Liquid Chromatography–Tandem Mass Spectrometry in Newborn Screening Laboratories
Abstract
:1. Introduction
2. Comparison of FIA-MS/MS and LC-MS/MS
3. LC-MS/MS Assays Currently in Use for Routine NBS
4. Conditions Particularly Amenable to LC-MS/MS Analysis for NBS
5. Pilot Studies of LC-MS/MS-Based Assays for NBS
6. LC-MS/MS Equipment Maintenance
7. Multiplex LC-MS/MS Assays and/or Genomic Analysis for NBS
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chace, D.H. Mass spectrometry in newborn and metabolic screening: Historical perspective and future directions. J. Mass Spectrom. 2009, 44, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Gelb, M.H. Newborn Screening for Lysosomal Storage Diseases: Methodologies, Screen Positive Rates, Normalization of Datasets, Second-Tier Tests, and Post-Analysis Tools. Int. J. Neonatal Screen. 2018, 4, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Marca, G.; Casetta, B.; Malvagia, S.; Guerrini, R.; Zammarchi, E. New strategy for the screening of lysosomal storage disorders: The use of the online trapping-and-cleanup liquid chromatography/mass spectrometry. Anal. Chem. 2009, 81, 6113–6121. [Google Scholar] [CrossRef] [PubMed]
- Metz, T.F.; Mechtler, T.P.; Orsini, J.J.; Martin, M.; Shushan, B.; Herman, J.L.; Ratschmann, R.; Item, C.B.; Streubel, B.; Herkner, K.R.; et al. Simplified newborn screening protocol for lysosomal storage disorders. Clin. Chem. 2011, 57, 1286–1294. [Google Scholar] [CrossRef] [Green Version]
- Scott, C.R.; Elliott, S.; Hong, X.; Huang, J.Y.; Kumar, A.B.; Yi, F.; Pendem, N.; Chennamaneni, N.K.; Gelb, M.H. Newborn Screening for Mucopolysaccharidoses: Results of a Pilot Study with 100,000 Dried Blood Spots. J. Pediatr. 2020, 216, 204–207. [Google Scholar] [CrossRef]
- Hong, X.; Daiker, J.; Sadilek, M.; Ruiz-Schultz, N.; Kumar, A.B.; Norcross, S.; Dansithong, W.; Suhr, T.; Escolar, M.L.; Ronald Scott, C.; et al. Toward newborn screening of metachromatic leukodystrophy: Results from analysis of over 27,000 newborn dried blood spots. Genet. Med. 2021, 23, 555–561. [Google Scholar] [CrossRef]
- Jiang, X.; Sidhu, R.; Orsini, J.J.; Farhat, N.Y.; Porter, F.D.; Berry-Kravis, E.; Schaffer, J.E.; Ory, D.S. Diagnosis of niemann-pick C1 by measurement of bile acid biomarkers in archived newborn dried blood spots. Mol. Genet. Metab. 2019, 126, 183–187. [Google Scholar] [CrossRef]
- Matern, D.; Tortorelli, S.; Oglesbee, D.; Gavrilov, D.; Rinaldo, P. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: The Mayo Clinic experience (2004–2007). J. Inherit. Metab. Dis. 2007, 30, 585–592. [Google Scholar] [CrossRef]
- Lacey, J.M.; Minutti, C.Z.; Magera, M.J.; Tauscher, A.L.; Casetta, B.; McCann, M.; Lymp, J.; Hahn, S.H.; Rinaldo, P.; Matern, D. Improved specificity of newborn screening for congenital adrenal hyperplasia by second-tier steroid profiling using tandem mass spectrometry. Clin. Chem. 2004, 50, 621–625. [Google Scholar] [CrossRef]
- Minutti, C.Z.; Lacey, J.M.; Magera, M.J.; Hahn, S.H.; McCann, M.; Schulze, A.; Cheillan, D.; Dorche, C.; Chace, D.H.; Lymp, J.F.; et al. Steroid profiling by tandem mass spectrometry improves the positive predictive value of newborn screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 2004, 89, 3687–3693. [Google Scholar] [CrossRef]
- Herbst, Z.M.; Urdaneta, L.; Klein, T.; Fuller, M.; Gelb, M.H. Evaluation of Multiple Methods for Quantification of Glycosaminoglycan Biomarkers in Newborn Dried Blood Spots from Patients with Severe and Attenuated Mucopolysaccharidosis-I. Int. J. Neonatal Screen. 2020, 6, 69. [Google Scholar] [CrossRef] [PubMed]
- Peck, D.S.; Lacey, J.M.; White, A.L.; Pino, G.; Studinski, A.L.; Fisher, R.; Ahmad, A.; Spencer, L.; Viall, S.; Shallow, N.; et al. Incorporation of Second-Tier Biomarker Testing Improves the Specificity of Newborn Screening for Mucopolysaccharidosis Type I. Int. J. Neonatal Screen. 2020, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbst, Z.M.; Urdaneta, L.; Klein, T.; Burton, B.K.; Basheeruddin, K.; Liao, H.C.; Fuller, M.; Gelb, M.H. Evaluation of Two Methods for Quantification of Glycosaminoglycan Biomarkers in Newborn Dried Blood Spots from Patients with Severe and Attenuated Mucopolysaccharidosis Type II. Int. J. Neonatal Screen. 2022, 8, 9. [Google Scholar] [CrossRef]
- ACHDNC. 12–13 May 2022 Meeting. Available online: https://www.hrsa.gov/advisory-committees/heritable-disorders/meetings/may-12-2022 (accessed on 26 September 2022).
- Guenzel, A.J.; Turgeon, C.T.; Nickander, K.K.; White, A.L.; Peck, D.S.; Pino, G.B.; Studinski, A.L.; Prasad, V.K.; Kurtzberg, J.; Escolar, M.L.; et al. The critical role of psychosine in screening, diagnosis, and monitoring of Krabbe disease. Genet. Med. 2020, 22, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Gavrilov, D.K.; Piazza, A.L.; Pino, G.; Turgeon, C.; Matern, D.; Oglesbee, D.; Raymond, K.; Tortorelli, S.; Rinaldo, P. The Combined Impact of CLIR Post-Analytical Tools and Second Tier Testing on the Performance of Newborn Screening for Disorders of Propionate, Methionine, and Cobalamin Metabolism. Int. J. Neonatal Screen. 2020, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minter Baerg, M.M.; Stoway, S.D.; Hart, J.; Mott, L.; Peck, D.S.; Nett, S.L.; Eckerman, J.S.; Lacey, J.M.; Turgeon, C.T.; Gavrilov, D.; et al. Precision newborn screening for lysosomal disorders. Genet. Med. 2018, 20, 847–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burlina, A.B.; Polo, G.; Rubert, L.; Gueraldi, D.; Cazzorla, C.; Duro, G.; Salviati, L.; Burlina, A.P. Implementation of Second-Tier Tests in Newborn Screening for Lysosomal Disorders in North Eastern Italy. Int. J. Neonatal Screen. 2019, 5, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, B.K.; Charrow, J.; Hoganson, G.E.; Waggoner, D.; Tinkle, B.; Braddock, S.R.; Schneider, M.; Grange, D.K.; Nash, C.; Shryock, H.; et al. Newborn Screening for Lysosomal Storage Disorders in Illinois: The Initial 15-Month Experience. J. Pediatr. 2017, 190, 130–135. [Google Scholar] [CrossRef]
- Burton, B.K.; Hickey, R.; Hitchins, L. Newborn Screening for Mucopolysaccharidosis Type II in Illinois: An Update. Int. J. Neonatal Screen. 2020, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Moser, A.B.; Jones, R.O.; Hubbard, W.C.; Tortorelli, S.; Orsini, J.J.; Caggana, M.; Vogel, B.H.; Raymond, G.V. Newborn Screening for X-Linked Adrenoleukodystrophy. Int. J. Neonatal Screen. 2016, 2, 15. [Google Scholar] [CrossRef] [PubMed]
- Tortorelli, S.; Turgeon, C.T.; Gavrilov, D.K.; Oglesbee, D.; Raymond, K.M.; Rinaldo, P.; Matern, D. Simultaneous Testing for 6 Lysosomal Storage Disorders and X-Adrenoleukodystrophy in Dried Blood Spots by Tandem Mass Spectrometry. Clin. Chem. 2016, 62, 1248–1254. [Google Scholar] [CrossRef] [Green Version]
- Herbst, Z.; Turgeon, C.T.; Biski, C.; Khaledi, H.; Shoemaker, N.B.; DeArmond, P.D.; Smith, S.; Orsini, J.; Matern, D.; Gelb, M.H. Achieving Congruence among Reference Laboratories for Absolute Abundance Measurement of Analytes for Rare Diseases: Psychosine for Diagnosis and Prognosis of Krabbe Disease. Int. J. Neonatal Screen. 2020, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janzen, N.; Sander, S.; Terhardt, M.; Steuerwald, U.; Peter, M.; Das, A.M.; Sander, J. Rapid steroid hormone quantification for congenital adrenal hyperplasia (CAH) in dried blood spots using UPLC liquid chromatography-tandem mass spectrometry. Steroids 2011, 76, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
- Oglesbee, D.; Sanders, K.A.; Lacey, J.M.; Magera, M.J.; Casetta, B.; Strauss, K.A.; Tortorelli, S.; Rinaldo, P.; Matern, D. Second-tier test for quantification of alloisoleucine and branched-chain amino acids in dried blood spots to improve newborn screening for maple syrup urine disease (MSUD). Clin. Chem. 2008, 54, 542–549. [Google Scholar] [CrossRef] [PubMed]
- La Marca, G.; Malvagia, S.; Pasquini, E.; Innocenti, M.; Donati, M.A.; Zammarchi, E. Rapid 2nd-tier test for measurement of 3-OH-propionic and methylmalonic acids on dried blood spots: Reducing the false-positive rate for propionylcarnitine during expanded newborn screening by liquid chromatography-tandem mass spectrometry. Clin. Chem. 2007, 53, 1364–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turgeon, C.T.; Magera, M.J.; Cuthbert, C.D.; Loken, P.R.; Gavrilov, D.K.; Tortorelli, S.; Raymond, K.M.; Oglesbee, D.; Rinaldo, P.; Matern, D. Determination of total homocysteine, methylmalonic acid, and 2-methylcitric acid in dried blood spots by tandem mass spectrometry. Clin. Chem. 2010, 56, 1686–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, A.N.; Currier, R.J.; Tang, H.; Turgeon, C.T.; Nussbaum, R.L.; Srinivasan, R.; Sunderam, U.; Kwok, P.Y.; Brenner, S.E.; Gavrilov, D.; et al. Genomic Analysis of Historical Cases with Positive Newborn Screens for Short-Chain Acyl-CoA Dehydrogenase Deficiency Shows That a Validated Second-Tier Biochemical Test Can Replace Future Sequencing. Int. J. Neonatal Screen. 2020, 6, 41. [Google Scholar] [CrossRef]
- Magera, M.J.; Gunawardena, N.D.; Hahn, S.H.; Tortorelli, S.; Mitchell, G.A.; Goodman, S.I.; Rinaldo, P.; Matern, D. Quantitative determination of succinylacetone in dried blood spots for newborn screening of tyrosinemia type I. Mol. Genet. Metab. 2006, 88, 16–21. [Google Scholar] [CrossRef]
- Khaledi, H.; Liu, Y.; Masi, S.; Gelb, M.H. Detection of Infantile Batten Disease by Tandem Mass Spectrometry Assay of PPT1 Enzyme Activity in Dried Blood Spots. Anal. Chem. 2018, 90, 12168–12171. [Google Scholar] [CrossRef]
- Hong, X.; Kumar, A.B.; Daiker, J.; Yi, F.; Sadilek, M.; De Mattia, F.; Fumagalli, F.; Calbi, V.; Damiano, R.; Della Bona, M.; et al. Leukocyte and Dried Blood Spot Arylsulfatase A Assay by Tandem Mass Spectrometry. Anal. Chem. 2020, 92, 6341–6348. [Google Scholar] [CrossRef]
- Burton, B.K.; Charrow, J.; Hoganson, G.E.; Fleischer, J.; Grange, D.K.; Braddock, S.R.; Hitchins, L.; Hickey, R.; Christensen, K.M.; Groepper, D.; et al. Newborn Screening for Pompe Disease in Illinois: Experience with 684,290 Infants. Int. J. Neonatal Screen. 2020, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chien, Y.H.; Lee, N.C.; Chen, P.W.; Yeh, H.Y.; Gelb, M.H.; Chiu, P.C.; Chu, S.Y.; Lee, C.H.; Lee, A.R.; Hwu, W.L. Newborn screening for Morquio disease and other lysosomal storage diseases: Results from the 8-plex assay for 70,000 newborns. Orphanet Rare Dis. 2020, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Bilyeu, H.; Washburn, J.; Vermette, L.; Klug, T. Validation and Implementation of a Highly Sensitive and Efficient Newborn Screening Assay for Mucopolysaccharidosis Type II. Int. J. Neonatal Screen. 2020, 6, 79. [Google Scholar] [CrossRef]
- Haynes, C.A.; De Jesus, V.R. Simultaneous quantitation of hexacosanoyl lysophosphatidylcholine, amino acids, acylcarnitines, and succinylacetone during FIA-ESI-MS/MS analysis of dried blood spot extracts for newborn screening. Clin. Biochem. 2016, 49, 161–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, X.; Sadilek, M.; Gelb, M.H. A highly multiplexed biochemical assay for analytes in dried blood spots: Application to newborn screening and diagnosis of lysosomal storage disorders and other inborn errors of metabolism. Genet. Med. 2020, 22, 1262–1268. [Google Scholar] [CrossRef]
- Tan, M.A.; Dean, C.J.; Hopwood, J.J.; Meikle, P.J. Diagnosis of metachromatic leukodystrophy by immune quantification of arylsulphatase A protein and activity in dried blood spots. Clin. Chem. 2008, 54, 1925–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biffi, A.; Montini, E.; Lorioli, L.; Cesani, M.; Fumagalli, F.; Plati, T.; Baldoli, C.; Martino, S.; Calabria, A.; Canale, S.; et al. Lentiviral Hematopoietic Stem Cell Gene Therapy Benefits Metachromatic Leukodystrophy. Science 2013, 341, 1233158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaz, F.M.; Bootsma, A.H.; Kulik, W.; Verrips, A.; Wevers, R.A.; Schielen, P.C.; DeBarber, A.E.; Huidekoper, H.H. A newborn screening method for cerebrotendinous xanthomatosis using bile alcohol glucuronides and metabolite ratios. J. Lipid Res. 2017, 58, 1002–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, X.; Daiker, J.; Sadilek, M.; DeBarber, A.E.; Chiang, J.; Duan, J.; Bootsma, A.H.; Huidekoper, H.H.; Vaz, F.M.; Gelb, M.H. Toward Newborn Screening of Cerebrotendinous Xanthomatosis: Results of a Biomarker Research Study Using 32,000 Newborn Dried Blood Spots. Genet. Med. Off. J. Am. Coll. Med. Genet. 2020, 22, 1606–1612. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Hong, X.; Kumar, A.B.; Zong, C.; Boons, G.J.; Scott, C.R.; Turecek, F.; Robinson, B.H.; Gelb, M.H. Detection of mucopolysaccharidosis III-A (Sanfilippo Syndrome-A) in dried blood spots (DBS) by tandem mass spectrometry. Mol. Genet. Metab. 2018, 125, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Grasby, D.J.; Dean, C.J.; Lang, D.L.; Bockmann, M.; Whittle, A.M.; Fietz, M.J.; Simonsen, H.; Fuller, M.; Brooks, D.A.; et al. Newborn screening for lysosomal storage disorders. Mol. Genet. Metab. 2006, 88, 307–314. [Google Scholar] [CrossRef]
- Singh, R.; Chopra, S.; Graham, C.; Langer, M.; Ng, R.; Ullal, A.J.; Pamula, V.K. Emerging Approaches for Fluorescence-Based Newborn Screening of Mucopolysaccharidoses. Diagnostics 2020, 10, 294. [Google Scholar] [CrossRef]
- Collins, C.J.; Chang, I.J.; Jung, S.; Dayuha, R.; Whiteaker, J.R.; Segundo, G.R.S.; Torgerson, T.R.; Ochs, H.D.; Paulovich, A.G.; Hahn, S.H. Rapid Multiplexed Proteomic Screening for Primary Immunodeficiency Disorders from Dried Blood Spots. Front. Immunol. 2018, 9, 2756. [Google Scholar] [CrossRef]
- Collins, C.J.; Yi, F.; Dayuha, R.; Duong, P.; Horslen, S.; Camarata, M.; Coskun, A.K.; Houwen, R.H.J.; Pop, T.L.; Zoller, H.; et al. Direct Measurement of ATP7B Peptides Is Highly Effective in the Diagnosis of Wilson Disease. Gastroenterology 2021, 160, 2367–2382.e2361. [Google Scholar] [CrossRef] [PubMed]
- Kroll, C.A.; Ferber, M.J.; Dawson, B.D.; Jacobson, R.M.; Mensink, K.A.; Lorey, F.; Sherwin, J.; Cunningham, G.; Rinaldo, P.; Matern, D.; et al. Retrospective determination of ceruloplasmin in newborn screening blood spots of patients with Wilson disease. Mol. Genet. Metab. 2006, 89, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Wasserstein, M.P. ScreenPlus: A Comprehensive, Flexible, Multi-Disorder Newborn Screening Program. Available online: https://einsteinmed.edu/research/screenplus (accessed on 26 September 2022).
- Sanders, K.A.; Gavrilov, D.K.; Oglesbee, D.; Raymond, K.M.; Tortorelli, S.; Hopwood, J.J.; Lorey, F.; Majumdar, R.; Kroll, C.A.; McDonald, A.M.; et al. A Comparative Effectiveness Study of Newborn Screening Methods for Four Lysosomal Storage Disorders. Int. J. Neonatal Screen. 2020, 6, 44. [Google Scholar] [CrossRef]
- Bailey, D.B., Jr.; Porter, K.A.; Andrews, S.M.; Raspa, M.; Gwaltney, A.Y.; Peay, H.L. Expert Evaluation of Strategies to Modernize Newborn Screening in the United States. JAMA Netw. Open 2021, 4, e2140998. [Google Scholar] [CrossRef] [PubMed]
- Orsini, J.J.; Kay, D.M.; Saavedra-Matiz, C.A.; Wenger, D.A.; Duffner, P.K.; Erbe, R.W.; Biski, C.; Martin, M.; Krein, L.M.; Nichols, M.; et al. Newborn screening for Krabbe disease in New York State: The first eight years’ experience. Genet. Med. 2016, 18, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ClinVar. GALC [Gene]. Available online: https://www.ncbi.nlm.nih.gov/clinvar/?gr=0&term=GALC%5Bgene%5D&redir=gene (accessed on 25 September 2022).
- Muriello, M.; Basel, D. Rapid Exome and Genome Sequencing in the Intensive Care Unit. Crit. Care Clin. 2022, 38, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Kingsmore, S.F.; Smith, L.D.; Kunard, C.M.; Bainbridge, M.; Batalov, S.; Benson, W.; Blincow, E.; Caylor, S.; Chambers, C.; Del Angel, G.; et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 2022, 109, 1605–1619. [Google Scholar] [CrossRef] [PubMed]
- Seger, C.; Salzmann, L. After another decade: LC-MS/MS became routine in clinical diagnostics. Clin. Biochem. 2020, 82, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Graden, K.C.; Bennett, S.A.; Delaney, S.R.; Gill, H.E.; Willrich, M.A.V. A High-Level Overview of the Regulations Surrounding a Clinical Laboratory and Upcoming Regulatory Challenges for Laboratory Developed Tests. Lab. Med. 2021, 52, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.S.; Bartley, A.N.; Bridge, J.A.; Kamel-Reid, S.; Lazar, A.J.; Lindeman, N.I.; Long, T.A.; Merker, J.D.; Rai, A.J.; Rimm, D.L.; et al. Comparison of Laboratory-Developed Tests and FDA-Approved Assays for BRAF, EGFR, and KRAS Testing. JAMA Oncol. 2018, 4, 838–841. [Google Scholar] [CrossRef] [PubMed]
Feature | FIA-MS/MS | LC-MS/MS |
---|---|---|
Equipment | Nitrogen source, Autosampler, one pump with controller, MS/MS, Computer | Nitrogen source, Autosampler, two pumps with binary solvent controller, MS/MS, Computer |
Principle | Sample is pumped through tubing from an autosampler to MS/MS via a single pump | Same as that of FIA-MS/MS, except two pumps are used, and an LC column is spliced into the tubing between the autosampler and MS/MS |
Cost | Addition of LC to an MS/MS system increases the price of the equipment by ~25% | |
Chromatography Column | Not required | Required; increases the cost of an MS/MS assay by <1% |
Non-maintenance additional hands-on labor | Software-based, automated integration of analyte peaks needs to be double-checked; requires ~10 min per 96–well plate. Replace LC column every 10,000–20,000 samples; requires ~1 h of labor. | |
Time per DBS analysis | ~1.5 min | ~2.1 min |
Reagents and infrastructure | Solvent use, waste disposal and heat dissipation are similar; space needs may be higher by up to 20% |
Disorder(s) | Marker(s) | Method | First or Second- Tier Test | Comments |
---|---|---|---|---|
MPS, all types [11,12,13] | glycosaminoglycans | LC-MS/MS | second | All NBS labs contract with another lab, except in Italy [18] |
MPS-I | α-iduronidase activity | FIA-MS/MS or LC-MS/MS | first | NBS labs in the USA, Taiwan, the Netherlands and regions of Italy use FIA-MS/MS, except Illinois [19] and Utah, which use LC-MS/MS |
MPS-II | iduronate-2-sulfatase activity | LC-MS/MS | first | Illinois [20], Taiwan, ScreenPlus (pilot) |
MPS-IIIA | heparan N-sulfatase activity | LC-MS/MS | first | ScreenPlus (pilot) |
MPS-IIIB | α-N-acetyl- glucosaminidase activity | LC-MS/MS | first | 2/3 of Taiwan, ScreenPlus (pilot) |
MPS-IVA | galactosamine-6-sulfatase activity | LC-MS/MS | first | Taiwan, ScreenPlus (pilot) |
MPS-IVB/ GM1-gangliosidosis | β-galactosidase activity | LC-MS/MS | first | ScreenPlus (pilot) |
MPS-VI | arylsulfatase B activity | LC-MS/MS | first | Taiwan, ScreenPlus (pilot) |
MPS-VII | β-glucuronidase activity | LC-MS/MS | first | ScreenPlus (pilot) |
X-ALD [21,22] | C26-lysophosphatidylcholine | LC-MS/MS or FIA-MS/MS | first- and second-tier | The Netherlands, Taiwan. Connecticut, Illinois, Minnesota, Missouri, North Carolina (pilot), Utah, Washington and 2/3 of Taiwan use first-tier LC-MS/MS; all other US labs use second-tier LC-MS/MS |
Krabbe disease | galactosylcerebrosidase activity | FIA-MS/MS or LC-MS/MS | first | Georgia (Pilot), Illinois, Indiana, Kentucky, New York, Ohio, Pennsylvania and Tennessee all use FIA-MS/MS, except Illinois uses LC-MS/MS |
Krabbe disease [15,23] | Psychosine | LC-MS/MS | second | Most but not all NBS labs obtain second-tier tests through a contract with another laboratory |
Pompe disease | acid α-glucosidase activity | FIA-MS/MS or LC-MS/MS | first | ~50% of NBS labs in the USA, 2/3 of Taiwan and regions of Italy all use FIA-MS/MS, except Illinois and 1/3 of Taiwan use LC-MS/MS |
Fabry disease | α-galactosidase A activity | FIA-MS/MS or LC-MS/MS | first | Tennessee, New Jersey, Pennsylvania, regions of Italy and 2/3 of Taiwan use FIA-MS/MS; Illinois and 1/3 of Taiwan use LC-MS/MS |
Fabry disease | globotriaosyl- sphingosine | LC-MS/MS | second | Used but not relied upon in Italy because it is only abnormal in classic Fabry disease [18]; ScreenPlus (pilot) |
Niemann-Pick A/B | acid sphingomyelinase activity | LC-MS/MS | first | Illinois, regions of Italy [18], ScreenPlus (pilot) |
Niemann-Pick A/B | lysosphingomyelin, N-palmitoyl-O-phosphocholine-serine (lyso-SM-509) | LC-MS/MS | second | ScreenPlus (pilot); primarily available through a contract with another laboratory |
Gaucher | β-Glucocerebrosidase activity | FIA-MS/MS or LC-MS/MS | first | Illinois, ScreenPlus (pilot) and 1/3 of Taiwan use LC-MS/MS; New Jersey, Pennsylvania, Tennessee, regions of Italy and 2/3 of Taiwan use FIA-MS/MS |
Gaucher | glucosylsphingosine | LC-MS/MS | second | Italy [18], ScreenPlus (pilot); primarily available through a contract with another laboratory |
Congenital adrenal hyperplasia [9,10,24] | 17-hydroxy- progesterone, androstenedione, 11-deoxycortisol, 21-deoxycortisol, cortisol | LC-MS/MS | second | Primarily available through a contract with another laboratory |
Maple syrup urine disease [25] | allo-isoleucine, isoleucine, leucine, valine, hydroxyproline | LC-MS/MS | second | Primarily available through a contract with another laboratory |
Propionic acidemia/methylmalonic acidemias/homocystinuria/ remethylation disorders [16,26,27] | methylmalonic acid, methylcitric acid, total homocysteine, 3-hydroxypropionic acid | LC-MS/MS | second | Primarily available through a contract with another laboratory |
SCAD/GA I/GA II/EE [28] | ethylmalonic acid, glutaric acid, 3-hydroxy glutaric acid, 2-hydroxyglutaric acid | LC-MS/MS | second | Primarily available through a contract with another laboratory |
Tyrosinemia type I [29] | Succinylacetone | LC-MS/MS | second | Now included in the primary screening test of amino acids and acylcarnitines by FIA-MS/MS |
Neuronal ceroid lipofuscinosis 2 [30] | tripeptidyl protease 1 activity | LC-MS/MS | first | 2/3 of Taiwan, ScreenPlus (pilot) |
Wolman disease, cholesterol ester storage disease | lysosomal acid lipase activity | LC-MS/MS | first | ScreenPlus (pilot) |
Niemann-Pick C | bile acid B | LC-MS/MS | first | ScreenPlus (pilot) |
α-Mannosidosis | α-mannosidosis activity | LC-MS/MS | first | ScreenPlus (pilot) |
MLD | C16:0-sulfatide | LC-MS/MS | first | ArchimedLife, ScreenPlus (pilot) |
MLD [31] | arylsulfatase A activity | LC-MS/MS | second | ScreenPlus (pilot) |
CTX | cholestanetetrol glucuronide | LC-MS/MS or FIA-MS/MS | first | ScreenPlus (pilot) uses LC-MS/MS; Amsterdam UMC (pilot) compares LC-MS/MS vs. FIA-MS/MS |
CTX | 7-α-hydroxy-4-cholesten-3-one; 7-α,12 α-dihydroxycholest-4-en-3-one | LC-MS/MS | second | Primarily available through a contract with another laboratory |
NBS Laboratory | LC-MS/MS Assay | Years in Use | Sample Injections before Column Replacement | Preventive Maintenance per Year | Additional Servicing per Year |
---|---|---|---|---|---|
Amsterdam UMC, The Netherlands | CTX | 1.5 | 10 k (guard); 10–20 k (main) | 2 (MS/MS); 1 (LC) | none |
Connecticut DPH | X-ALD | 7 | 11 k (guard); 22 k (main) | 2 (MS/MS); 1 (LC) | none |
Illinois DPH | MPS-I, MPS-II, Gaucher, Fabry, Krabbe, NP-A/B, Pompe | 9 (5 for MPS-II, Krabbe) | 3–5.5 k (guard); 11–13 k (main) | 2 (MS/MS); 1 (LC) | UPLC pump seal replaced once (3–4 hr down time) |
Illinois DPH | X-ALD | 3 | 2–3 k (guard); 20–22 k (main) | 2 (MS/MS); 1 (LC) | none |
Minnesota DPH | X-ALD | 5 | 7 k (guard); 13 k (main) | 2–3 (MS/MS); 1 (LC) | parts replacement similar to FIA-MS/MS |
Missouri DPH | X-ALD | 0.5 | 8 k (guard); 20 k (main) | 2 (MS/MS); 1 (LC) | none |
National Taiwan University Hospital | MPS-II, MPS-IIIB, MPS-IVA, MPS-VI, X-ALD, CLN2 | 4 (MPS II, IIIB, IVA, VI, CLN2) and 6 yr (ALD) | 5 k (guard); 10–20 k (main) | 2 | none |
Chinese Foundation of Health, Taiwan | MPS-II, MPS-IVA, MPS-VI, X-ALD | 4 (ALD) and 6 yr (MPS II, IVA, VI) | 10 k (guard); 10–20 k (main) | 2–4 | only for autosampler |
Taipei Institute of Health, Taiwan | MPS-II, MPS-IIIB, MPS-IVA, MPS-VI, X-ALD, CLN2, | 4 (MPS-II, X-ALD) 2 (MPS-IVA, MPS-VI, CLN2) | 8 k (guard); 40–50 k (main) | 2 | only for autosampler |
University of Washington | MPS-II MPS-IIIB, MPS-IVA, MPS-VI, MPS-VII | 2.5 | 3.3 k (guard); 10 k (main) | 2 | none |
University of Washington | MLD, CTX | 1.5 | 3.3 k (guard); 10 k (main) | 1 | none |
University Hospital of Padova, Italy | Fabry, Gaucher, Pompe, MPS-I, NP-A/B, Krabbe | 1 | 3–5 k (guard); 13 k (main) | 2 | UPLC and autosampler repaired once (1–2 days downtime) |
Utah DOH | X-ALD | 1.5 | 14 k (main) | 2 (MS/MS); 1 (LC) | none |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gelb, M.H.; Basheeruddin, K.; Burlina, A.; Chen, H.-J.; Chien, Y.-H.; Dizikes, G.; Dorley, C.; Giugliani, R.; Hietala, A.; Hong, X.; et al. Liquid Chromatography–Tandem Mass Spectrometry in Newborn Screening Laboratories. Int. J. Neonatal Screen. 2022, 8, 62. https://doi.org/10.3390/ijns8040062
Gelb MH, Basheeruddin K, Burlina A, Chen H-J, Chien Y-H, Dizikes G, Dorley C, Giugliani R, Hietala A, Hong X, et al. Liquid Chromatography–Tandem Mass Spectrometry in Newborn Screening Laboratories. International Journal of Neonatal Screening. 2022; 8(4):62. https://doi.org/10.3390/ijns8040062
Chicago/Turabian StyleGelb, Michael H., Khaja Basheeruddin, Alberto Burlina, Hsiao-Jan Chen, Yin-Hsiu Chien, George Dizikes, Christine Dorley, Roberto Giugliani, Amy Hietala, Xinying Hong, and et al. 2022. "Liquid Chromatography–Tandem Mass Spectrometry in Newborn Screening Laboratories" International Journal of Neonatal Screening 8, no. 4: 62. https://doi.org/10.3390/ijns8040062