Newborn Screening for Lysosomal Storage Diseases: Methodologies, Screen Positive Rates, Normalization of Datasets, Second-Tier Tests, and Post-Analysis Tools
Abstract
:1. Introduction
2. Enzymatic Activity-Based NBS for LSDs
3. Substrates Used for Enzymatic Activity Assays
4. Screen Positive Rates and Positive Predictive Values
4.1. NBS Comparison Metrics and the Lack of Reliable Positive Predictive Values.
4.2. Normalization of Data Sets
5. Pattern Recognition Statistical Tools Combined with Biomarker Analysis
6. NBS Strategies for Individual LSDs
6.1. General Remarks
6.2. Pompe Disease
6.3. MPS-I
6.4. Krabbe Disease
6.5. Gaucher Disease
6.6. Niemann–Pick A/B
6.7. Fabry Disease
6.8. MPS-II, -IIIB, -IVA, -VI, and VII
6.9. Metachromatic Leukodystrophy
6.10. Ceroid Lipofuscinosis II
6.11. Lysosomal Acid Lipase
Funding
Conflicts of Interest
References and Note
- Chiang, S.-C.; Hwu, W.-L.; Lee, N.-C.; Hsu, L.-W.; Chien, Y.-H. Algorithm for Pompe disease newborn screening: Results from the Taiwan screening program. Mol. Genet. Metab. 2012, 106, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Orsini, J.J.; Kay, D.M.; Saavedra-Matiz, C.A.; Wenger, D.A.; Duffner, P.K.; Erbe, R.W.; Biski, C.; Martin, M.; Krein, L.M.; Nichols, M.; et al. Newborn screening for Krabbe disease in New York State: The first eight years’ experience. Genet. Med. 2016, 18, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Chamoles, N.A.; Niizawa, G.; Blanco, M.; Gaggioli, D.; Casentini, C. Glycogen storage disease type II: Enzymatic screening in dried blood spots on filter paper. Clin. Chim. Acta 2004, 347, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Kubaski, F.; Osago, H.; Mason, R.W.; Yamaguchi, S.; Kobayashi, H.; Tsuchiya, M.; Orii, T. Glycosaminoglycans detection methods: Applications of mass spectrometry. Mol. Genet. Metab. 2017, 120, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Kubaski, F.; Mason, R.W.; Nakatomi, A.; Shintaku, H.; Xie, L.; van Vlies, N.N.; Church, H.; Giugliani, R.; Kobayashi, H.; Yamaguchi, S.; et al. Newborn screening for mucopolysaccharidoses: A pilot study of measurement of glycosaminoglycans by tandem mass spectrometry. J. Inherit. Metab. Dis. 2017, 40, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.; Brown, J.R.; Al-Mafraji, K.; Lamanna, W.C.; Beitel, J.R.; Boons, G.-J.; Esko, J.D.; Crawford, B.E. Disease-specific non–reducing end carbohydrate biomarkers for mucopolysaccharidoses. Nat. Chem. Biol. 2012, 8, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.; Brown, J.R.; Lorey, F.; Dickson, P.I.; Crawford, B.E.; Esko, J.D. Glycan-based biomarkers for mucopolysaccharidoses. Mol. Genet. Metab. 2014, 111, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yi, F.; Kumar, A.B.; Kumar Chennamaneni, N.; Hong, X.; Scott, C.R.; Gelb, M.H.; Turecek, F. Multiplex Tandem Mass Spectrometry Enzymatic Activity Assay for Newborn Screening of the Mucopolysaccharidoses and Type 2 Neuronal Ceroid Lipofuscinosis. Clin. Chem. 2017, 63, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Chuang, W.-L.; Pacheco, J.; Cooper, S.; McGovern, M.M.; Cox, G.F.; Keutzer, J.; Zhang, X.K. Lyso-sphingomyelin is elevated in dried blood spots of Niemann-Pick B patients. Mol. Genet. Metab. 2014, 111, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Harzer, K.; Rolfs, A.; Bauer, P.; Zschiesche, M.; Mengel, E.; Backes, J.; Kustermann-Kuhn, B.; Bruchelt, G.; Van Diggelen, O.P.; Mayrhofer, H.; et al. Niemann-Pick disease type A and B are clinically but also enzymatically heterogeneous: Pitfall in the laboratory diagnosis of sphingomyelinase deficiency associated with the mutation Q292 K. Neuropediatrics 2003, 34, 301–306. [Google Scholar] [PubMed]
- Van Diggelen, O.P.; Voznyi, Y.V.; Keulemans, J.L.M.; Schoonderwoerd, K.; Ledvinová, J.; Mengel, E.; Zschiesche, M.; Santer, R.; Harzer, K. A new fluorimetric enzyme assay for the diagnosis of Niemann-Pick A/B, with specificity of natural sphingomyelinase substrate. J. Inherit. Metab. Dis. 2005, 28, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Ghomashchi, F.; Barcenas, M.; Turecek, F.; Scott, C.R.; Gelb, M.H. Reliable Assay of Acid Sphingomyelinase Deficiency with the Mutation Q292K by Tandem Mass Spectrometry. Clin. Chem. 2015, 61, 771–772. [Google Scholar] [CrossRef] [PubMed]
- Ullal, A.J.; Millington, D.S.; Bali, D.S. Development of a fluorometric microtiter plate-based enzyme assay for arylsulfatase B (MPS VI) using dried blood spots. Mol. Genet. Metab. Rep. 2014, 1, 465–467. [Google Scholar] [CrossRef] [PubMed]
- Hopwood, J.J.; Elliott, H. Radiolabelled oligosaccharides as substrates for the estimation of sulfamidase and the detection of the Sanfilippo type A syndrome. Clin. Chim. Acta 1981, 112, 55–66. [Google Scholar] [CrossRef]
- Sandhoff, K. My journey into the world of sphingolipids and sphingolipidoses. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2012, 88, 554–582. [Google Scholar] [CrossRef] [PubMed]
- Biffi, A.; Cesani, M.; Fumagalli, F.; Del Carro, U.; Baldoli, C.; Canale, S.; Gerevini, S.; Amadio, S.; Falautano, M.; Rovelli, A.; et al. Metachromatic leukodystrophy—Mutation analysis provides further evidence of genotype-phenotype correlation. Clin. Genet. 2008, 74, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Kronn, D.F.; Day-Salvatore, D.; Hwu, W.-L.; Jones, S.A.; Nakamura, K.; Okuyama, T.; Swoboda, K.J.; Kishnani, P.S. Pompe Disease Newborn Screening Working Group. Management of Confirmed Newborn-Screened Patients with Pompe Disease Across the Disease Spectrum. Pediatrics 2017, 140, S24–S45. [Google Scholar] [CrossRef] [PubMed]
- Montaño, A.M.; Lock-Hock, N.; Steiner, R.D.; Graham, B.H.; Szlago, M.; Greenstein, R.; Pineda, M.; Gonzalez-Meneses, A.; Çoker, M.; Bartholomew, D.; et al. Clinical course of sly syndrome (mucopolysaccharidosis type VII). J. Med. Genet. 2016, 53, 403–418. [Google Scholar] [CrossRef] [PubMed]
- Millington, D.S.; Bali, D.M. Misinformation regarding tandem mass spectrometric vs fluorometric assays to screen newborns for LSDs. Mol. Genet. Metab. Rep. 2017, 11, 72–73. [Google Scholar] [CrossRef] [PubMed]
- Winchester, B.; Bali, D.; Bodamer, O.A.; Caillaud, C.; Christensen, E.; Cooper, A.; Cupler, E.; Deschauer, M.; Fumić, K.; Jackson, M.; et al. Methods for a prompt and reliable laboratory diagnosis of Pompe disease: Report from an international consensus meeting. Mol. Genet. Metab. 2008, 93, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin. Chem. 2004, 50, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Burton, B.K.; Kronn, D.F.; Hwu, W.-L.; Kishnani, P.S. Pompe Disease Newborn Screening Working Group. The Initial Evaluation of Patients after Positive Newborn Screening: Recommended Algorithms Leading to a Confirmed Diagnosis of Pompe Disease. Pediatrics 2017, 140, S14–S23. [Google Scholar] [CrossRef] [PubMed]
- Newborn Screening Translational Research Network Webinar. April NBSTRN Webinar, April 2018.
- Scott, C.R.; Elliott, S.; Buroker, N.; Thomas, L.I.; Keutzer, J.; Glass, M.; Gelb, M.H.; Turecek, F. Identification of infants at risk for developing Fabry, Pompe, or mucopolysaccharidosis-I from newborn blood spots by tandem mass spectrometry. J. Pediatr. 2013, 163, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Elliott, S.; Buroker, N.; Cournoyer, J.J.; Potier, A.M.; Trometer, J.D.; Elbin, C.; Schermer, M.J.; Kantola, J.; Boyce, A.; Turecek, F.; et al. Pilot study of newborn screening for six lysosomal storage diseases using Tandem Mass Spectrometry. Mol. Genet. Metab. 2016, 118, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Camelier, M.V.; Burin, M.G.; De Mari, J.; Vieira, T.A.; Marasca, G.; Giugliani, R. Practical and reliable enzyme test for the detection of Mucopolysaccharidosis IVA (Morquio Syndrome type A) in dried blood samples. Clin. Chim. Acta 2011, 412, 1805–1808. [Google Scholar] [CrossRef] [PubMed]
- Ullal, A.J.; Millington, D.S.; Bali, D.S. Development of a fluorometric microtiter plate based enzyme assay for MPS IVA (Morquio type A) using dried blood spots. Mol. Genet. Metab. Rep. 2014, 1, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Hall, P.L.; Marquardt, G.; McHugh, D.M.S.; Currier, R.J.; Tang, H.; Stoway, S.D.; Rinaldo, P. Postanalytical tools improve performance of newborn screening by tandem mass spectrometry. Genet. Med. 2014, 16, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Minter Baerg, M.M.; Stoway, S.D.; Hart, J.; Mott, L.; Peck, D.S.; Nett, S.L.; Eckerman, J.S.; Lacey, J.M.; Turgeon, C.T.; Gavrilov, D.; et al. Precision newborn screening for lysosomal disorders. Genet. Med. 2017, 317, 576. [Google Scholar] [CrossRef] [PubMed]
- Tortorelli, S.; Turgeon, C.T.; Gavrilov, D.K.; Oglesbee, D.; Raymond, K.M.; Rinaldo, P.; Matern, D. Simultaneous Testing for 6 Lysosomal Storage Disorders and X-Adrenoleukodystrophy in Dried Blood Spots by Tandem Mass Spectrometry. Clin. Chem. 2016, 62, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- Tortorelli, S.; Eckerman, J.S.; Orsini, J.J.; Stevens, C.; Hart, J.; Hall, P.L.; Alexander, J.J.; Gavrilov, D.; Oglesbee, D.; Raymond, K.; et al. Moonlighting newborn screening markers: The incidental discovery of a second-tier test for Pompe disease. Genet. Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.-H.; Goldstein, J.L.; Hwu, W.-L.; Smith, P.B.; Lee, N.-C.; Chiang, S.-C.; Tolun, A.A.; Zhang, H.; Vaisnins, A.E.; Millington, D.S.; et al. Baseline Urinary Glucose Tetrasaccharide Concentrations in Patients with Infantile- and Late-Onset Pompe Disease Identified by Newborn Screening. JIMD Rep. 2015, 19, 67–73. [Google Scholar] [PubMed]
- Lin, N.; Huang, J.; Violante, S.; Orsini, J.J.; Caggana, M.; Hughes, E.E.; Stevens, C.; DiAntonio, L.; Liao, H.C.; Hong, X.; et al. Liquid Chromatography-Tandem Mass Spectrometry Assay of Leukocyte Acid α-Glucosidase for Post-Newborn Screening Evaluation of Pompe Disease. Clin. Chem. 2017, 63, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-C.; Chan, M.-J.; Yang, C.-F.; Chiang, C.-C.; Niu, D.-M.; Huang, C.-K.; Gelb, M.H. Mass Spectrometry but Not Fluorimetry Distinguishes Affected and Pseudodeficiency Patients in Newborn Screening for Pompe Disease. Clin. Chem. 2017, 63, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- De Ruijter, J.; de Ru, M.H.; Wagemans, T.; Ijlst, L.; Lund, A.M.; Orchard, P.J.; Schaefer, G.B.; Wijburg, F.A.; van Vlies, N. Heparan sulfate and dermatan sulfate derived disaccharides are sensitive markers for newborn screening for mucopolysaccharidoses types I, II and III. Mol. Genet. Metab. 2012, 107, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-C.; Spacil, Z.; Ghomashchi, F.; Escolar, M.L.; Kurtzberg, J.; Orsini, J.J.; Turecek, F.; Scott, C.R.; Gelb, M.H. Lymphocyte Galactocerebrosidase Activity by LC-MS/MS for Post-Newborn Screening Evaluation of Krabbe Disease. Clin. Chem. 2017, 63, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Wenger, D.A.; Sattler, M.; Clark, C.; McKelvey, H. An improved method for the identification of patients and carriers of Krabbe’s disease. Clin. Chim. Acta 1974, 56, 199–206. [Google Scholar] [CrossRef]
- Chuang, W.-L.; Pacheco, J.; Zhang, X.K.; Martin, M.M.; Biski, C.K.; Keutzer, J.M.; Wenger, D.A.; Caggana, M.; Orsini, J.J., Jr. Determination of psychosine concentration in dried blood spots from newborns that were identified via newborn screening to be at risk for Krabbe disease. Clin. Chim. Acta 2013, 419, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Rolfs, A.; Giese, A.-K.; Grittner, U.; Mascher, D.; Elstein, D.; Zimran, A.; Böttcher, T.; Lukas, J.; Hübner, R.; Gölnitz, U.; et al. Glucosylsphingosine is a highly sensitive and specific biomarker for primary diagnostic and follow-up monitoring in Gaucher disease in a non-Jewish, Caucasian cohort of Gaucher disease patients. PLoS ONE 2013, 8, e79732. [Google Scholar] [CrossRef] [PubMed]
- Mirzaian, M.; Wisse, P.; Ferraz, M.J.; Gold, H.; Donker-Koopman, W.E.; Verhoek, M.; Overkleeft, H.S.; Boot, R.G.; Kramer, G.; Dekker, N.; et al. Mass spectrometric quantification of glucosylsphingosine in plasma and urine of type 1 Gaucher patients using an isotope standard. Blood Cells Mol. Dis. 2015, 54, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, V.; Chuang, W.-L.; Liu, J.; Lischuk, A.; Kacena, K.; Lin, H.; Pastores, G.M.; Yang, R.; Keutzer, J.; Zhang, K.; et al. Glucosylsphingosine is a key biomarker of Gaucher disease. Am. J. Hematol. 2016, 91, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Mayes, J.S.; Scheerer, J.B.; Sifers, R.N.; Donaldson, M.L. Differential assay for lysosomal alpha-galactosidases in human tissues and its application to Fabry’s disease. Clin. Chim. Acta 1981, 112, 247–251. [Google Scholar] [CrossRef]
- Beirão, I.; Cabrita, A.; Torres, M.; Silva, F.; Aguiar, P.; Laranjeira, F.; et al. Biomarkers and Imaging Findings of Anderson-Fabry Disease-What We Know Now. Diseases 2017, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Talbot, A.; Nicholls, K.; Fletcher, J.M.; Fuller, M. A simple method for quantification of plasma globotriaosylsphingosine: Utility for Fabry disease. Mol. Genet. Metab. 2017, 122, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Auray-Blais, C.; Ntwari, A.; Clarke, J.T.R.; Warnock, D.G.; Oliveira, J.P.; Young, S.P.; Millington, D.S.; Bichet, D.G.; Sirrs, S.; West, M.L.; et al. How well does urinary lyso-Gb3 function as a biomarker in Fabry disease? Clin. Chim. Acta 2010, 411, 1906–1914. [Google Scholar] [CrossRef] [PubMed]
- Boutin, M.; Lavoie, P.; Abaoui, M.; Auray-Blais, C. Tandem Mass Spectrometry Quantitation of Lyso-Gb3 and Six Related Analogs in Plasma for Fabry Disease Patients. Curr. Protoc. Hum. Genet. 2016, 90. [Google Scholar] [CrossRef]
- Gold, H.; Mirzaian, M.; Dekker, N.; Joao Ferraz, M.; Lugtenburg, J.; Codee, J.D.C.; van der Marel, G.A.; Overkleeft, H.S.; Linthorst, G.E.; Groener, J.E.; et al. Quantification of Globotriaosylsphingosine in Plasma and Urine of Fabry Patients by Stable Isotope Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. Clin. Chem. 2013, 59, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Sista, R.S.; Wang, T.; Wu, N.; Graham, C.; Eckhardt, A.; Winger, T.; Srinivasan, V.; Bali, D.; Millington, D.S.; Pamula, V.K. Multiplex newborn screening for Pompe, Fabry, Hunter, Gaucher, and Hurler diseases using a digital microfluidic platform. Clin. Chim. Acta 2013, 424, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.B.; Spacil, Z.; Ghomashchi, F.; Masi, S.; Sumida, T.; Ito, M.; Turecek, F.; Scott, C.R.; Gelb, M.H. Fluorimetric assays for N-acetylgalactosamine-6-sulfatase and arylsulfatase B based on the natural substrates for confirmation of mucopolysaccharidoses types IVA and VI. Clin. Chim. Acta 2015, 451, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.B.; Masi, S.; Ghomashchi, F.; Chennamaneni, N.K.; Ito, M.; Scott, C.R.; Turecek, F.; Gelb, M.H.; Spacil, Z. Tandem Mass Spectrometry Has a Larger Analytical Range than Fluorescence Assays of Lysosomal Enzymes: Application to Newborn Screening and Diagnosis of Mucopolysaccharidoses Types II, IVA, and VI. Clin. Chem. 2015, 61, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Spacil, Z.; Babu Kumar, A.; Liao, H.-C.; Auray-Blais, C.; Stark, S.; Suhr, T.R.; Scott, C.R.; Turecek, F.; Gelb, M.H. Sulfatide Analysis by Mass Spectrometry for Screening of Metachromatic Leukodystrophy in Dried Blood and Urine Samples. Clin. Chem. 2016, 62, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.A.F.; Dean, C.J.; Hopwood, J.J.; Meikle, P.J. Diagnosis of metachromatic leukodystrophy by immune quantification of arylsulphatase A protein and activity in dried blood spots. Clin. Chem. 2008, 54, 1925–1927. [Google Scholar] [CrossRef] [PubMed]
- Biffi, A.; Montini, E.; Lorioli, L.; Cesani, M.; Fumagalli, F.; Plati, T.; Baldoli, C.; Martino, S.; Calabria, A.; Canale, S.; et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013, 341, 1233158. [Google Scholar] [CrossRef] [PubMed]
- Sessa, M.; Lorioli, L.; Fumagalli, F.; Acquati, S.; Redaelli, D.; Baldoli, C.; Canale, S.; Lopez, I.D.; Morena, F.; Calabria, A.; et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: An ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet 2016, 388, 476–487. [Google Scholar] [CrossRef]
- Hamilton, J.; Jones, I.; Srivastava, R.; Galloway, P. A new method for the measurement of lysosomal acid lipase in dried blood spots using the inhibitor Lalistat 2. Clin. Chim. Acta 2012, 413, 1207–1210. [Google Scholar] [CrossRef] [PubMed]
- Masi, S.; Chennamaneni, N.; Turecek, F.; Scott, C.R.; Gelb, M.H. Specific Substrate for the Assay of Lysosomal Acid Lipase. Clin. Chem. 2018, 64, 690–696. [Google Scholar] [CrossRef] [PubMed]
Newborn Screening Program | LSDs Now Screened Live | NBS First-Tier Method |
---|---|---|
Illinois | Pompe, MPS-I, Gaucher, Fabry, Niemann–PickA/B, Krabbe, MPS-II | MS/MS enzymatic activity assay |
Kentucky | Pompe, MPS-I, Krabbe | MS/MS enzymatic activity assay |
Massachusetts | Pompe, MPS-I | MS/MS enzymatic activity assay |
Minnesota | Pompe, MPS-I | MS/MS enzymatic activity assay |
Mississippi | Pompe | MS/MS enzymatic activity assay |
Missouri | Pompe, MPS-I, Gaucher, Fabry, Krabbe, MPS-II | DMF-F enzymatic activity assay (plate reader fluorescence assay for Krabbe) |
New York | Pompe, Krabbe, MPS-I | MS/MS enzymatic activity assay |
Ohio | Pompe, MPS-I, Krabbe | MS/MS enzymatic activity assay |
Pennsylvania | Pompe, MPS-I, Krabbe, Fabry, Gaucher, Niemann Pick-A/B | MS/MS enzymatic activity assay |
Wisconsin | Pompe | MS/MS enzymatic activity assay |
Italy (Tuscany region) | Pompe, MPS-I, Fabry | MS/MS enzymatic activity assay |
Italy (Veneto region) | Pompe, MPS-I, Fabry, Gaucher | MS/MS enzymatic activity assay |
Taiwan (National Taiwan University Hospital, about 1/3 of newborns) | Pompe, MPS-I, Gaucher, Fabry, MPS-II, MPS-IIIB, MPS-IVA, MPS-VI | MS/MS and plate fluorimetry enzymatic activity assay |
Taiwan (Chinese Foundation of Health, about 1/3 of newborns) | Pompe, MPS-I, Gaucher, Fabry, MPS-II, MPS-IIIB, MPS-IVA, MPS-VI | MS/MS enzymatic activity assay |
Taiwan (Tapei Institute of Pathology, about 1/3 of newborns) | Pompe, MPS-I, Fabry, Gaucher, MPS-II | MS/MS enzymatic activity assay |
NBS Lab | Mean GAA Activity | GAA Activity for DBS from Confirmed Pompe Patients (μmol/h/L) | Cutoff | Mean GAA Activity for Infantile-Onset Pompe Disease |
---|---|---|---|---|
Missouri | 27 μmol/h/L | Early-onset: 4.2, 4.4, 5.4, 5.1, 5.6, 5.2, 2.5, 4.6, 5.2 μmol/h/L | 6.5 μmol/h/L | 4.7 μmol/h/L |
Late-onset: 6.5, 5.2, 6.8, 6.7, 6.4, 5.8, 3.1, 5.5, 3.1, 5.5, 4.5, 5.7, 3.7, 5.4, 4.8, 4.1, 2.4, 3.4, 4.4, 2.5, 4.2, 4.9, 3.1 μmol/h/L | (24.1% of mean GAA) | (17.3% of mean GAA) | ||
New York | 10.6 | Early-onset: 0.63, 0.69, 0.78, 0.22, 0.35, 0.41, 0.50 μmol/h/L | 1.6 μmol/h/L | 0.51 μmol/h/L |
Late-onset: 1.08, 0.89, 1.55, 1.69, 0.64, 1.19, 0.98, 0.70, 0.75, 0.99, 1.02, 1.21, 0.66, 0.37, 0.98, 0.58, 0.82, 0.63, 0.59, 0.88, 0.83, 1.43 μmol/h/L | (15% of mean GAA) | (4.8% of mean GAA) |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gelb, M.H. Newborn Screening for Lysosomal Storage Diseases: Methodologies, Screen Positive Rates, Normalization of Datasets, Second-Tier Tests, and Post-Analysis Tools. Int. J. Neonatal Screen. 2018, 4, 23. https://doi.org/10.3390/ijns4030023
Gelb MH. Newborn Screening for Lysosomal Storage Diseases: Methodologies, Screen Positive Rates, Normalization of Datasets, Second-Tier Tests, and Post-Analysis Tools. International Journal of Neonatal Screening. 2018; 4(3):23. https://doi.org/10.3390/ijns4030023
Chicago/Turabian StyleGelb, Michael H. 2018. "Newborn Screening for Lysosomal Storage Diseases: Methodologies, Screen Positive Rates, Normalization of Datasets, Second-Tier Tests, and Post-Analysis Tools" International Journal of Neonatal Screening 4, no. 3: 23. https://doi.org/10.3390/ijns4030023
APA StyleGelb, M. H. (2018). Newborn Screening for Lysosomal Storage Diseases: Methodologies, Screen Positive Rates, Normalization of Datasets, Second-Tier Tests, and Post-Analysis Tools. International Journal of Neonatal Screening, 4(3), 23. https://doi.org/10.3390/ijns4030023