Evaluation of the GSP Creatine Kinase-MM Assay and Assessment of CK-MM Stability in Newborn, Patient, and Contrived Dried Blood Spots for Newborn Screening for Duchenne Muscular Dystrophy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Instrument and Assay Kit
2.2. Specimens
2.3. Sample Storage Conditions
2.4. Assay Performance Verification
2.5. CK-MM Stability in DBS Samples
2.6. Statistical Analysis
3. Results
3.1. Assay Verification and Performance
3.2. 50-Day CK-MM Stability Comparison in Ambient and Low Humidity
3.3. 8-Day CK-MM Stability in High Humidity and High Temperature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Florczyk-Soluch, U.; Polak, K.; Dulak, J. The multifaceted view of heart problem in Duchenne Muscular Dystrophy. Cell. Mol. Life Sci. 2021, 78, 5447–5468. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, E.P.; Brown, R.H., Jr.; Kunkel, L.M. Dystrophin: The protein product of the Duchenne Muscular Dystrophy locus. Cell 1987, 51, 919–928. [Google Scholar] [CrossRef]
- Hoffman, E.P. The discovery of dystrophin, the protein product of the Duchenne Muscular Dystrophy gene. FEBS J. 2020, 287, 3879–3887. [Google Scholar] [CrossRef]
- Crisafulli, S.; Sultana, J.; Fontana, A.; Salvo, F.; Messina, S.; Trifiro, G. Global epidemiology of Duchenne Muscular Dystrophy: An updated systematic review and meta-analysis. Orphanet J. Rare Dis. 2020, 15, 141. [Google Scholar] [CrossRef]
- Lloyd-Puryear, M.A.; Crawford, T.O.; Brower, A.; Stephenson, K.; Trotter, T.; Goldman, E.; Goldenberg, A.; Howell, R.R.; Kennedy, A.; Watson, M. Duchenne Muscular Dystrophy newborn screening, a case study for examining ethical and legal issues for pilots for emerging disorders: Considerations and recommendations. Int. J. Neonatal Screen. 2018, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Giliberto, F.; Radic, C.P.; Luce, L.; Ferreiro, V.; de Brasi, C.; Szijan, I. Symptomatic female carriers of Duchenne Muscular Dystrophy (DMD): Genetic and clinical characterization. J. Neurol. Sci. 2014, 336, 36–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nozoe, K.T.; Akamine, R.T.; Mazzotti, D.R.; Polesel, D.N.; Grossklauss, L.F.; Tufik, S.; Andersen, M.L.; Moreira, G.A. Phenotypic contrasts of Duchenne Muscular Dystrophy in women: Two case reports. Sleep Sci. 2016, 9, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Ciafaloni, E.; Fox, D.J.; Pandya, S.; Westfield, C.P.; Puzhankara, S.; Romitti, P.A.; Mathews, K.D.; Miller, T.M.; Matthews, D.J.; Miller, L.A.; et al. Delayed diagnosis in Duchenne Muscular Dystrophy: Data from the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet). J. Pediatr. 2009, 155, 380–385. [Google Scholar] [CrossRef] [Green Version]
- Szabo, S.M.; Salhany, R.M.; Deighton, A.; Harwood, M.; Mah, J.; Gooch, K.L. The clinical course of Duchenne Muscular Dystrophy in the corticosteroid treatment era: A systematic literature review. Orphanet J. Rare Dis. 2021, 16, 237. [Google Scholar] [CrossRef]
- Yao, S.; Chen, Z.; Yu, Y.; Zhang, N.; Jiang, H.; Zhang, G.; Zhang, Z.; Zhang, B. Current pharmacological strategies for Duchenne Muscular Dystrophy. Front. Cell Dev. Biol. 2021, 9, 689533. [Google Scholar] [CrossRef]
- Gatheridge, M.A.; Kwon, J.M.; Mendell, J.M.; Scheuerbrandt, G.; Moat, S.J.; Eyskens, F.; Rockman-Greenberg, C.; Drousiotou, A.; Griggs, R.C. Identifying non-Duchenne Muscular Dystrophy-positive and false negative results in prior Duchenne Muscular Dystrophy newborn screening programs: A review. JAMA Neurol. 2016, 73, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Mokuno, K.; Riku, S.; Sugimura, K.; Takahashi, A.; Kato, K.; Osugi, S. Serum creatine kinase isoenzymes in Duchenne Muscular Dystrophy determined by sensitive enzyme immunoassay methods. Muscle Nerve 1987, 10, 459–463. [Google Scholar] [CrossRef]
- Ozawa, E.; Hagiwara, Y.; Yoshida, M. Creatine kinase, cell membrane and Duchenne Muscular Dystrophy. Mol. Cell. Biochem. 1999, 190, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Hathout, Y.; Brody, E.; Clemens, P.R.; Cripe, L.; DeLisle, R.K.; Furlong, P.; Gordish-Dressman, H.; Hache, L.; Henricson, E.; Hoffman, E.P.; et al. Large-scale serum protein biomarker discovery in Duchenne Muscular Dystrophy. Proc. Natl. Acad. Sci. USA 2015, 112, 7153–7158. [Google Scholar] [CrossRef] [Green Version]
- Hathout, Y.; Seol, H.; Han, M.H.; Zhang, A.; Brown, K.J.; Hoffman, E.P. Clinical utility of serum biomarkers in Duchenne Muscular Dystrophy. Clin. Proteom. 2016, 13, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, Q.; Zhao, Z.Y.; Griggs, R.; Wiley, V.; Connolly, A.; Kwon, J.; Qi, M.; Sheehan, D.; Ciafaloni, E.; Howell, R.R.; et al. Newborn screening for Duchenne Muscular Dystrophy in China: Follow-up diagnosis and subsequent treatment. World J. Pediatr. 2017, 13, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Adam, B.W.; Hall, E.M.; Sternberg, M.; Lim, T.H.; Flores, S.R.; O’Brien, S.; Simms, D.; Li, L.X.; De Jesus, V.R.; Hannon, W.H. The stability of markers in dried-blood spots for recommended newborn screening disorders in the United States. Clin. Biochem. 2011, 44, 1445–1450. [Google Scholar] [CrossRef] [Green Version]
- Therrell, B.L.; Hannon, W.H.; Pass, K.A.; Lorey, F.; Brokopp, C.; Eckman, J.; Glass, M.; Heidenreich, R.; Kinney, S.; Kling, S.; et al. Guidelines for the retention, storage, and use of residual dried blood spot samples after newborn screening analysis: Statement of the Council of Regional Networks for Genetic Services. Biochem. Mol. Med. 1996, 57, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Moat, S.J.; Korpimäki, T.; Furu, P.; Hakala, H.; Polari, H.; Meriö, L.; Mäkinen, P.; Weeks, I. Characterization of a blood spot creatine kinase skeletal muscle isoform immunoassay for high-throughput newborn screening of Duchenne Muscular Dystrophy. Clin. Chem. 2017, 63, 908–914. [Google Scholar] [CrossRef]
- Timonen, A.; Lloyd-Puryear, M.; Hougaard, D.M.; Meriö, L.; Mäkinen, P.; Laitala, V.; Pölönen, T.; Skogstrand, K.; Kennedy, A.; Airenne, S.; et al. Duchenne Muscular Dystrophy newborn screening: Evaluation of a new GSP(®) neonatal Creatine Kinase-MM Kit in a US and Danish population. Int. J. Neonatal Screen. 2019, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Taylor, J.L.; Redmond, C.; Hadd, A.G.; Kemppainen, J.A.; Haynes, B.C.; Shone, S.; Bailey, D.B., Jr.; Latham, G.J. Validation of fragile X screening in the newborn population using a fit-for-purpose FMR1 PCR assay system. J. Mol. Diagn. 2020, 22, 346–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucera, K. Early check implementation of newborn screening for Duchenne and related muscular dystrophies in North Carolina. In Proceedings of the 2021 APHL Newborn Screening Symposium, Silver Spring, MD, USA, 5–14 October 2021. in press. [Google Scholar]
- Bailey, D.B., Jr.; Gehtland, L.M.; Lewis, M.A.; Peay, H.; Raspa, M.; Shone, S.M.; Taylor, J.L.; Wheeler, A.C.; Cotten, M.; King, N.M.P.; et al. Early Check: Translational science at the intersection of public health and newborn screening. BMC Pediatr. 2019, 19, 238. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, N. Consented pilot study in NYS to screen newborns for Duchenne Muscular Dystrophy. In Proceedings of the 2021 APHL Newborn Screening Symposium, Silver Spring, MD, USA, 5–14 October 2021. in press. [Google Scholar]
- Fingerhut, R.; Torresani, T. Evaluation of the genetic screening processor (GSP™) for newborn screening. Anal. Methods 2013, 5, 4769–4776. [Google Scholar] [CrossRef] [Green Version]
Sample | Within-Run (n = 55) | Inter-Operator (n = 4) | Plate-to-Plate (n = 23) | 6-Months Evaluation * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV (%) | Mean | SD | CV (%) | Mean | SD | CV (%) | Mean | SD | CV (%) | |
QC1 | 111.3 | 11.1 | 10.0 | 107.5 | 8.7 | 8.1 | 113.1 | 9.3 | 8.2 | 116.0 | 9.7 | 8.4 |
QC2 | 385.1 | 39.5 | 10.3 | 374.8 | 32.7 | 8.7 | 389.6 | 31.1 | 8.0 | 387.0 | 24.0 | 6.2 |
QC3 | 1641.2 | 156.0 | 9.5 | 1549.5 | 39.2 | 2.5 | 1661.0 | 128.2 | 7.7 | 1625.0 | 123.5 | 7.6 |
QC4 | 83.1 | 11.7 | 14.0 | 83.0 | 4.6 | 5.5 | 83.8 | 8.8 | 10.5 | 84.0 | 9.7 | 11.5 |
QC5 | - | - | - | - | - | - | - | - | - | 3606.0 | 383.0 | 10.6 |
Sample Type | n | Mean Conc. (ng/mL) | SD Conc. (ng/mL) | Min. Conc. (ng/mL) | Max. Conc. (ng/mL) | Median Conc. (ng/mL) | IQR Conc. (ng/mL) |
---|---|---|---|---|---|---|---|
LC Samples | |||||||
50-Day Study | 16 | 2927.84 | 3163.32 | 66 | 12,697 | 1827.50 | 3004.50 |
8-Day Study | 15 | 3365.20 | 4622.14 | 78 | 19,069 | 1975.00 | 3360.50 |
MD Samples | |||||||
50-Day Study | 15 | 2465.03 | 1963.84 | 300 | 8368 | 1931.50 | 1538.00 |
8-Day Study | 15 | 2743.33 | 2200.62 | 371 | 9372 | 2500.00 | 2362.25 |
NB Samples | |||||||
50-Day Study | 500 | 379.54 | 283.91 | 10 | 2820 | 315.00 | 293.25 |
8-Day Study | 30 | 256.93 | 180.41 | 70 | 846 | 188.50 | 164.50 |
Sample Tpe | Day 10 | Day 20 | Day 30 | Day 40 | Day 50 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Count | Prop. | Count | Prop. | Count | Prop. | Count | Prop. | Count | Prop. | |
LC Samples | ||||||||||
Low Humidity | 2 | 0.125 | 6 | 0.375 | 4 | 0.250 | 2 | 0.133 | 6 | 0.375 |
Ambient Humidity | 2 | 0.125 | 7 | 0.438 | 7 | 0.438 | 10 | 0.625 | 14 | 0.875 |
MD Samples | ||||||||||
Low Humidity | 1 | 0.067 | 1 | 0.067 | 2 | 0.133 | 0 | 0.000 | 3 | 0.200 |
Ambient Humidity | 1 | 0.067 | 4 | 0.267 | 7 | 0.467 | 3 | 0.200 | 8 | 0.533 |
NB Samples | ||||||||||
Low Humidity | 22 | 0.110 | 29 | 0.145 | 37 | 0.185 | 52 | 0.260 | 84 | 0.420 |
Interaction Type | Estimate | Robust SE | Robust Z | p-Value | 95% Confidence Interval |
---|---|---|---|---|---|
GEE1 | |||||
Ambient Humidity × Time | −2.466 × 10−3 | 8.997 × 10−4 | −2.740 | 6.14 × 10−3 | [−4.23 × 10−3, −7.02 × 10−4] |
GEE2 | |||||
Initial Concentration × Time | 4.034 × 10−7 | 1.648 × 10−7 | 2.448 | 0.014 | [8.05 × 10−8, 7.26 × 10−7] |
GEE3 | |||||
MD Sample Status × Time | 1.829 × 10−3 | 5.728 × 10−4 | 3.193 | 1.41 × 10−3 | [7.06 × 10−4, 2.95 × 10−3] |
LC Sample Status × Time | −1.165 × 10−4 | 7.722 × 10−4 | −0.151 | 0.880 | [−1.63 × 10−3, 1.40 × 10−3] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliore, B.A.; Zhou, L.; Duparc, M.; Robles, V.R.; Rehder, C.W.; Peay, H.L.; Kucera, K.S. Evaluation of the GSP Creatine Kinase-MM Assay and Assessment of CK-MM Stability in Newborn, Patient, and Contrived Dried Blood Spots for Newborn Screening for Duchenne Muscular Dystrophy. Int. J. Neonatal Screen. 2022, 8, 12. https://doi.org/10.3390/ijns8010012
Migliore BA, Zhou L, Duparc M, Robles VR, Rehder CW, Peay HL, Kucera KS. Evaluation of the GSP Creatine Kinase-MM Assay and Assessment of CK-MM Stability in Newborn, Patient, and Contrived Dried Blood Spots for Newborn Screening for Duchenne Muscular Dystrophy. International Journal of Neonatal Screening. 2022; 8(1):12. https://doi.org/10.3390/ijns8010012
Chicago/Turabian StyleMigliore, Brooke A., Linran Zhou, Martin Duparc, Veronica R. Robles, Catherine W. Rehder, Holly L. Peay, and Katerina S. Kucera. 2022. "Evaluation of the GSP Creatine Kinase-MM Assay and Assessment of CK-MM Stability in Newborn, Patient, and Contrived Dried Blood Spots for Newborn Screening for Duchenne Muscular Dystrophy" International Journal of Neonatal Screening 8, no. 1: 12. https://doi.org/10.3390/ijns8010012
APA StyleMigliore, B. A., Zhou, L., Duparc, M., Robles, V. R., Rehder, C. W., Peay, H. L., & Kucera, K. S. (2022). Evaluation of the GSP Creatine Kinase-MM Assay and Assessment of CK-MM Stability in Newborn, Patient, and Contrived Dried Blood Spots for Newborn Screening for Duchenne Muscular Dystrophy. International Journal of Neonatal Screening, 8(1), 12. https://doi.org/10.3390/ijns8010012