Practical Considerations for the Diagnosis and Management of Isovaleryl-CoA-Dehydrogenase Deficiency (Isovaleric Acidemia): Systematic Search and Review and Expert Opinions
Abstract
1. Introduction
2. Methods
3. Results of the Systematic Search and Review and Statements
3.1. Clinical Course
3.1.1. Early-Onset Acute Form
3.1.2. Late-Onset Chronic Form
3.1.3. Symptoms in Patients Diagnosed by Newborn Screening
3.1.4. Long-Term Clinical Course
3.2. Diagnosis
3.2.1. Baseline Laboratory Tests
3.2.2. Specialized Biochemical Investigations
3.2.3. Differential Diagnosis
3.2.4. Newborn Screening
3.2.5. Molecular Genetic Analyses and Enzyme Assays
3.3. Emergency Treatment
3.3.1. Acute Measures
3.3.2. Laboratory Tests to Monitor Emergency Treatment
3.3.3. Sick Day Management at Home
3.3.4. Perioperative Management
3.4. Long-Term Treatment
3.4.1. Long-Term Management of Symptomatic IVA
Protein Intake
Energy Intake
Pharmacotherapy
3.4.2. Monitoring of Long-Term Therapy
3.4.3. Long-Term Management of Biochemically Mild IVA
3.5. Disease Outcome
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tanaka, K.; Budd, M.; Efron, M.; Isselbacher, K. Isovaleric acidemia: A new genetic defect of leucine metabolism. Proc. Natl. Acad. Sci. USA 1966, 56, 236–242. [Google Scholar] [CrossRef]
- Moorthie, S.; Cameron, L.; Sagoo, G.S.; Bonham, J.R.; Burton, H. Systematic review and meta-analysis to estimate the birth prevalence of five inherited metabolic diseases. J. Inherit. Metab. Dis. 2014, 37, 889–898. [Google Scholar] [CrossRef]
- Mütze, U.; Garbade, S.F.; Gramer, G.; Lindner, M.; Freisinger, P.; Grünert, S.C.; Hennermann, J.; Ensenauer, R.; Thimm, E.; Zirnbauer, J.; et al. Long-term Outcomes of Individuals With Metabolic Diseases Identified Through Newborn Screening. Pediatrics 2020, 146, e20200444. [Google Scholar] [CrossRef] [PubMed]
- Schlune, A.; Riederer, A.; Mayatepek, E.; Ensenauer, R. Aspects of Newborn Screening in Isovaleric Acidemia. Int. J. Neonatal Screen. 2018, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Dionisi-Vici, C.; Deodato, F.; Roschinger, W.; Rhead, W.; Wilcken, B. ‘Classical’ organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: Long-term outcome and effects of expanded newborn screening using tandem mass spectrometry. J. Inherit. Metab. Dis. 2006, 29, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Parimoo, B.; Tanaka, K. Structural organization of the human isovaleryl-CoA dehydrogenase gene. Genomics 1993, 15, 582–590. [Google Scholar] [CrossRef]
- Ikeda, Y.; Dabrowski, C.; Tanaka, K. Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria. Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase. J. Biol. Chem. 1983, 258, 1066–1076. [Google Scholar] [CrossRef]
- Rhead, W.J.; Tanaka, K. Demonstration of a specific mitochondrial isovaleryl-CoA dehydrogenase deficiency in fibroblasts from patients with isovaleric acidemia. Proc. Natl. Acad. Sci. USA 1980, 77, 580–583. [Google Scholar] [CrossRef]
- Ribeiro, C.A.; Balestro, F.; Grando, V.; Wajner, M. Isovaleric acid reduces Na+, K+-ATPase activity in synaptic membranes from cerebral cortex of young rats. Cell Mol. Neurobiol. 2007, 27, 529–540. [Google Scholar] [CrossRef]
- Leipnitz, G.; Seminotti, B.; Amaral, A.U.; de Bortoli, G.; Solano, A.; Schuck, P.F.; Wyse, A.T.; Wannmacher, C.M.; Latini, A.; Wajner, M. Induction of oxidative stress by the metabolites accumulating in 3-methylglutaconic aciduria in cerebral cortex of young rats. Life Sci. 2008, 82, 652–662. [Google Scholar] [CrossRef]
- Villani, G.R.; Gallo, G.; Scolamiero, E.; Salvatore, F.; Ruoppolo, M. “Classical organic acidurias”: Diagnosis and pathogenesis. Clin. Exp. Med. 2017, 17, 305–323. [Google Scholar] [CrossRef] [PubMed]
- Ensenauer, R.; Vockley, J.; Willard, J.M.; Huey, J.C.; Sass, J.O.; Edland, S.D.; Burton, B.K.; Berry, S.A.; Santer, R.; Grunert, S.; et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am. J. Hum. Genet. 2004, 75, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Spirer, Z.; Swirsky-Fein, S.; Zakut, V.; Legum, C.; Bogair, N.; Charles, R.; Gil-Av, E. Acute neonatal isovaleric acidemia. A report of two cases. Isr. J. Med. Sci. 1975, 11, 1005–1010. [Google Scholar] [PubMed]
- Tsai, A.C.; Lin, H.T.; Chou, M.; Bolen, J.; Zimmerman, C.; DeMarzo, D.; Enchautegui-Colon, Y. Compound heterozygote variants: C.848A > G; p.Glu283Gly and c.890C > T; p.Ala297Val, of Isovaleric acid-CoA dehydrogenase (IVD) gene causing severe Isovaleric acidemia with hyperammonemia. Mol. Genet. Metab. Rep. 2022, 31, 100859. [Google Scholar] [CrossRef]
- Kölker, S.; Garcia-Cazorla, A.; Valayannopoulos, V.; Lund, A.M.; Burlina, A.B.; Sykut-Cegielska, J.; Wijburg, F.A.; Teles, E.L.; Zeman, J.; Dionisi-Vici, C.; et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: The initial presentation. J. Inherit. Metab. Dis. 2015, 38, 1041–1057. [Google Scholar] [CrossRef]
- Feinstein, J.A.; O’Brien, K. Acute metabolic decompensation in an adult patient with isovaleric acidemia. South. Med. J. 2003, 96, 500–503. [Google Scholar] [CrossRef]
- Vockley, J.; Ensenauer, R. Isovaleric acidemia: New aspects of genetic and phenotypic heterogeneity. Am. J. Med. Genet. Part C Semin. Med. Genet. 2006, 142c, 95–103. [Google Scholar] [CrossRef]
- Mütze, U.; Henze, L.; Gleich, F.; Lindner, M.; Grünert, S.C.; Spiekerkoetter, U.; Santer, R.; Blessing, H.; Thimm, E.; Ensenauer, R.; et al. Newborn screening and disease variants predict neurological outcome in isovaleric aciduria. J. Inherit. Metab. Dis. 2021, 44, 857–870. [Google Scholar] [CrossRef]
- Mütze, U.; Henze, L.; Schröter, J.; Gleich, F.; Lindner, M.; Grünert, S.C.; Spiekerkoetter, U.; Santer, R.; Thimm, E.; Ensenauer, R.; et al. Isovaleric aciduria identified by newborn screening: Strategies to predict disease severity and stratify treatment. J. Inherit. Metab. Dis. 2023, 46, 1063–1077. [Google Scholar] [CrossRef]
- Couce, M.L.; Aldamiz-Echevarría, L.; Bueno, M.A.; Barros, P.; Belanger-Quintana, A.; Blasco, J.; García-Silva, M.T.; Márquez-Armenteros, A.M.; Vitoria, I.; Vives, I.; et al. Genotype and phenotype characterization in a Spanish cohort with isovaleric acidemia. J. Hum. Genet. 2017, 62, 355–360. [Google Scholar] [CrossRef]
- Barends, M.; Pitt, J.; Morrissy, S.; Tzanakos, N.; Boneh, A. Biochemical and molecular characteristics of patients with organic acidaemias and urea cycle disorders identified through newborn screening. Mol. Genet. Metab. 2014, 113, 46–52. [Google Scholar] [CrossRef]
- Ensenauer, R.; Fingerhut, R.; Maier, E.M.; Polanetz, R.; Olgemöller, B.; Röschinger, W.; Muntau, A.C. Newborn screening for isovaleric acidemia using tandem mass spectrometry: Data from 1.6 million newborns. Clin. Chem. 2011, 57, 623–626. [Google Scholar] [CrossRef]
- Dercksen, M.; Duran, M.; Ijlst, L.; Mienie, L.J.; Reinecke, C.J.; Ruiter, J.P.; Waterham, H.R.; Wanders, R.J. Clinical variability of isovaleric acidemia in a genetically homogeneous population. J. Inherit. Metab. Dis. 2012, 35, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Hertecant, J.L.; Ben-Rebeh, I.; Marah, M.A.; Abbas, T.; Ayadi, L.; Ben Salem, S.; Al-Jasmi, F.A.; Al-Gazali, L.; Al-Yahyaee, S.A.; Ali, B.R. Clinical and molecular analysis of isovaleric acidemia patients in the United Arab Emirates reveals remarkable phenotypes and four novel mutations in the IVD gene. Eur. J. Med. Genet. 2012, 55, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Ozgul, R.K.; Karaca, M.; Kilic, M.; Kucuk, O.; Yucel-Yilmaz, D.; Unal, O.; Hismi, B.; Aliefendioglu, D.; Sivri, S.; Tokatli, A.; et al. Phenotypic and genotypic spectrum of Turkish patients with isovaleric acidemia. Eur. J. Med. Genet. 2014, 57, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Zaki, O.K.; Priya Doss, C.G.; Ali, S.A.; Murad, G.G.; Elashi, S.A.; Ebnou, M.S.A.; Kumar, D.T.; Khalifa, O.; Gamal, R.; El Abd, H.S.A.; et al. Genotype-phenotype correlation in patients with isovaleric acidaemia: Comparative structural modelling and computational analysis of novel variants. Hum. Mol. Genet. 2017, 26, 3105–3115. [Google Scholar] [CrossRef]
- Mohsen, A.W.; Anderson, B.D.; Volchenboum, S.L.; Battaile, K.P.; Tiffany, K.; Roberts, D.; Kim, J.J.; Vockley, J. Characterization of molecular defects in isovaleryl-CoA dehydrogenase in patients with isovaleric acidemia. Biochemistry 1998, 37, 10325–10335. [Google Scholar] [CrossRef]
- Grünert, S.C.; Wendel, U.; Lindner, M.; Leichsenring, M.; Schwab, K.O.; Vockley, J.; Lehnert, W.; Ensenauer, R. Clinical and neurocognitive outcome in symptomatic isovaleric acidemia. Orphanet J. Rare Dis. 2012, 7, 9. [Google Scholar] [CrossRef]
- Heringer, J.; Valayannopoulos, V.; Lund, A.M.; Wijburg, F.A.; Freisinger, P.; Baric, I.; Baumgartner, M.R.; Burgard, P.; Burlina, A.B.; Chapman, K.A.; et al. Impact of age at onset and newborn screening on outcome in organic acidurias. J. Inherit. Metab. Dis. 2016, 39, 341–353. [Google Scholar] [CrossRef]
- Schulze, A.; Lindner, M.; Kohlmuller, D.; Olgemoller, K.; Mayatepek, E.; Hoffmann, G.F. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: Results, outcome, and implications. Pediatrics 2003, 111, 1399–1406. [Google Scholar] [CrossRef]
- Wilcken, B.; Haas, M.; Joy, P.; Wiley, V.; Bowling, F.; Carpenter, K.; Christodoulou, J.; Cowley, D.; Ellaway, C.; Fletcher, J.; et al. Expanded newborn screening: Outcome in screened and unscreened patients at age 6 years. Pediatrics 2009, 124, e241–e248. [Google Scholar] [CrossRef]
- Lindner, M.; Gramer, G.; Haege, G.; Fang-Hoffmann, J.; Schwab, K.O.; Tacke, U.; Trefz, F.K.; Mengel, E.; Wendel, U.; Leichsenring, M.; et al. Efficacy and outcome of expanded newborn screening for metabolic diseases-report of 10 years from South-West Germany. Orphanet J. Rare Dis. 2011, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Horster, F.; Baumgartner, M.R.; Viardot, C.; Suormala, T.; Burgard, P.; Fowler, B.; Hoffmann, G.F.; Garbade, S.F.; Kolker, S.; Baumgartner, E.R. Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB). Pediatr. Res. 2007, 62, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Grunert, S.C.; Mullerleile, S.; de Silva, L.; Barth, M.; Walter, M.; Walter, K.; Meissner, T.; Lindner, M.; Ensenauer, R.; Santer, R.; et al. Propionic acidemia: Neonatal versus selective metabolic screening. J. Inherit. Metab. Dis. 2012, 35, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K. Isovaleric acidemia: Personal history, clinical survey and study of the molecular basis. Prog. Clin. Biol. Res. 1990, 321, 273–290. [Google Scholar]
- Martin-Hernandez, E.; Lee, P.J.; Micciche, A.; Grunewald, S.; Lachmann, R.H. Long-term needs of adult patients with organic acidaemias: Outcome and prognostic factors. J. Inherit. Metab. Dis. 2009, 32, 523–533. [Google Scholar] [CrossRef]
- Kimmoun, A.; Abboud, G.; Strazeck, J.; Merten, M.; Gueant, J.L.; Feillet, F. Acute decompensation of isovaleric acidemia induced by Graves’ disease. Intensive Care Med. 2008, 34, 2315–2316. [Google Scholar] [CrossRef]
- Saudubray, J.M.; Ogier, H.; Bonnefont, J.P.; Munnich, A.; Lombes, A.; Herve, F.; Mitchel, G.; The, B.P.; Specola, N.; Parvy, P.; et al. Clinical approach to inherited metabolic diseases in the neonatal period: A 20-year survey. J. Inherit. Metab. Dis. 1989, 12 (Suppl. S1), 25–41. [Google Scholar] [CrossRef]
- Attia, N.; Sakati, N.; al Ashwal, A.; al Saif, R.; Rashed, M.; Ozand, P.T. Isovaleric acidemia appearing as diabetic ketoacidosis. J. Inherit. Metab. Dis. 1996, 19, 85–86. [Google Scholar] [CrossRef]
- Kahler, S.G.; Sherwood, W.G.; Woolf, D.; Lawless, S.T.; Zaritsky, A.; Bonham, J.; Taylor, C.J.; Clarke, J.T.; Durie, P.; Leonard, J.V. Pancreatitis in patients with organic acidemias. J. Pediatr. 1994, 124, 239–243. [Google Scholar] [CrossRef]
- Ho, G.; Yonezawa, A.; Masuda, S.; Inui, K.; Sim, K.G.; Carpenter, K.; Olsen, R.K.; Mitchell, J.J.; Rhead, W.J.; Peters, G.; et al. Maternal riboflavin deficiency, resulting in transient neonatal-onset glutaric aciduria Type 2, is caused by a microdeletion in the riboflavin transporter gene GPR172B. Hum. Mutat. 2011, 32, E1976–E1984. [Google Scholar] [CrossRef]
- Rolland, M.O.; Divry, P.; Zabot, M.T.; Guibaud, P.; Gomez, S.; Lachaux, A.; Loras, I. Isolated 3-methylcrotonyl-CoA carboxylase deficiency in a 16-month-old child. J. Inherit. Metab. Dis. 1991, 14, 838–839. [Google Scholar] [CrossRef] [PubMed]
- Abdenur, J.E.; Chamoles, N.A.; Guinle, A.E.; Schenone, A.B.; Fuertes, A.N. Diagnosis of isovaleric acidaemia by tandem mass spectrometry: False positive result due to pivaloylcarnitine in a newborn screening programme. J. Inherit. Metab. Dis. 1998, 21, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Gibson, K.M.; Burlingame, T.G.; Hogema, B.; Jakobs, C.; Schutgens, R.B.; Millington, D.; Roe, C.R.; Roe, D.S.; Sweetman, L.; Steiner, R.D.; et al. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency: A new inborn error of L-isoleucine metabolism. Pediatr. Res. 2000, 47, 830–833. [Google Scholar] [CrossRef] [PubMed]
- Andresen, B.S.; Christensen, E.; Corydon, T.J.; Bross, P.; Pilgaard, B.; Wanders, R.J.; Ruiter, J.P.; Simonsen, H.; Winter, V.; Knudsen, I.; et al. Isolated 2-methylbutyrylglycinuria caused by short/branched-chain acyl-CoA dehydrogenase deficiency: Identification of a new enzyme defect, resolution of its molecular basis, and evidence for distinct acyl-CoA dehydrogenases in isoleucine and valine metabolism. Am. J. Hum. Genet. 2000, 67, 1095–1103. [Google Scholar] [CrossRef]
- Bonham, J.R.; Carling, R.S.; Lindner, M.; Franzson, L.; Zetterstrom, R.; Boemer, F.; Cerone, R.; Eyskens, F.; Vilarinho, L.; Hougaard, D.M.; et al. Raising Awareness of False Positive Newborn Screening Results Arising from Pivalate-Containing Creams and Antibiotics in Europe When Screening for Isovaleric Acidaemia. Int. J. Neonatal Screen. 2018, 4, 8. [Google Scholar] [CrossRef]
- Boemer, F.; Schoos, R.; de Halleux, V.; Kalenga, M.; Debray, F.G. Surprising causes of C5-carnitine false positive results in newborn screening. Mol. Genet. Metab. 2014, 111, 52–54. [Google Scholar] [CrossRef]
- Krieger, I.; Tanaka, K. Therapeutic effects of glycine in isovaleric acidemia. Pediatr. Res. 1976, 10, 25–29. [Google Scholar] [CrossRef]
- Ando, T.; Klingberg, W.; Ward, A.; Rasmussen, K.; Nyhan, W. Isovaleric acidemia presenting with altered metabolism of glycine. Pediatr. Res. 1971, 5, 478–486. [Google Scholar] [CrossRef]
- Therrell, B.L.; Padilla, C.D.; Borrajo, G.J.C.; Khneisser, I.; Schielen, P.C.J.I.; Knight-Madden, J.; Malherbe, H.L.; Kase, M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020–2023). Int. J. Neonatal Screen. 2024, 10, 38. [Google Scholar] [CrossRef]
- Fernández, M.R.; Besga, B.G.; Montero, A.P.; Dulín, E.Í. C5-carnitin increase in newborns due to pre-labour treatment with cefditoren pivoxil. Rev. Esp. Salud Publica 2018, 92, e201806025. [Google Scholar]
- Yamada, K.; Kobayashi, H.; Bo, R.; Takahashi, T.; Hasegawa, Y.; Nakamura, M.; Ishige, N.; Yamaguchi, S. Elevation of pivaloylcarnitine by sivelestat sodium in two children. Mol. Genet. Metab. 2015, 116, 192–194. [Google Scholar] [CrossRef] [PubMed]
- Carling, R.S.; Burden, D.; Hutton, I.; Randle, R.; John, K.; Bonham, J.R. Introduction of a Simple Second Tier Screening Test for C5 Isobars in Dried Blood Spots: Reducing the False Positive Rate for Isovaleric Acidaemia in Expanded Newborn Screening. JIMD Rep. 2018, 38, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Minkler, P.E.; Stoll, M.S.K.; Ingalls, S.T.; Hoppel, C.L. Selective and accurate C5 acylcarnitine quantitation by UHPLC-MS/MS: Distinguishing true isovaleric acidemia from pivalate derived interference. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1061–1062, 128–133. [Google Scholar] [CrossRef]
- Murko, S.; Aseman, A.D.; Reinhardt, F.; Gramer, G.; Okun, J.G.; Mütze, U.; Santer, R. Neonatal screening for isovaleric aciduria: Reducing the increasingly high false-positive rate in Germany. JIMD Rep. 2023, 64, 114–120. [Google Scholar] [CrossRef]
- Forni, S.; Fu, X.; Palmer, S.E.; Sweetman, L. Rapid determination of C4-acylcarnitine and C5-acylcarnitine isomers in plasma and dried blood spots by UPLC-MS/MS as a second tier test following flow-injection MS/MS acylcarnitine profile analysis. Mol. Genet. Metab. 2010, 101, 25–32. [Google Scholar] [CrossRef]
- Ogier de Baulny, H. Management and emergency treatments of neonates with a suspicion of inborn errors of metabolism. Semin. Neonatol. SN 2002, 7, 17–26. [Google Scholar] [CrossRef]
- Haberle, J.; Burlina, A.; Chakrapani, A.; Dixon, M.; Karall, D.; Lindner, M.; Mandel, H.; Martinelli, D.; Pintos-Morell, G.; Santer, R.; et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J. Inherit. Metab. Dis. 2019, 42, 1192–1230. [Google Scholar] [CrossRef]
- Savy, N.; Brossier, D.; Brunel-Guitton, C.; Ducharme-Crevier, L.; Du Pont-Thibodeau, G.; Jouvet, P. Acute pediatric hyperammonemia: Current diagnosis and management strategies. Hepat. Med. 2018, 10, 105–115. [Google Scholar] [CrossRef]
- Baumgartner, M.R.; Horster, F.; Dionisi-Vici, C.; Haliloglu, G.; Karall, D.; Chapman, K.A.; Huemer, M.; Hochuli, M.; Assoun, M.; Ballhausen, D.; et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J. Rare Dis. 2014, 9, 130. [Google Scholar] [CrossRef]
- Coude, F.X.; Grimber, G.; Parvy, P.; Rabier, D. Role of N-acetylglutamate and acetyl-CoA in the inhibition of ureagenesis by isovaleric acid in isolated rat hepatocytes. Biochim. Biophys. Acta 1983, 761, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Häberle, J. Clinical and biochemical aspects of primary and secondary hyperammonemic disorders. Arch. Biochem. Biophys. 2013, 536, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, B.; Vlaho, S.; Fischer, D.; Sewell, A.; Böhles, H. N-carbamylglutamate enhances ammonia detoxification in a patient with decompensated methylmalonic aciduria. Mol. Genet. Metab. 2003, 79, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Reed, C.A.; Vijay, S.; Walter, J.H.; Morris, A.A. N-carbamylglutamate for neonatal hyperammonaemia in propionic acidaemia. J. Inherit. Metab. Dis. 2008, 31 (Suppl. S2), S219–S222. [Google Scholar] [CrossRef]
- Chakrapani, A.; Valayannopoulos, V.; Segarra, N.G.; Del Toro, M.; Donati, M.A.; García-Cazorla, A.; González, M.J.; Plisson, C.; Giordano, V. Effect of carglumic acid with or without ammonia scavengers on hyperammonaemia in acute decompensation episodes of organic acidurias. Orphanet J. Rare Dis. 2018, 13, 97. [Google Scholar] [CrossRef]
- Valayannopoulos, V.; Baruteau, J.; Delgado, M.B.; Cano, A.; Couce, M.L.; Del Toro, M.; Donati, M.A.; Garcia-Cazorla, A.; Gil-Ortega, D.; Gomez-de Quero, P.; et al. Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile: A retrospective observational study. Orphanet J. Rare Dis. 2016, 11, 32. [Google Scholar] [CrossRef]
- Kasapkara, C.S.; Ezgu, F.S.; Okur, I.; Tumer, L.; Biberoglu, G.; Hasanoglu, A. N-carbamylglutamate treatment for acute neonatal hyperammonemia in isovaleric acidemia. Eur. J. Pediatr. 2011, 170, 799–801. [Google Scholar] [CrossRef]
- Burlina, A.; Bettocchi, I.; Biasucci, G.; Bordugo, A.; Gasperini, S.; La Spina, L.; Maines, E.; Meli, C.; Menni, F.; Paci, S.; et al. Long-term use of carglumic acid in methylmalonic aciduria, propionic aciduria and isovaleric aciduria in Italy: A qualitative survey. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5136–5143. [Google Scholar] [CrossRef]
- Häberle, J. Clinical practice: The management of hyperammonemia. Eur. J. Pediatr. 2011, 170, 21–34. [Google Scholar] [CrossRef]
- Picca, S.; Dionisi-Vici, C.; Bartuli, A.; De Palo, T.; Papadia, F.; Montini, G.; Materassi, M.; Donati, M.A.; Verrina, E.; Schiaffino, M.C.; et al. Short-term survival of hyperammonemic neonates treated with dialysis. Pediatr. Nephrol. 2015, 30, 839–847. [Google Scholar] [CrossRef]
- Arbeiter, A.K.; Kranz, B.; Wingen, A.M.; Bonzel, K.E.; Dohna-Schwake, C.; Hanssler, L.; Neudorf, U.; Hoyer, P.F.; Büscher, R. Continuous venovenous haemodialysis (CVVHD) and continuous peritoneal dialysis (CPD) in the acute management of 21 children with inborn errors of metabolism. Nephrol. Dial. Transplant. 2010, 25, 1257–1265. [Google Scholar] [CrossRef]
- Celik, M.; Akdeniz, O.; Ozgun, N.; Ipek, M.S.; Ozbek, M.N. Short-term results of continuous venovenous haemodiafiltration versus peritoneal dialysis in 40 neonates with inborn errors of metabolism. Eur. J. Pediatr. 2019, 178, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Huidekoper, H.H.; Ackermans, M.T.; Ruiter, A.F.; Sauerwein, H.P.; Wijburg, F.A. Endogenous glucose production from infancy to adulthood: A non-linear regression model. Arch. Dis. Child. 2014, 99, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Prietsch, V.; Lindner, M.; Zschocke, J.; Nyhan, W.L.; Hoffmann, G.F. Emergency management of inherited metabolic diseases. J. Inherit. Metab. Dis. 2002, 25, 531–546. [Google Scholar] [CrossRef] [PubMed]
- Roe, C.R.; Millington, D.S.; Maltby, D.A.; Kahler, S.G.; Bohan, T.P. L-carnitine therapy in isovaleric acidemia. J. Clin. Invest. 1984, 74, 2290–2295. [Google Scholar] [CrossRef]
- Shigematsu, Y.; Sudo, M.; Momoi, T.; Inoue, Y.; Suzuki, Y.; Kameyama, J. Changing plasma and urinary organic acid levels in a patient with isovaleric acidemia during an attack. Pediatr. Res. 1982, 16, 771–775. [Google Scholar] [CrossRef]
- Velazquez, A.; Prieto, E.C. Glycine in acute management of isovalericacidaemia. Lancet 1980, 1, 313–314. [Google Scholar] [CrossRef]
- Cohn, R.M.; Yudkoff, M.; Rothman, R.; Segal, S. Isovaleric acidemia: Use of glycine therapy in neonates. N. Engl. J. Med. 1978, 299, 996–999. [Google Scholar] [CrossRef]
- Berry, G.T.; Yudkoff, M.; Segal, S. Isovaleric acidemia: Medical and neurodevelopmental effects of long-term therapy. J. Pediatr. 1988, 113, 58–64. [Google Scholar] [CrossRef]
- Häberle, J.; Chakrapani, A.; Ah Mew, N.; Longo, N. Hyperammonaemia in classic organic acidaemias: A review of the literature and two case histories. Orphanet J. Rare Dis. 2018, 13, 219. [Google Scholar] [CrossRef]
- Forny, P.; Hörster, F.; Ballhausen, D.; Chakrapani, A.; Chapman, K.A.; Dionisi-Vici, C.; Dixon, M.; Grünert, S.C.; Grunewald, S.; Haliloglu, G.; et al. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J. Inherit. Metab. Dis. 2021, 44, 566–592. [Google Scholar] [CrossRef]
- Ruzkova, K.; Weingarten, T.N.; Larson, K.J.; Friedhoff, R.J.; Gavrilov, D.K.; Sprung, J. Anesthesia and organic aciduria: Is the use of lactated Ringer’s solution absolutely contraindicated? Pediatr. Anaesth. 2015, 25, 807–817. [Google Scholar] [CrossRef]
- Thomas, M.; Morrison, C.; Newton, R.; Schindler, E. Consensus statement on clear fluids fasting for elective pediatric general anesthesia. Paediatr. Anaesth. 2018, 28, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Anthony, T.G.; McDaniel, B.J.; Byerley, R.L.; McGrath, B.C.; Cavener, D.R.; McNurlan, M.A.; Wek, R.C. Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J. Biol. Chem. 2004, 279, 36553–36561. [Google Scholar] [CrossRef] [PubMed]
- Schriever, S.C.; Deutsch, M.J.; Adamski, J.; Roscher, A.A.; Ensenauer, R. Cellular signaling of amino acids towards mTORC1 activation in impaired human leucine catabolism. J. Nutr. Biochem. 2013, 24, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Krasnow, S.M.; Roth-Carter, Q.R.; Levasseur, P.R.; Braun, T.P.; Grossberg, A.J.; Marks, D.L. Hypothalamic signaling in anorexia induced by indispensable amino acid deficiency. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E1446–E1458. [Google Scholar] [CrossRef]
- Pinto, A.; Daly, A.; Evans, S.; Almeida, M.F.; Assoun, M.; Belanger-Quintana, A.; Bernabei, S.; Bollhalder, S.; Cassiman, D.; Champion, H.; et al. Dietary practices in isovaleric acidemia: A European survey. Mol. Genet. Metab. Rep. 2017, 12, 16–22. [Google Scholar] [CrossRef]
- WHO. Protein and Amino Acid Requirements in Human Nutrition; Report of a Joint WHO/FAO/UNU Expert Consultation; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- EFSA Panel on Dietetic Products Nutrition Allergies. Scientific Opinion on Dietary Reference Values for protein. EFSA J. 2012, 10, 2557. [Google Scholar] [CrossRef]
- Marriage, B. Nutrition management of patients with inherited disorders of branched-chain amino acid metabolism. In Nutrition Management of Patients with Inherited Metabolic Disorders; Acosta, P.B., Ed.; Jones and Bartlett: Burlington, MA, USA, 2010; pp. 175–236. [Google Scholar]
- FAO/WHO/UNU. Human energy requirements. Report of a Joint FAO/WHO/UNU Expert Consultation. In FAO Food and Nutrition Technical Report Series No. 1.; Food and Agriculture Organization: Rome, Italy, 2004. [Google Scholar]
- Bodamer, O.A.; Hoffmann, G.F.; Visser, G.H.; Janecke, A.; Linderkamp, O.; Leonard, J.V.; Fasoli, L.; Rating, D. Assessment of energy expenditure in metabolic disorders. Eur. J. Pediatr. 1997, 156 (Suppl. S1), S24–S28. [Google Scholar] [CrossRef]
- Chalmers, R.A.; Roe, C.R.; Stacey, T.E.; Hoppel, C.L. Urinary excretion of l-carnitine and acylcarnitines by patients with disorders of organic acid metabolism: Evidence for secondary insufficiency of l-carnitine. Pediatr. Res. 1984, 18, 1325–1328. [Google Scholar] [CrossRef]
- Stanley, C.A.; Berry, G.T.; Bennett, M.J.; Willi, S.M.; Treem, W.R.; Hale, D.E. Renal handling of carnitine in secondary carnitine deficiency disorders. Pediatr. Res. 1993, 34, 89–97. [Google Scholar] [CrossRef]
- Mayatepek, E.; Kurczynski, T.W.; Hoppel, C.L. Long-term L-carnitine treatment in isovaleric acidemia. Pediatr. Neurol. 1991, 7, 137–140. [Google Scholar] [CrossRef]
- Rocher, F.; Caruba, C.; Broly, F.; Lebrun, C. L-carnitine treatment and fish odor syndrome: An unwaited adverse effect. Rev. Neurol. 2011, 167, 541–544. [Google Scholar] [CrossRef]
- Yudkoff, M.; Cohn, R.M.; Puschak, R.; Rothman, R.; Segal, S. Glycine therapy in isovaleric acidemia. J. Pediatr. 1978, 92, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, R.A.; de Sousa, C.; Tracey, B.M.; Stacey, T.E.; Weaver, C.; Bradley, D. L-carnitine and glycine therapy in isovaleric acidaemia. J. Inherit. Metab. Dis. 1985, 8 (Suppl. S2), 141–142. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, D.; Derks, T.G.; van Rijn, M.; de Groot, M.J.; MacDonald, A.; Heiner-Fokkema, M.R.; van Spronsen, F.J. Single amino acid supplementation in aminoacidopathies: A systematic review. Orphanet J. Rare Dis. 2014, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Itoh, T.; Ito, T.; Ohba, S.; Sugiyama, N.; Mizuguchi, K.; Yamaguchi, S.; Kidouchi, K. Effect of carnitine administration on glycine metabolism in patients with isovaleric acidemia: Significance of acetylcarnitine determination to estimate the proper carnitine dose. Tohoku J. Exp. Med. 1996, 179, 101–109. [Google Scholar] [CrossRef]
- Kölker, S.; Valayannopoulos, V.; Burlina, A.B.; Sykut-Cegielska, J.; Wijburg, F.A.; Teles, E.L.; Zeman, J.; Dionisi-Vici, C.; Barić, I.; Karall, D.; et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: The evolving clinical phenotype. J. Inherit. Metab. Dis. 2015, 38, 1059–1074. [Google Scholar] [CrossRef]
- Nizon, M.; Ottolenghi, C.; Valayannopoulos, V.; Arnoux, J.B.; Barbier, V.; Habarou, F.; Desguerre, I.; Boddaert, N.; Bonnefont, J.P.; Acquaviva, C.; et al. Long-term neurological outcome of a cohort of 80 patients with classical organic acidurias. Orphanet J. Rare Dis. 2013, 8, 148. [Google Scholar] [CrossRef]
Baseline Laboratory Tests |
---|
Metabolic acidosis with elevated anion gap |
Elevated ketone bodies (particularly in newborns) |
Elevated lactate concentration |
Hyperammonemia |
Leukopenia, thrombocytopenia, pancytopenia |
Emergency Treatment |
---|
Rehydration |
Anabolic therapy through intravenous high-energy supply (glucose, insulin, lipids) |
Decrease or stop protein intake |
Intravenous supplementation of L-carnitine |
Oral supplementation of L-glycine |
Ammonia scavengers and carglumic acid in hyperammonemia |
Extracorporeal detoxification (in case of severe hyperammonemia and insufficient effect of conservative treatment) according to the UCD guideline [58] |
Age | 1 m | 2 m | 3 m | 6–12 m | 1–10 y | 11–16 y | >16 y |
---|---|---|---|---|---|---|---|
(g/kg·d) | 1.77 | 1.50 | 1.36 | 1.31 | 0.91–1.14 | 0.84 (f)–0.91 (m) | 0.83 (f)–0.86 (m) |
Age Groups | Mean Leucine Requirements FAO/WHO/UNU 2007 [88,89] for the Healthy Population (mg/kg·d) | Leucine for Patients with Disorders of BCAA Metabolism [90] (mg/kg·d) |
---|---|---|
0–12 m | 6 m: 73 | 0–6 m: 65–120 7–12 m: 50–90 |
1.0–2.9 y | 54 | 40–90 |
3.0–10.9 y | 44 | 40–60 |
11.0–14.9 y | 44 | 11.0–12.9 y: 40–60 13.0–14.9 y: 30–60 |
15.0–18.0 y | 42 | 30–60 |
>18.0 y | 39 | 30–60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thimm, E.; Riederer, A.; Vockley, J.; Dobbelaere, D.; Williams, M.; MacDonald, A.; Dokoupil, K.; Schatz, U.A.; Ensenauer, R. Practical Considerations for the Diagnosis and Management of Isovaleryl-CoA-Dehydrogenase Deficiency (Isovaleric Acidemia): Systematic Search and Review and Expert Opinions. Int. J. Neonatal Screen. 2025, 11, 92. https://doi.org/10.3390/ijns11040092
Thimm E, Riederer A, Vockley J, Dobbelaere D, Williams M, MacDonald A, Dokoupil K, Schatz UA, Ensenauer R. Practical Considerations for the Diagnosis and Management of Isovaleryl-CoA-Dehydrogenase Deficiency (Isovaleric Acidemia): Systematic Search and Review and Expert Opinions. International Journal of Neonatal Screening. 2025; 11(4):92. https://doi.org/10.3390/ijns11040092
Chicago/Turabian StyleThimm, Eva, Anselma Riederer, Jerry Vockley, Dries Dobbelaere, Monique Williams, Anita MacDonald, Katharina Dokoupil, Ulrich A. Schatz, and Regina Ensenauer. 2025. "Practical Considerations for the Diagnosis and Management of Isovaleryl-CoA-Dehydrogenase Deficiency (Isovaleric Acidemia): Systematic Search and Review and Expert Opinions" International Journal of Neonatal Screening 11, no. 4: 92. https://doi.org/10.3390/ijns11040092
APA StyleThimm, E., Riederer, A., Vockley, J., Dobbelaere, D., Williams, M., MacDonald, A., Dokoupil, K., Schatz, U. A., & Ensenauer, R. (2025). Practical Considerations for the Diagnosis and Management of Isovaleryl-CoA-Dehydrogenase Deficiency (Isovaleric Acidemia): Systematic Search and Review and Expert Opinions. International Journal of Neonatal Screening, 11(4), 92. https://doi.org/10.3390/ijns11040092