancer 1983, 51, 301–307. [Google Scholar] [CrossRef]
- Milroy, R.; Douglas, J.T.; Campbell, J.; Carter, R.; Lowe, G.D.O.; Banham, S.W. Abnormal haemostasis in small cell lung cancer. Thorax 1988, 43, 978–981. [Google Scholar] [CrossRef]
- Spraggins, J.M.; Rizzo, D.G.; Moore, J.L.; Rose, K.L.; Hammer, N.D.; Skaar, E.P.; Caprioli, R.M. MALDI FTICR IMS of intact proteins: Using mass accuracy to link protein images with proteomics data. J. Am. Soc. Mass Spectrom. 2015, 26, 974–985. [Google Scholar] [CrossRef]
- Spraggins, J.M.; Rizzo, D.G.; Moore, J.L.; Noto, M.J.; Eric, P.; Caprioli, R.M. Next-generation technologies for spatial proteomics: Integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics 2016, 16, 1678–1689. [Google Scholar] [CrossRef]
Protocol | Step 1 | Step 2 | Step 3 | Step 4 | Ref. |
---|---|---|---|---|---|
No wash (control) | [29,33,34] | ||||
Methanol | 30 s 100% MeOH | [35] | |||
Hexane | 30 s 100% hexane | [29,31,33] | |||
Acetone | 30 s 100% acetone | [33,36] | |||
Xylene | 30 s 100% xylene | [21,31,33] | |||
Acetonitrile | 30 s 100% AcN | [35] | |||
Water | 30 s water (LC-MS graded) | [36] | |||
Isopropanol | 30 s 150 mM Ammonium acetate | 30 s 100% isopropanol | [30,33,38] | ||
Ethanol | 30 s 70% EtOH | 30 s 100% EtOH | [21,31,33,34] | ||
Chloroform | 30 s 100% chloroform | [21,29,33] | |||
Acetic acid | 30 s 70% EtOH | 30 s acetic acid buffer 1 | [21] | ||
Carnoy’s | 30 s 70% EtOH | 30 s 100% EtOH | 90 s Carnoy’s fluid 2 | 30 s 100% EtOH | [37] |
Protocol | # Detected Peptides |
---|---|
No wash (control) | 8 |
Methanol | 5 |
Hexane | 11 |
Acetone | 16 |
Xylene | 11 |
Acetonitrile | 9 |
Water | 9 |
Isopropanol | 7 |
Ethanol | 10 |
Chloroform | 10 |
Acetic acid | 18 |
Carnoy’s | 33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berghmans, E.; Van Raemdonck, G.; Schildermans, K.; Willems, H.; Boonen, K.; Maes, E.; Mertens, I.; Pauwels, P.; Baggerman, G. MALDI Mass Spectrometry Imaging Linked with Top-Down Proteomics as a Tool to Study the Non-Small-Cell Lung Cancer Tumor Microenvironment. Methods Protoc. 2019, 2, 44. https://doi.org/10.3390/mps2020044
Berghmans E, Van Raemdonck G, Schildermans K, Willems H, Boonen K, Maes E, Mertens I, Pauwels P, Baggerman G. MALDI Mass Spectrometry Imaging Linked with Top-Down Proteomics as a Tool to Study the Non-Small-Cell Lung Cancer Tumor Microenvironment. Methods and Protocols. 2019; 2(2):44. https://doi.org/10.3390/mps2020044
Chicago/Turabian StyleBerghmans, Eline, Geert Van Raemdonck, Karin Schildermans, Hanny Willems, Kurt Boonen, Evelyne Maes, Inge Mertens, Patrick Pauwels, and Geert Baggerman. 2019. "MALDI Mass Spectrometry Imaging Linked with Top-Down Proteomics as a Tool to Study the Non-Small-Cell Lung Cancer Tumor Microenvironment" Methods and Protocols 2, no. 2: 44. https://doi.org/10.3390/mps2020044
APA StyleBerghmans, E., Van Raemdonck, G., Schildermans, K., Willems, H., Boonen, K., Maes, E., Mertens, I., Pauwels, P., & Baggerman, G. (2019). MALDI Mass Spectrometry Imaging Linked with Top-Down Proteomics as a Tool to Study the Non-Small-Cell Lung Cancer Tumor Microenvironment. Methods and Protocols, 2(2), 44. https://doi.org/10.3390/mps2020044