Neonatal Screening for Congenital Adrenal Hyperplasia in Guangzhou: 7 Years of Experience
Abstract
1. Introduction
2. Subjects and Methods
2.1. Subjects
2.2. CAH Newborn Screening Program
2.3. Statistical Analysis
3. Results
3.1. The Incidence and Clinical Manifestations of CAH
3.2. Analysis of CYP21A2 Gene Mutations
3.3. False-Positive Cases
3.4. False-Negative Cases
3.5. Establishment and Application of New 17OHP Concentration Cutoffs
4. Discussion
4.1. Regional Variations in CAH Incidence Rates and Methodological Considerations in Screening
4.2. Strategies and Constraints in Threshold Optimization
4.3. Analysis of False Negative Cases
4.4. Types and Frequencies of Gene Mutations in CAH
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hannah-Shmouni, F.; Chen, W.; Merke, D.P. Genetics of Congenital Adrenal Hyperplasia. Endocrinol. Metab. Clin. N. Am. 2017, 46, 435–458. [Google Scholar] [CrossRef]
- Auer, M.K.; Nordenstrom, A.; Lajic, S.; Reisch, N. Congenital adrenal hyperplasia. Lancet 2023, 401, 10372. [Google Scholar] [CrossRef]
- Gidlof, S.; Wedell, A.; Guthenberg, C.; von Dobeln, U.; Nordenstrom, A. Nationwide neonatal screening for congenital adrenal hyperplasia in sweden: A 26-year longitudinal prospective population-based study. JAMA Pediatr. 2014, 168, 567–574. [Google Scholar] [CrossRef] [PubMed]
- der Grinten, H.L.C.-V.; Speiser, P.W.; Ahmed, S.F.; Arlt, W.; Auchus, R.J.; Falhammar, H.; Fluck, C.E.; Guasti, L.; Huebner, A.; Kortmann, B.B.M.; et al. Congenital Adrenal Hyperplasia-Current Insights in Pathophysiology, Diagnostics, and Management. Endocr. Rev. 2022, 43, 91–159. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Zambrana, A.N.; Sheets, L.R. Ethnic and National Differences in Congenital Adrenal Hyperplasia Incidence: A Systematic Review and Meta-Analysis. Horm. Res. Paediatr. 2023, 96, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Tang, F.; Feng, Y.; Li, B.; Jia, X.; Tang, C.; Liu, S.; Huang, Y. The adjustment of 17-hydroxyprogesterone cut-off values for congenital adrenal hyperplasia neonatal screening by GSP according to gestational age and age at sampling. J. Pediatr. Endocrinol. Metab. 2019, 32, 1253–1258. [Google Scholar] [CrossRef]
- Li, Z.; Huang, L.; Du, C.; Zhang, C.; Zhang, M.; Liang, Y.; Luo, X. Analysis of the Screening Results for Congenital Adrenal Hyperplasia Involving 7.85 Million Newborns in China: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2021, 12, 624507. [Google Scholar] [CrossRef]
- Speiser, P.W.; Chawla, R.; Chen, M.; Diaz-Thomas, A.; Finlayson, C.; Rutter, M.M.; Sandberg, D.E.; Shimy, K.; Talib, R.; Cerise, J.; et al. Newborn Screening Protocols and Positive Predictive Value for Congenital Adrenal Hyperplasia Vary across the United States. Int. J. Neonatal Screen. 2020, 6, 37. [Google Scholar] [CrossRef]
- Castro, S.M.; Wiest, P.; Spritzer, P.M.; Kopacek, C. The impact of neonatal 17-hydroxyprogesterone cutoff determination in a public newborn screening program for congenital adrenal hyperplasia in Southern Brazil: 3 years’ experience. Endocr. Connect. 2023, 12, e230162. [Google Scholar] [CrossRef]
- Lind-Holst, M.; Baekvad-Hansen, M.; Berglund, A.; Cohen, A.S.; Melgaard, L.; Skogstrand, K.; Duno, M.; Main, K.M.; Hougaard, D.M.; Gravholt, C.H.; et al. Neonatal Screening for Congenital Adrenal Hyperplasia in Denmark: 10 Years of Experience. Horm. Res. Paediatr. 2022, 95, 35–42. [Google Scholar] [CrossRef]
- Zetterstrom, R.H.; Karlsson, L.; Falhammar, H.; Lajic, S.; Nordenstrom, A. Update on the Swedish Newborn Screening for Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency. Int. J. Neonatal Screen. 2020, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Eshragh, N.; Doan, L.V.; Connelly, K.J.; Denniston, S.; Willis, S.; LaFranchi, S.H. Outcome of Newborn Screening for Congenital Adrenal Hyperplasia at Two Time Points. Horm. Res. Paediatr. 2020, 93, 128–136. [Google Scholar] [CrossRef]
- Conlon, T.A.; Hawkes, C.P.; Brady, J.J.; Loeber, J.G.; Murphy, N. International Newborn Screening Practices for the Early Detection of Congenital Adrenal Hyperplasia. Horm. Res. Paediatr. 2024, 97, 113–125. [Google Scholar] [CrossRef]
- Yoon, Y.A.; Woo, S.; Kim, M.S.; Kim, B.; Choi, Y.J. Establishing 17-Hydroxyprogesterone Cutoff Values for Congenital Adrenal Hyperplasia in Preterm, Low Birth Weight, and Sick Newborns. Exp. Clin. Endocrinol. Diabetes 2023, 131, 216–221. [Google Scholar] [CrossRef]
- de Hora, M.R.; Heather, N.L.; Webster, D.; Albert, B.B.; Hofman, P.L. Birth Weight- or Gestational Age-adjusted Second-tier LCMSMS Cutoffs Improve Newborn Screening for CAH in New Zealand. J. Clin. Endocrinol. Metab. 2021, 106, e3390–e3399. [Google Scholar] [CrossRef] [PubMed]
- Lai, F.; Srinivasan, S.; Wiley, V. Evaluation of a Two-Tier Screening Pathway for Congenital Adrenal Hyperplasia in the New South Wales Newborn Screening Programme. Int. J. Neonatal Screen. 2020, 6, 63. [Google Scholar] [CrossRef]
- Stroek, K.; Ruiter, A.; van der Linde, A.; Ackermans, M.; Bouva, M.J.; Engel, H.; Jakobs, B.; Kemper, E.A.; van den Akker, E.L.T.; van Albada, M.E.; et al. Second-tier Testing for 21-Hydroxylase Deficiency in the Netherlands: A Newborn Screening Pilot Study. J. Clin. Endocrinol. Metab. 2021, 106, e4487–e4496. [Google Scholar] [CrossRef]
- New, M.I.; Abraham, M.; Gonzalez, B.; Dumic, M.; Razzaghy-Azar, M.; Chitayat, D.; Sun, L.; Zaidi, M.; Wilson, R.C.; Yuen, T. Genotype-phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proc. Natl. Acad. Sci. USA 2013, 110, 2611–2616. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yu, Y.; Ye, J.; Han, L.; Qiu, W.; Zhang, H.; Liang, L.; Gong, Z.; Wang, L.; Gu, X. 21-hydroxylase deficiency-induced congenital adrenal hyperplasia in 230 Chinese patients: Genotype-phenotype correlation and identification of nine novel mutations. Steroids 2016, 108, 47–55. [Google Scholar] [CrossRef]
- Lee, H.H.; Lee, Y.J.; Wang, Y.M.; Chao, H.T.; Niu, D.M.; Chao, M.C.; Tsai, F.J.; Lo, F.S.; Lin, S.J. Low frequency of the CYP21A2 deletion in ethnic Chinese (Taiwanese) patients with 21-hydroxylase deficiency. Mol. Genet. Metab. 2008, 93, 450–457. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, L.; Lu, Z. Molecular diagnosis of Chinese patients with 21-hydroxylase deficiency and analysis of genotype-phenotype correlations. J. Int. Med. Res. 2017, 45, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Yin, X.; Cheng, J.; Cai, Y.; Wu, D.; Feng, Z.; Liu, L. Clinical presentation and mutational spectrum in a series of 166 patients with classical 21-hydroxylase deficiency from South China. Clin. Chim. Acta 2018, 486, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Islam, B.; D’Atri, V.; Sgobba, M.; Poojari, C.; Sun, L.; Yuen, T.; Zaidi, M.; New, M.I. Structure-phenotype correlations of human CYP21A2 mutations in congenital adrenal hyperplasia. Proc. Natl. Acad. Sci. USA 2013, 110, 2605–2610. [Google Scholar] [CrossRef] [PubMed]
- Held, P.K.; Bird, I.M.; Heather, N.L. Newborn Screening for Congenital Adrenal Hyperplasia: Review of Factors Affecting Screening Accuracy. Int. J. Neonatal Screen. 2020, 6, 67. [Google Scholar] [CrossRef]

| Positive | Confirmed | FP | Unscreened | CAH | Low | High | |||
|---|---|---|---|---|---|---|---|---|---|
| Year | n | Cases (n) | Cases (n) | PPV (%) | Rate (%) | CAH (n) | Incidence | 95% CI | 95% CI |
| 2018 | 58,076 | 216 | 3 | 1.4% | 0.37% | 2 | / | / | / |
| 2019 | 78,665 | 189 | 3 | 1.6% | 0.24% | 5 | / | / | / |
| 2020 | 72,617 | 189 | 6 | 3.2% | 0.25% | 3 | / | / | / |
| 2021 | 134,051 | 507 | 5 | 1.0% | 0.37% | 0 | / | / | / |
| 2022 | 157,108 | 683 | 3 | 0.4% | 0.43% | 1 NC | 1/52,369 | 0 | 1/24,570 |
| 2023 | 148,162 | 592 | 9 | 1.5% | 0.39% | 0 | 1/16,462 | 1/47,619 | 1/9958 |
| 2024 | 169,738 | 731 | 11 | 1.6% | 0.42% | 1 NC; 1 3β | 1/15,431 | 1/37,722 | 1/9699 |
| Total * | 475,008 | 2006 | 23 | 1.2% | 0.42% | 3 | 1/20,653 | 1/34,928 | 1/14,661 |
| Variant | Alleles (n) | Allele Frequency | Alleles (n, SW-CAH) | Allele Frequency (SW-CAH) | Alleles (n, SV-CAH) | Allele Frequency (SV-CAH) |
|---|---|---|---|---|---|---|
| p.Ser97fs*12 | 25 | 33.3% | 20 | 38.5% | 5 | 21.7% |
| p.Ile173Asn | 16 | 21.3% | 8 | 15.4% | 8 | 34.8% |
| Large deletions # | 10 | 13.3% | 7 | 13.5% | 3 | 13.0% |
| p.Arg357Trp | 6 | 8.0% | 5 | 9.6% | 1 | 4.3% |
| p.Gln319* | 3 | 4.0% | 3 | 5.8% | 0 | 0.0% |
| p.Gly111Valfs*21 | 3 | 4.0% | 2 | 3.8% | 1 | 4.3% |
| p.Arg484Profs*58 | 3 | 4.0% | 3 | 5.8% | 0 | 0.0% |
| p.G425S | 2 | 2.7% | 0 | 0.0% | 2 | 8.7% |
| p.Leu308Phefs*6 | 2 | 2.7% | 2 | 3.8% | 0 | 0.0% |
| Other variants ## | 5 | 6.7% | 2 | 3.8% | 3 | 13.0% |
| Total | 75 | 100.00% | 52 | 100.00% | 23 | 100.00% |
| Age at | Current Reference Values | Proposed Reference Values | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Collection | 17-OHP | Positive | Confirmed | FP | 17-OHP | Positive | Confirmed | FP | ||||
| GA (Weeks) | Time (h) | n | (nmol/L) | Cases (n) | Cases * (n) | PPV (%) | Rate (%) | (nmol/L) | Cases (n) | Cases * (n) | PPV (%) | Rate (%) |
| <32 | 5845 | 60 | 199 | 0 | 0.0% | 3.40% | 110 | 30 | 0 | 0.0% | 0.51% | |
| 32–36 | 24,594 | 35 | 541 | 2 | 0.4% | 2.19% | 50 | 169 | 2 | 1.2% | 0.68% | |
| 36–37 | 24,409 | 19 | 430 | 1 | 0.2% | 1.76% | 25 | 134 | 1 | 0.7% | 0.54% | |
| ≥37 | 24–48 | 201,659 | 19 | 481 | 10 | 2.1% | 0.23% | 17 | 901 | 11 | 1.2% | 0.44% |
| ≥48 | 561,910 | 14 | 1452 | 26 | 1.8% | 0.25% | 14 | 1452 | 26 | 1.8% | 0.25% | |
| Total | 818,417 | - | 3103 | 39 | 1.3% | 0.37% | - | 2686 | 40 | 1.5% | 0.32% | |
| GA, Weeks | Age at Collection Time, h | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Total | 24–48 | 48–72 | 72–168 | ≥168 | ||||||
| n | 99.5th | n1 | 99.5th | n2 | 99.5th | n3 | 99.5th | n4 | 99.5th | |
| <32 | 5845 | 112.5 | 192 | 134.1 | 932 | 100.1 | 2399 | 120.5 | 2322 | 111.1 |
| 32–36 | 24,594 | 53.9 | 2897 | 53.4 | 8461 | 55.5 | 10,789 | 53.4 | 2447 | 44.7 |
| 36–37 | 24,409 | 25.2 | 5009 | 28.8 | 9732 | 24.3 | 8994 | 23.5 | 674 | 27.9 |
| 37–42 | 763,250 | 14 | 201,600 | 16.5 | 326,832 | 12.8 | 227,755 | 12 | 7063 | 14.7 |
| ≥42 | 319 | 12.7 | 59 | / | 127 | 11 | 128 | 10.9 | 5 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Xie, T.; Jiang, X.; Tang, F.; Tan, M.; Chen, Q.; Liu, S.; Huang, Y.; Tao, L. Neonatal Screening for Congenital Adrenal Hyperplasia in Guangzhou: 7 Years of Experience. Int. J. Neonatal Screen. 2025, 11, 116. https://doi.org/10.3390/ijns11040116
Jia X, Xie T, Jiang X, Tang F, Tan M, Chen Q, Liu S, Huang Y, Tao L. Neonatal Screening for Congenital Adrenal Hyperplasia in Guangzhou: 7 Years of Experience. International Journal of Neonatal Screening. 2025; 11(4):116. https://doi.org/10.3390/ijns11040116
Chicago/Turabian StyleJia, Xuefang, Ting Xie, Xiang Jiang, Fang Tang, Minyi Tan, Qianyu Chen, Sichi Liu, Yonglan Huang, and Li Tao. 2025. "Neonatal Screening for Congenital Adrenal Hyperplasia in Guangzhou: 7 Years of Experience" International Journal of Neonatal Screening 11, no. 4: 116. https://doi.org/10.3390/ijns11040116
APA StyleJia, X., Xie, T., Jiang, X., Tang, F., Tan, M., Chen, Q., Liu, S., Huang, Y., & Tao, L. (2025). Neonatal Screening for Congenital Adrenal Hyperplasia in Guangzhou: 7 Years of Experience. International Journal of Neonatal Screening, 11(4), 116. https://doi.org/10.3390/ijns11040116

