Newborn Genetic Screening—Still a Role for Sanger Sequencing in the Era of NGS
Abstract
:1. Introduction
Disorder | First Tier Biomarkers | Cut-Off | Units | First Tier Methods | Second Tier | Third Tier | Disease Gene(s) | Awaiting Result of DNA Test Prior to Referral | |
---|---|---|---|---|---|---|---|---|---|
ADA-SCID | Ado | ≥ | 3.0 | µmol/L | LC-MS/MS | Sanger | - | ADA | YES, if >5 TREC/µL |
dAdo | ≥ | 0.05 | µmol/L | ||||||
BTD | BTD | ≤ | 40 | U/dL | Immunoassay | Sanger | - | BTD | YES |
BKT | C5:1 | ≥ | 0.1 | µmol/L | LC-MS/MS | Sanger | - | ACAT1 | YES |
C4OH + C3DC | ≥ | 0.5 | µmol/L | ||||||
CAH | 17OHP, GA ≥ 35 weeks | ≥ | 30 | nmol/L | Immunoassay | LC-MS/MS Cortisol, 21-DC, 11-DC, 17-OHP, androstenedione | - | CYP21A2 and others | NOT RELEVANT |
17OHP, GA < 35 weeks | ≥ | 80 | nmol/L | ||||||
CACT/CPT2 | (C16 + C18:1)/C2 | ≥ | 0.8 | LC-MS/MS | NGS panel | - | SLC25A20, CPT2 | NO | |
and C14/C3 | ≥ | 0.7 | |||||||
CF | IRT | ≥ | 38 | ng/mL | Immunoassay | NGS single gene | - | CFTR | YES |
CH | TSH | ≥ | 10 | µU/mL | Immunoassay | NONE | - | Multiple, and non-genetic factors | NOT RELEVANT |
CPT1 | C0/(C16 + C18) | ≥ | 40.0 | LC-MS/MS | Sanger | - | CPT1A | NO | |
(C16 + C18:1)/C2 | ≤ | 0.15 | |||||||
CTD | C0 | ≤ | 6.0 | µmol/L | LC-MS/MS | Sanger | - | SLC22A5 | YES |
C3/Met | ≤ | 0.06 | |||||||
C3 + C16 | ≤ | 2.0 | µmol/L | ||||||
GA1 | C5DC | ≥ | 0.4 | µmol/L | LC-MS/MS | Sanger | - | GCDH | NO |
C5DC/C16 | ≥ | 0.1 | |||||||
GA2 | C14:1/C2 | ≥ | 0.02 | LC-MS/MS | NGS panel | - | ETFA, ETFB, ETFDH | NO | |
C12 | ≥ | 0.4 | µmol/L | ||||||
HCS/MCD/HMG | C5OH + C4DC | ≥ | 1.0 | µmol/L | LC-MS/MS | Sanger or NGS panel | - | HLCS, HMGCL | YES |
HCY | Met | ≥ | 40 | µmol/L | LC-MS/MS | LC-MS/MS tHCY | Sanger, NGS panel | CBS (Sanger), MAT1A | YES |
Met/Phe | ≥ | 0.7 | |||||||
IVA | C5 | ≥ | 1.0 | µmol/L | LC-MS/MS | LC-MS/MS C5-carnitine | Sanger or NGS panel | IVD | C5 > 8 µmol/L: NO C5 ≤ 8 µmol/L: YES |
C5/C0 | ≥ | 0.04 | - | ||||||
LCHADD/TFP | C16OH | ≥ | 0.1 | µmol/L | LC-MS/MS | Sanger or NGS panel | HADHA, HADHB | NO | |
C18OH | ≥ | 0.1 | µmol/L | ||||||
MCADD | C8 | ≥ | 0.4 | µmol/L | LC-MS/MS | Sanger | ACADM | NO | |
MMA | C3 | ≥ | 4.75 | µmol/L | LC-MS/MS | LC-MS/MS MMA/tHCY/MCA | NGS panel | MUT (Sanger) MMAA, MMAB, MMACHC, MMADHC, LMBRD1 | NO |
C3/C2 | ≥ | 0.25 | |||||||
MSUD | Xle | ≥ | 250 | µmol/L | LC-MS/MS | LC-MS/MS Leu, Ile, Allo-Ile, Val | NGS panel | DBT, DLD, BCKDHA, BCKDHB | NO |
Xle/Ala | ≥ | 1.3 | |||||||
Val | ≥ | 250 | µmol/L | ||||||
PA | C3 | ≥ | 4.75 | µmol/L | LC-MS/MS | LC-MS/MS MMA/tHCY/MCA | NGS panel | PCCA, PCCB | NO |
C3/C2 | ≥ | 0.25 | |||||||
C4/C3 | ≤ | 0.05 | |||||||
PKU | Phe | ≥ | 150 | µmol/L | LC-MS/MS | Sanger | NGS Panel, WGS: CNVs | PAH (Sanger) GCH1, PTS, QDPR, PCBD1 | NO |
Phe/Tyr | ≥ | 1.5 | |||||||
SCID | TREC | ≤ | 20 | TREC/µL | RT-PCR | NGS panel | WGS | Multiple SCID and T-cell deficiency genes | If <5 TREC/µL: NO 5–20 TREC/µL: YES |
SMA | SMN1 | < | 2 | gene copies | q-PCR | ddPCR SMN2 copies | qPCR of one founder variant | SMN1, SMN2 | YES * |
TYR1 | SuAc | ≥ | 2.0 | µmol/L | LC-MS/MS | Sanger | FAH | YES | |
VLCADD | C14:1 | ≥ | 0.5 | µmol/L | LC-MS/MS | Sanger or NGS panel | ACADVL panel with GA2 | C14:1 > 2µmol/L: NO C14:1 < 2µmol/L: YES | |
C14:1/C2 | ≥ | 0.02 |
2. Materials and Methods
2.1. First Tier Methods, Biochemistry and Biomarkers, and Algorithms for Follow-Up
2.2. Extraction of DNA from Guthrie Cards
2.3. PCR Amplification, Purification and Sequencing
2.4. Analysis, Classification and Reporting
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tangeraas, T.; Sæves, I.; Klingenberg, C.; Jørgensen, J.; Kristensen, E.; Gunnarsdottir, G.; Hansen, E.V.; Strand, J.; Lundman, E.; Ferdinandusse, S.; et al. Performance of Expanded Newborn Screening in Norway Supported by Post-Analytical Bioinformatics Tools and Rapid Second-Tier DNA Analyses. Int. J. Neonatal Screen. 2020, 6, 51. [Google Scholar] [CrossRef] [PubMed]
- Lundman, E.; Gaup, H.J.; Bakkeheim, E.; Olafsdottir, E.J.; Rootwelt, T.; Storrøsten, O.T.; Pettersen, R.D. Implementation of newborn screening for cystic fibrosis in Norway. Results from the first three years. J. Cyst. Fibros. 2016, 15, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Strand, J.; Gul, K.A.; Erichsen, H.C.; Lundman, E.; Berge, M.C.; Trømborg, A.K.; Sørgjerd, L.K.; Ytre-Arne, M.; Hogner, S.; Halsne, R.; et al. Second-Tier Next Generation Sequencing Integrated in Nationwide Newborn Screening Provides Rapid Molecular Diagnostics of Severe Combined Immunodeficiency. Front. Immunol. 2020, 11, 1417. [Google Scholar] [CrossRef] [PubMed]
- Helse og Omsorgsdepartementet. Forskrift om Genetisk Masseundersøkelse av Nyfødte. Available online: https://lovdata.no/dokument/SF/forskrift/2007-06-29-742 (accessed on 27 March 2022).
- Skov, M.; Bækvad-Hansen, M.; Hougaard, D.M.; Skogstrand, K.; Lund, A.M.; Pressler, T.; Olesen, H.V.; Duno, M. Cystic fibrosis newborn screening in Denmark: Experience from the first 2 years. Pediatr. Pulmonol. 2020, 55, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Van der Burg, S.; Oerlemans, A. Fostering caring relationships: Suggestions to rethink liberal perspectives on the ethics of newborn screening. Bioethics 2018, 32, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed]
- Rehm, H.L. Disease-targeted sequencing: A cornerstone in the clinic. Nat. Rev. Genet. 2013, 14, 295–300. [Google Scholar] [CrossRef]
- Sikonja, J.; Groselj, U.; Scarpa, M.; la Marca, G.; Cheillan, D.; Kölker, S.; Zetterström, R.H.; Kožich, V.; Le Cam, Y.; Gumus, G.; et al. Towards Achieving Equity and Innovation in Newborn Screening across Europe. Int. J. Neonatal Screen. 2022, 8, 31. [Google Scholar] [CrossRef]
- Koracin, V.; Mlinaric, M.; Baric, I.; Brincat, I.; Djordjevic, M.; Torkar, A.D.; Fumic, K.; Kocova, M.; Milenkovic, T.; Moldovanu, F.; et al. Current Status of Newborn Screening in Southeastern Europe. Front. Pediatr. 2021, 9, 648939. [Google Scholar] [CrossRef]
- Andresen, B.S.; Lund, A.M.; Hougaard, D.M.; Christensen, E.; Gahrn, B.; Christensen, M.; Bross, P.; Vested, A.; Simonsen, H.; Skogstrand, K.; et al. MCAD deficiency in Denmark. Mol. Genet. Metab. 2012, 106, 175–188. [Google Scholar] [CrossRef]
- Miller, M.J.; Burrage, L.C.; Gibson, J.B.; Strenk, M.E.; Lose, E.J.; Bick, D.P.; Elsea, S.H.; Sutton, V.R.; Sun, Q.; Graham, B.H.; et al. Recurrent ACADVL molecular findings in individuals with a positive newborn screen for very long chain acyl-coA dehydrogenase (VLCAD) deficiency in the United States. Mol. Genet. Metab. 2015, 116, 139–145. [Google Scholar] [CrossRef]
- VanVleck, N.; Wolf, B.; Seeterlin, M.; Monaghan, K.G.; Stanley, E.; Hawkins, H.; Taffe, B. Improved Identification of Partial Biotinidase Deficiency by Newborn Screening Using Age-Related Enzyme Activity Cutoffs: Reduction of the False-Positive Rate. Int. J. Neonatal Screen. 2015, 1, 45–56. [Google Scholar] [CrossRef]
- Viamonte, M.A.; Filipp, S.L.; Zaidi, Z.; Gurka, M.J.; Byrne, B.J.; Kang, P.B. Phenotypic implications of pathogenic variant types in Pompe disease. J. Hum. Genet. 2021, 66, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.M.; Wilson, R.; Caggana, M.; Orsini, J.J. The Impact of Post-Analytical Tools on New York Screening for Krabbe Disease and Pompe Disease. Int. J. Neonatal Screen. 2020, 6, 65. [Google Scholar] [CrossRef] [PubMed]
- Ljungblad, U.W.; Lindberg, M.; Eklund, E.A.; Sæves, I.; Sagredo, C.; Bjørke-Monsen, A.-L.; Tangeraas, T. A Retrospective Evaluation of the Predictive Value of Newborn Screening for Vitamin B12 Deficiency in Symptomatic Infants Below 1 Year of Age. Int. J. Neonatal Screen. 2022, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Heath, E.M.; O’Brien, D.P.; Banas, R.; Naylor, E.W.; Dobrowolski, S. Optimization of an automated DNA purification protocol for neonatal screening. Pathol. Lab. Med. 1999, 123, 1154–1160. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Stenson, P.D.; Ball, E.V.; Mort, M.; Phillips, A.D.; Shiel, J.A.; Thomas, N.S.; Abeysinghe, S.; Krawczak, M.; Cooper, D.N. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat 2003, 21, 577–581. [Google Scholar] [CrossRef]
- Blom, M.; Zetterström, R.H.; Stray-Pedersen, A.; Gilmour, K.; Gennery, A.R.; Puck, J.M.; van der Burg, M. Recommendations for uniform definitions used in newborn screening for severe combined immunodeficiency. J. Allergy Clin. Immunol. 2022, 149, 1428–1436. [Google Scholar] [CrossRef]
- Loeber, J.G.; Platis, D.; Zetterström, R.H.; Almashanu, S.; Boemer, F.; Bonham, J.R.; Borde, P.; Brincat, I.; Cheillan, D.; Dekkers, E.; et al. Neonatal Screening in Europe Revisited: An ISNS Perspective on the Current State and Developments Since 2010. Int. J. Neonatal Screen. 2021, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Shen, P.; Gandotra, N.; Le, A.; Fung, E.; Jelliffe-Pawlowski, L.; Davis, R.W.; Enns, G.M.; Zhao, H.; Cowan, T.M.; et al. Combining newborn metabolic and DNA analysis for second-tier testing of methylmalonic acidemia. Anesthesia Analg. 2019, 21, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, N.O.; del Castillo, D.M.; Januário, J.N.; Starling, A.L.P.; Arantes, R.R.; Norton, R.C.; Viana, M.B. Novel mutations causing biotinidase deficiency in individuals identified by the newborn screening program in Minas Gerais, Brazil. Am. J. Med. Genet. 2019, 179, 978–982. [Google Scholar] [CrossRef] [PubMed]
- Thodi, G.; Molou, E.; Georgiou, V.; Loukas, Y.L.; Dotsikas, Y.; Biti, S.; Papadopoulos, K.; Konstantinou, D.; Antoniadi, M.; Doulgerakis, E. Mutational analysis for biotinidase deficiency of a Greek patients’ cohort ascertained through expanded newborn screening. J. Hum. Genet. 2011, 56, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Boneh, A.; Andresen, B.; Gregersen, N.; Ibrahim, M.; Tzanakos, N.; Peters, H.; Yaplito-Lee, J.; Pitt, J. VLCAD deficiency: Pitfalls in newborn screening and confirmation of diagnosis by mutation analysis. Mol. Genet. Metab. 2006, 88, 166–170. [Google Scholar] [CrossRef]
- Lampret, B.R.; Remec, Ž.I.; Torkar, A.D.; Tanšek, M.Ž.; Šmon, A.; Koračin, V.; Čuk, V.; Perko, D.; Ulaga, B.; Jelovšek, A.M.; et al. Expanded newborn screening program in Slovenia using tandem mass spectrometry and confirmatory next generation sequencing genetic testing. Zdr. Varst. 2020, 59, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Lund, A.M.; Wibrand, F.; Skogstrand, K.; Bækvad-Hansen, M.; Gregersen, N.; Andresen, B.S.; Hougaard, D.M.; Dunø, M.; Olsen, R.K.J. Use of Molecular Genetic Analyses in Danish Routine Newborn Screening. Int. J. Neonatal Screen. 2021, 7, 50. [Google Scholar] [CrossRef]
- Nyfødtscreening. Nyfødtscreening, Oslo. Universitetssykehus. Available online: https://www.oslo-universitetssykehus.no/behandlinger/nyfodtscreening-blodprove-av-nyfodte (accessed on 29 June 2021).
- Wang, Y.; Kelly, M.A.; Cowan, T.M.; Longo, N. A missense mutation in the OCTN2 gene associated with residual carnitine transport activity. Hum. Mutat. 2000, 15, 238–245. [Google Scholar] [CrossRef]
Terminology | Definition |
---|---|
Referral | A newborn that is immediately, after abnormal screening, referred to and clinically evaluated by a pediatrician with follow-up diagnostics and therapeutic intervention. |
Screening positive | A final, reportable result for a specific disorder or group of disorders based on the newborn screening test result(s) and screening algorithm, indicating high risk of the disorder(s) and the need for clinical evaluation, confirmatory tests, treatment and follow-up. The terms “abnormal value” and “urgent abnormal value” are recommended to be used for this category [21]. |
Screening negative | A final, reportable result for a specific disorder or group of disorders based on the newborn screening test result(s) and screening algorithm, indicating low risk of the screening disorder(s), no need for confirmatory testing, intervention or additional follow-up. According to Blom et al. [21] the term “normal value” is recommended to be used for this category in SCID screening, but it does not reflect the whole complexity of the screening negatives. |
Screening carrier | A newborn that is heterozygous for one pathogenic variant identified by sequencing, and the variant is located in a gene for an autosomal recessive disorder related to the abnormal first tier test results. |
Starting Year | Screening Disorder | Sanger Sequenced | Screening Negative | Screening Carrier | Screening Positive |
---|---|---|---|---|---|
2012 | CACT | 19 | 18 | 0 | 1 |
2012 | CPT-1A | 11 | 7 | 1 | 3 |
2012 | CPT2 | 19 | 15 | 0 | 4 |
2012 | IVA | 7 | 2 | 0 | 5 |
2012 | LCHADD | 4 | 1 | 0 | 3 |
2012 | MCADD | 62 | 9 | 33 | 20 |
2012 | PKU | 99 | 3 | 8 | 87 + 1 PTPS |
2012 | VLCADD | 100 | 61 | 30 | 9 |
2013 | BKT | 11 | 10 | 1 | 0 |
2013 | BTD | 70 | 17 | 25 | 28 |
2013 | CTD | 133 | 84 | 41 | 8 |
2013 | GA1 | 13 | 6 | 0 | 7 |
2013 | TYR-1 | 21 | 10 | 2 | 9 |
2014 | HCY | 45 | 38 | 4 | 3 |
2014 | TFP | 4 | 0 | 1 | 3 |
2019 | ADA-SCID * | 50 | 48 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hogner, S.; Lundman, E.; Strand, J.; Ytre-Arne, M.E.; Tangeraas, T.; Stray-Pedersen, A. Newborn Genetic Screening—Still a Role for Sanger Sequencing in the Era of NGS. Int. J. Neonatal Screen. 2023, 9, 67. https://doi.org/10.3390/ijns9040067
Hogner S, Lundman E, Strand J, Ytre-Arne ME, Tangeraas T, Stray-Pedersen A. Newborn Genetic Screening—Still a Role for Sanger Sequencing in the Era of NGS. International Journal of Neonatal Screening. 2023; 9(4):67. https://doi.org/10.3390/ijns9040067
Chicago/Turabian StyleHogner, Silje, Emma Lundman, Janne Strand, Mari Eknes Ytre-Arne, Trine Tangeraas, and Asbjørg Stray-Pedersen. 2023. "Newborn Genetic Screening—Still a Role for Sanger Sequencing in the Era of NGS" International Journal of Neonatal Screening 9, no. 4: 67. https://doi.org/10.3390/ijns9040067
APA StyleHogner, S., Lundman, E., Strand, J., Ytre-Arne, M. E., Tangeraas, T., & Stray-Pedersen, A. (2023). Newborn Genetic Screening—Still a Role for Sanger Sequencing in the Era of NGS. International Journal of Neonatal Screening, 9(4), 67. https://doi.org/10.3390/ijns9040067