Spinal Muscular Atrophy: Diagnosis, Incidence, and Newborn Screening in Japan
Abstract
:1. Introduction
2. Patients and Methods
2.1. Diagnosis of SMA
2.2. Implementation of SMA-NBS
2.3. Statistical Analysis
3. Results
3.1. Genetic Analysis of Patients Suspected of Having SMA
3.1.1. SMN1 Deletion Test
3.1.2. Distribution of SMA Subtype and SMN2 Copy Number
3.2. Age of Genetic Testing among SMA Patients
3.3. Epidemiological Analysis of SMA in Osaka and Hyogo Prefectures
3.4. Implementation of SMA-NBS in Osaka Prefecture
4. Discussion
4.1. SMA Subtype and SMN2 Copy Number in Japanese SMA Patients
4.2. Age at Genetic Testing among Japanese SMA Patients
4.3. Incidence of SMA in Hyogo and Osaka Prefectures
4.4. Initiation of NBS for SMA in Japan
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nurputra, D.K.; Lai, P.S.; Harahap, N.I.F.; Morikawa, S.; Yamamoto, T.; Nishimura, N.; Kubo, Y.; Takeuchi, A.; Saito, T.; Takeshima, Y.; et al. Spinal Muscular Atrophy: From Gene Discovery to Clinical Trials. Ann. Hum. Genet. 2013, 77, 435–463. [Google Scholar] [CrossRef] [PubMed]
- Verhaart, I.E.C.; Robertson, A.; Wilson, I.J.; Aartsma-Rus, A.; Cameron, S.; Jones, C.C.; Cook, S.F.; Lochmüller, H. Prevalence, Incidence and Carrier Frequency of 5q-Linked Spinal Muscular Atrophy—A Literature Review. Orphanet J. Rare Dis. 2017, 12, 124. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, S.; Bürglen, L.; Reboullet, S.; Clermont, O.; Burlet, P.; Viollet, L.; Benichou, B.; Cruaud, C.; Millasseau, P.; Zeviani, M.; et al. Identification and Characterization of a Spinal Muscular Atrophy-Determining Gene. Cell 1995, 80, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Calucho, M.; Bernal, S.; Alías, L.; March, F.; Venceslá, A.; Rodríguez-Álvarez, F.J.; Aller, E.; Fernández, R.M.; Borrego, S.; Millán, J.M.; et al. Correlation between SMA Type and SMN2 Copy Number Revisited: An Analysis of 625 Unrelated Spanish Patients and a Compilation of 2834 Reported Cases. Neuromuscul. Disord. 2018, 28, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Arnold, W.D.; Kassar, D.; Kissel, J.T. Spinal Muscular Atrophy: Diagnosis and Management in a New Therapeutic Era. Muscle Nerve 2015, 51, 157–167. [Google Scholar] [CrossRef]
- Lally, C.; Jones, C.; Farwell, W.; Reyna, S.P.; Cook, S.F.; Flanders, W.D. Indirect Estimation of the Prevalence of Spinal Muscular Atrophy Type I, II, and III in the United States. Orphanet J. Rare Dis. 2017, 12, 175. [Google Scholar] [CrossRef] [Green Version]
- Oskoui, M.; Levy, G.; Garland, C.J.; Gray, J.M.; O’Hagen, J.; De Vivo, D.C.; Kaufmann, P. The Changing Natural History of Spinal Muscular Atrophy Type 1. Neurology 2007, 69, 1931–1936. [Google Scholar] [CrossRef] [PubMed]
- Neil, E.E.; Bisaccia, E.K. Nusinersen: A Novel Antisense Oligonucleotide for the Treatment of Spinal Muscular Atrophy. J. Pediatr. Pharmacol. Ther. 2019, 24, 194–203. [Google Scholar] [CrossRef]
- Stevens, D.; Claborn, M.K.; Gildon, B.L.; Kessler, T.L.; Walker, C. Onasemnogene Abeparvovec-Xioi: Gene Therapy for Spinal Muscular Atrophy. Ann. Pharmacother. 2020, 54, 1001–1009. [Google Scholar] [CrossRef]
- Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1723–1732. [Google Scholar] [CrossRef] [Green Version]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- De Vivo, D.C.; Bertini, E.; Swoboda, K.J.; Hwu, W.L.; Crawford, T.O.; Finkel, R.S.; Kirschner, J.; Kuntz, N.L.; Parsons, J.A.; Ryan, M.M.; et al. Nusinersen Initiated in Infants during the Presymptomatic Stage of Spinal Muscular Atrophy: Interim Efficacy and Safety Results from the Phase 2 NURTURE Study. Neuromuscul. Disord. 2019, 29, 842–856. [Google Scholar] [CrossRef] [Green Version]
- Lowes, L.P.; Alfano, L.N.; Arnold, W.D.; Shell, R.; Prior, T.W.; McColly, M.; Lehman, K.J.; Church, K.; Sproule, D.M.; Nagendran, S.; et al. Impact of Age and Motor Function in a Phase 1/2A Study of Infants With SMA Type 1 Receiving Single-Dose Gene Replacement Therapy. Pediatr. Neurol. 2019, 98, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangouloff, T.; Vrščaj, E.; Servais, L.; Osredkar, D.; SMA NBS World Study Group. Newborn screening programs for spinal muscular atrophy worldwide: Where we stand and where to go. Neuromuscul Disord. 2021, 31, 574–582. [Google Scholar] [CrossRef]
- Van der Steege, G. PCR-based DNA test to confirm clinical diagnosis of autosomal recessive spinal muscular atrophy. Lancet 1995, 345, 985–986. [Google Scholar] [CrossRef]
- Arkblad, E.L.; Darin, N.; Berg, K.; Kimber, E.; Brandberg, G.; Lindberg, C.; Holmberg, E.; Tulinius, M.; Nordling, M. Multiplex ligation-dependent probe amplification improves diagnostics in spinal muscular atrophy. Neuromuscul Disord. 2006, 16, 830–838. [Google Scholar] [CrossRef]
- Harada, Y.; Sutomo, R.; Sadewa, A.H.; Akutsu, T.; Takeshima, Y.; Wada, H.; Matsuo, M.; Nishio, H. Correlation between SMN2 copy number and clinical phenotype of spinal muscular atrophy: Three SMN2 copies fail to rescue some patients from the disease severity. J. Neurol. 2002, 249, 1211–1219. [Google Scholar] [CrossRef]
- Tran, V.K.; Sasongko, T.H.; Hong, D.D.; Hoan, N.T.; Dung, V.C.; Lee, M.J.; Gunadi; Takeshima, Y.; Matsuo, M.; Nishio, H. SMN2 and NAIP Gene Dosages in Vietnamese Patients with Spinal Muscular Atrophy. Pediatr. Int. 2008, 50, 346–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.L.; Lee, F.K.; Yazdanpanah, G.K.; Staropoli, J.F.; Liu, M.; Carulli, J.P.; Sun, C.; Dobrowolski, S.F.; Hannon, W.H.; Vogt, R.F. Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency. Clin. Chem. 2015, 61, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakaya, M.; Storbeck, M.; Strathmann, E.A.; Delle Vedove, A.; Hölker, I.; Altmueller, J.; Naghiyeva, L.; Schmitz-Steinkrüger, L.; Vezyroglou, K.; Motameny, S.; et al. Targeted Sequencing with Expanded Gene Profile Enables High Diagnostic Yield in Non-5q-Spinal Muscular Atrophies. Hum. Mutat. 2018, 39, 1284–1298. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, S.; Kubo, Y.; Arakawa, R.; Takashima, H.; Saito, K. Analysis of spinal muscular atrophy-like patients by targeted resequencing. Brain Dev. 2020, 42, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Wijaya, Y.O.S.; Ar Rochmah, M.; Niba, E.T.E.; Morisada, N.; Noguchi, Y.; Hidaka, Y.; Ozasa, S.; Inoue, T.; Shimazu, T.; Takahashi, Y.; et al. Phenotypes of SMA Patients Retaining SMN1 with Intragenic Mutation. Brain Dev. 2021, 43, 745–758. [Google Scholar] [CrossRef]
- Yamamoto, T.; Sato, H.; Lai, P.S.; Nurputra, D.K.; Harahap, N.I.F.; Morikawa, S.; Nishimura, N.; Kurashige, T.; Ohshita, T.; Nakajima, H.; et al. Intragenic Mutations in SMN1 May Contribute More Significantly to Clinical Severity than SMN2 Copy Numbers in Some Spinal Muscular Atrophy (SMA) Patients. Brain Dev. 2014, 36, 914–920. [Google Scholar] [CrossRef]
- Wirth, B.; Herz, M.; Wetter, A.; Moskau, S.; Hahnen, E.; Rudnik-Schöneborn, S.; Wienker, T.; Zerres, K. Quantitative Analysis of Survival Motor Neuron Copies: Identification of Subtle SMN1 Mutations in Patients with Spinal Muscular Atrophy, Genotype- Phenotype Correlation, and Implications for Genetic Counseling. Am. J. Hum. Genet. 1999, 64, 1340–1356. [Google Scholar] [CrossRef] [Green Version]
- Al-Jumah, M.; Majumdar, R.; Al-Rajeh, S.; Awada, A.; Chaves-Carballo, E.; Salih, M.; Al-Shahwan, S.; Al-Subiey, K.; Al-Uthaim, S. Molecular Analysis of the Spinal Muscular Atrophy and Neuronal Apoptosis Inhibitory Protein Genes in Saudi Patients with Spinal Muscular Atrophy. Saudi Med. J. 2003, 24, 1052–1054. [Google Scholar] [PubMed]
- Labrum, R.; Rodda, J.; Krause, A. The Molecular Basis of Spinal Muscular Atrophy (SMA) in South African Black Patients. Neuromuscul. Disord. 2007, 17, 684–692. [Google Scholar] [CrossRef]
- Watihayati, M.S.; Zabidi-Hussin, A.M.H.; Tang, T.H.; Nishio, H.; Zilfalil, B.A. NAIP-Deletion Analysis in Malaysian Patients with Spinal Muscular Atrophy. Kobe J. Med. Sci. 2007, 53, 171–175. [Google Scholar]
- Belter, L.; Cook, S.F.; Crawford, T.O.; Jarecki, J.; Jones, C.C.; Kissel, J.T.; Schroth, M.; Hobby, K. An Overview of the Cure SMA Membership Database: Highlights of Key Demographic and Clinical Characteristics of SMA Members. J. Neuromuscul. Dis. 2018, 5, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, K.; Fukuda, M.; Saito, I.; Urate, R.; Maniwa, S.; Usui, D.; Motoki, T.; Jogamoto, T.; Aibara, K.; Hosokawa, T.; et al. Incidence of Infantile Spinal Muscular Atrophy on Shikoku Island of Japan. Brain Dev. 2019, 41, 36–42. [Google Scholar] [CrossRef]
- Sun, Y.; Kong, X.; Zhao, Z.; Zhao, X. Mutation Analysis of 419 Family and Prenatal Diagnosis of 339 Cases of Spinal Muscular Atrophy in China. BMC Med. Genet. 2020, 21, 133. [Google Scholar] [CrossRef] [PubMed]
- Kekou, K.; Svingou, M.; Sofocleous, C.; Mourtzi, N.; Nitsa, E.; Konstantinidis, G.; Youroukos, S.; Skiadas, K.; Katsalouli, M.; Pons, R.; et al. Evaluation of Genotypes and Epidemiology of Spinal Muscular Atrophy in Greece: A Nationwide Study Spanning 24 Years. J. Neuromuscul. Dis. 2020, 7, 247–256. [Google Scholar] [CrossRef]
- Lin, C.W.; Kalb, S.J.; Yeh, W.S. Delay in Diagnosis of Spinal Muscular Atrophy: A Systematic Literature Review. Pediatr. Neurol. 2015, 53, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Pera, M.C.; Coratti, G.; Berti, B.; D’Amico, A.; Sframeli, M.; Albamonte, E.; De Sanctis, R.; Messina, S.; Catteruccia, M.; Brigati, G.; et al. Diagnostic Journey in Spinal Muscular Atrophy: Is It Still an Odyssey? PLoS ONE. 2020, 15, e0230677. [Google Scholar] [CrossRef]
- Imaizumi, Y. Incidence and Mortality Rates of Werdnig-Hoffmann Disease in Japan, 1979–1996. Hyogo Univ. Arch. 1996, 13, 53–59. [Google Scholar]
- Arkblad, E.; Tulinius, M.; Kroksmark, A.K.; Henricsson, M.; Darin, N. A Population-Based Study of Genotypic and Phenotypic Variability in Children with Spinal Muscular Atrophy. Acta Paediatr. Int. J. Paediatr. 2009, 98, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Jedrzejowska, M.; Milewski, M.; Zimowski, J.; Zagozdzon, P.; Kostera-Pruszczyk, A.; Borkowska, J.; Sielska, D.; Jurek, M.; Hausmanowa-Petrusewicz, I. Incidence of Spinal Muscular Atrophy in Poland—More Frequent than Predicted? Neuroepidemiology 2010, 34, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Vaidla, E.; Talvik, I.; Kulla, A.; Kahre, T.; Hamarik, M.; Napa, A.; Metsvaht, T.; Piirsoo, A.; Talvik, T. Descriptive Epidemiology of Spinal Muscular Atrophy Type I in Estonia. Neuroepidemiology 2006, 27, 164–168. [Google Scholar] [CrossRef]
- Prior, T.W.; Snyder, P.J.; Rink, B.D.; Pearl, D.K.; Pyatt, R.E.; Mihal, D.C.; Conlan, T.; Schmalz, B.; Montgomery, L.; Ziegler, K.; et al. Newborn and Carrier Screening for Spinal Muscular Atrophy. Am. J. Med. Genet. A 2010, 152A, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.H.; Chiang, S.C.; Weng, W.C.; Lee, N.C.; Lin, C.J.; Hsieh, W.S.; Lee, W.T.; Jong, Y.J.; Ko, T.M.; Hwu, W.L. Presymptomatic Diagnosis of Spinal Muscular Atrophy Through Newborn Screening. J. Pediatr. 2017, 190, 124–129.e1. [Google Scholar] [CrossRef] [PubMed]
- Kraszewski, J.N.; Kay, D.M.; Stevens, C.F.; Koval, C.; Haser, B.; Ortiz, V.; Albertorio, A.; Cohen, L.L.; Jain, R.; Andrew, S.P.; et al. Pilot Study of Population-Based Newborn Screening for Spinal Muscular Atrophy in New York State. Genet. Med. 2018, 20, 608–613. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, M.; Niba, E.T.E.; Wijaya, Y.O.S.; Takayama, I.; Mitsuishi, C.; Kumasaka, S.; Kondo, Y.; Takatera, A.; Hokuto, I.; Morioka, I.; et al. A Novel System for Spinal Muscular Atrophy Screening in Newborns: Japanese Pilot Study Masakazu. Int. J. Neonatal Screen. 2019, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Vill, K.; Schwartz, O.; Blaschek, A.; Gläser, D.; Nennstiel, U.; Wirth, B.; Burggraf, S.; Röschinger, W.; Becker, M.; Czibere, L.; et al. Newborn Screening for Spinal Muscular Atrophy in Germany: Clinical Results after 2 Years. Orphanet J. Rare Dis. 2021, 16, 153. [Google Scholar] [CrossRef]
- Kariyawasam, D.S.T.; D’Silva, A.M.; Vetsch, J.; Wakefield, C.E.; Wiley, V.; Farrar, M.A. “We Needed This”: Perspectives of Parents and Healthcare Professionals Involved in a Pilot Newborn Screening Program for Spinal Muscular Atrophy. EClinicalMedicine 2021, 33, 1–11. [Google Scholar] [CrossRef]
- Kucera, K.S.; Taylor, J.L.; Robles, V.R.; Clinard, K.; Migliore, B.; Boyea, B.L.; Okoniewski, K.C.; Duparc, M.; Rehder, C.W.; Shone, S.M.; et al. A Voluntary Statewide Newborn Screening Pilot for Spinal Muscular Atrophy: Results from Early Check. Int. J. Neonatal Screen. 2021, 7, 20. [Google Scholar] [CrossRef]
- Harahap, N.I.F.; Harahap, I.S.K.; Kaszynski, R.H.; Nurputra, D.K.P.; Hartomo, T.B.; Pham, H.T.V.; Yamamoto, T.; Morikawa, S.; Nishimura, N.; Rusdi, I.; et al. Spinal Muscular Atrophy Patient Detection and Carrier Screening Using Dried Blood Spots on Filter Paper. Genet. Test. Mol. Biomarkers 2012, 16, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Sa’adah, N.; Harahap, N.I.F.; Nurputra, D.K.P.; Ar Rochmah, M.; Morikawa, S.; Nishimura, N.; Sadewa, A.H.; Astuti, I.; Haryana, S.M.; Saito, T.; et al. A Rapid, Accurate and Simple Screening Method for Spinal Muscular Atrophy: High-Resolution Melting Analysis Using Dried Blood Spots on Filter Paper. Clin. Lab. 2015, 61, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Wijaya, Y.O.S.; Purevsuren, J.; Harahap, N.I.F.; Niba, E.T.E.; Bouike, Y.; Nurputra, D.K.P.; Ar Rochmah, M.; Thursina, C.; Hapsara, S.; Yamaguchi, S.; et al. Assessment of Spinal Muscular Atrophy Carrier Status by Determining SMN1 Copy Number Using Dried Blood Spots. Int. J. Neonatal Screen. 2020, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Japanese Researchers Develop Neonatal SMA Test to Start Treatment before Symptoms—June 18, 2021 (Mainichi Japan). Available online: https://web.archive.org/web/20210628022802/https://mainichi.jp/english/articles/20210617/p2a/00m/0na/015000c (accessed on 28 June 2021).
Copy Number | 1 | 2 | 3 | 4 | Mean ± SD |
---|---|---|---|---|---|
Type I (n = 83) | 1 | 66 | 16 | 0 | 2.18 ± 0.64 |
Type II (n = 70) | 0 | 3 | 67 | 0 | 2.96 ± 0.09 |
Type III (n = 40) | 0 | 2 | 25 | 13 | 3.28 ± 0.15 |
Type IV (n = 11) | 0 | 0 | 1 | 10 | 3.91 ± 0.58 |
Total (n = 204) | 1 | 71 | 109 | 23 |
(A) Age at Genetic Testing (Months) | |||
---|---|---|---|
Mean Age (SD) | Median (Range) | Interquartile Range | |
Type I (n = 84) | 11.0 (23.7) | 5 (0 to 182) | 7 |
Type II (n = 43) | 77.3 (79.9) | 29 (13 to 262) | 122 |
Type III (n = 15) | 85.1 (79.1) | 45 (22 to 239) | 79 |
(B) Timing at Genetic Diagnosis (Months) | |||
Proper Timing | Slightly Delayed Timing | Notably Delayed Timing | |
Type I (n = 84) | <6 m | 6 to 12 m | >12 m |
55 (65.5%) | 15 (17.9%) | 14 (16.7%) | |
Type II (n = 43) | <18 m | 18 to 30 m | >30 m |
9 (20.9%) | 13 (30.2%) | 21 (48.8%) |
Live Birth (n = 1,197,156) | Affected Individuals | ||
---|---|---|---|
Infants | Fetuses | Total | |
No. of types I, II and III | 28 | 9 | 37 |
Incidence * | 2.34 (95%CI: −0.66, 4.53) | 3.09 (95%CI: −0.36, 5.20) | |
No. of type I | 14 | 7 | 21 |
Incidence * | 1.08 (95%CI: −0.95, 3.20) | 1.32 (95%CI: −0.84, 3.92) |
Country | Total Patient Number | Type I | Type II | Type III | Type IV | Unknown |
---|---|---|---|---|---|---|
Germany (1999) [24] | 525 (a) | 270 (51.4%) | 124 (23.6%) | 131 (25.0%) | * | * |
Saudi Arabia (2003) [25] | 121 (a) | 60 (49.6%) | 26 (21.5%) | 35 (28.9%) | * | * |
South Africa (2007) [26] | 24 (a) (White) | 15 (62.5%) | 4 (type II & III) (16.6%) | * | 5 (20.9%) | |
92 (a) (Black) | 48 (52.2%) | 39 (types II & III) (42.4%) | * | 5 (5.4%) | ||
Malaysia (2007) [27] | 24 (a) | 10 (41.7%) | 11 (45.8%) | 3 (12.5%) | * | * |
Vietnam (2008) [18] | 34 (a) | 13 (38.2%) | 11 (32.4%) | 10 (29.4%) | * | * |
Spain (2018) [4] | 625 (a) | 272 (43.5%) | 186 (29.7%) | 167 (26.7%) | * | * |
Cure SMA (2018) [28] | 1966 (b) (Worldwide) | 1021 (51.9%) | 635 (32.3%) | 310 (15.8%) | * | * |
Japan (2019) [29] | 486 (a) | 164 (33.7%) | 210 (43.2%) | 99 (20.4%) | 7 (1.4%) | 6 (1.0%) |
China (2020) [30] | 419 (a) | 177 (45.6%) | 126 (27.4%) | 100 (23.2%) | 16 (3.8%) | * |
Greece (2020) [31] | 361 (a) | 156 (43.2%) | 93 (25.8%) | 107 (29.6%) | 5 (1.4%) | * |
Japan (This study) | 221 (a) | 93 (42.1%) | 71 (32.1%) | 46 (20.8%) | 11 (5.0%) | * |
(A) Incidences of SMA Based on Survey Research | |||||
---|---|---|---|---|---|
SMA Types I, II & III | |||||
Country | Study Period | Cases Detected | Live Births | Incidence (In 100,000) | Reference |
Sweden | 1980–2006 | 45 | 531,746 | 8.5 (a) | (2009) [35] |
Poland | 1998–2005 | 304 | 2,963,783 | 10.3 | (2010) [36] |
Europe | 2011–2015 | 3776 | 22,325,221 | 11.9 (b) | (2017) [2] |
Japan (c) | 2007–2016 | 37(d) | 1,197,178 | 3.1 | This study |
SMA Type I | |||||
Country | Study Period | Cases Detected | Live Births | Incidence (In 100,000) | Reference |
Sweden | 1980–2006 | 19 | 531,746 | 3.6 | (2009) [35] |
Estonia | 1994–2003 | 9 | 129,832 | 6.9 | (2006) [37] |
Poland | 1998–2005 | 209 | 2,963,783 | 7.1 | (2010) [36] |
Japan (e) | 2011–2015 | 4 | 147,950 | 2.7 | (2019) [29] |
Japan (c) | 2007–2016 | 21(d) | 1,197,178 | 1.3 | This study |
(B) Incidences of SMA Based on Newborn Screening Programs | |||||
SMA Types I, II & III | |||||
Country | Study Period | Cases | Live Births | Incidence (In 100,000) | Reference |
U.S. (Ohio) | –2009 | 4 | 40,103 | 10.0 | (2010) [38] |
Taiwan | 2014–2016 | 7 | 120,267 | 5.8 | (2017) [39] |
U.S. (New York City) | 2016–2017 | 1 | 3826 | 26.1 (f) | (2018) [40] |
Japan | 2018–2019 | 0 | 4157 | 0.0 (f) | (2019) [41] |
Germany | 2018–2020 | 43 | 297,163 | 14.5 | (2021) [42] |
Australia | 2018–2020 | 18 | 202,388 | 8.9 | (2021) [43] |
U.S. (North Carolina) | 2018–2020 | 1 | 12,065 | 8.3 | (2021) [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimizu, T.; Ida, S.; Okamoto, K.; Awano, H.; Niba, E.T.E.; Wijaya, Y.O.S.; Okazaki, S.; Shimomura, H.; Lee, T.; Tominaga, K.; et al. Spinal Muscular Atrophy: Diagnosis, Incidence, and Newborn Screening in Japan. Int. J. Neonatal Screen. 2021, 7, 45. https://doi.org/10.3390/ijns7030045
Kimizu T, Ida S, Okamoto K, Awano H, Niba ETE, Wijaya YOS, Okazaki S, Shimomura H, Lee T, Tominaga K, et al. Spinal Muscular Atrophy: Diagnosis, Incidence, and Newborn Screening in Japan. International Journal of Neonatal Screening. 2021; 7(3):45. https://doi.org/10.3390/ijns7030045
Chicago/Turabian StyleKimizu, Tomokazu, Shinobu Ida, Kentaro Okamoto, Hiroyuki Awano, Emma Tabe Eko Niba, Yogik Onky Silvana Wijaya, Shin Okazaki, Hideki Shimomura, Tomoko Lee, Koji Tominaga, and et al. 2021. "Spinal Muscular Atrophy: Diagnosis, Incidence, and Newborn Screening in Japan" International Journal of Neonatal Screening 7, no. 3: 45. https://doi.org/10.3390/ijns7030045