Newborn Screening for Metachromatic Leukodystrophy: A Systematic Literature Review
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Publication Eligibility
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Availability of Assays for MLD Diagnosis and Screening, NBS Algorithm Design
3.2. Feasibility of Multi-Tier NBS Programs for the Detection of MLD
3.2.1. Retrospective Studies
3.2.2. Prospective Studies
3.3. Confirmatory Diagnostics and Clinical Care Pathways
3.4. Scalability and Cost-Effectiveness of NBS for MLD
3.5. Benefits of Early Treatment
3.5.1. Arsa-Cel Treatment
3.5.2. Allogeneic Hematopoietic Stem Cell Transplantation
3.6. Summary
4. Discussion
4.1. Screening Assays
4.2. Confirmatory Diagnostics and Prediction of Subtype
4.3. Prospective, Population-Based NBS Programs for MLD
4.4. Improved Health Outcomes from Early Identification
4.5. Balancing Harm and Benefit of NBS for MLD
4.6. Limitations
4.7. Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gomez-Ospina, N. Arylsulfatase A deficiency. In GeneReviews; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; Updated 2024; University of Washington: Seattle, WA, USA, 2006. [Google Scholar]
- Asbreuk, M.; Schoenmakers, D.H.; Adang, L.A.; Beerepoot, S.; Bergner, C.; Bley, A.; Boelens, J.J.; Bugiani, M.; Calbi, V.; García-Cazorla, À.; et al. Metachromatic leukodystrophy: New therapy advancements and emerging research directions. Neurology 2025, 105, e213817. [Google Scholar] [CrossRef]
- Gieselmann, V.; Krägeloh-Mann, I. Metachromatic leukodystrophy—An update. Neuropediatrics 2010, 41, 1–6. [Google Scholar] [CrossRef]
- Chang, S.C.; Bergamasco, A.; Bonnin, M.; Bisonó, T.A.; Moride, Y. A systematic review on the birth prevalence of metachromatic leukodystrophy. Orphanet J. Rare Dis. 2024, 19, 80. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.J.; Kelly, N.; Paleologos, K.; McDermott, J.; Gelb, M.H.; Wasserstein, M. Screenplus: An assay-based multi-tiered testing model for expanded NBS. Mol. Genet. Metab. 2025, 144, 108683. [Google Scholar] [CrossRef]
- Fumagalli, F.; Zambon, A.A.; Rancoita, P.M.V.; Baldoli, C.; Canale, S.; Spiga, I.; Medaglini, S.; Penati, R.; Facchini, M.; Ciotti, F.; et al. Metachromatic leukodystrophy: A single-center longitudinal study of 45 patients. J. Inherit. Metab. Dis. 2021, 44, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Kehrer, C.; Elgün, S.; Raabe, C.; Böhringer, J.; Beck-Wödl, S.; Bevot, A.; Kaiser, N.; Schöls, L.; Krägeloh-Mann, I.; Groeschel, S. Association of age at onset and first symptoms with disease progression in patients with metachromatic leukodystrophy. Neurology 2021, 96, e255–e266. [Google Scholar] [CrossRef] [PubMed]
- Cesani, M.; Lorioli, L.; Grossi, S.; Amico, G.; Fumagalli, F.; Spiga, I.; Filocamo, M.; Biffi, A. Mutation update of ARSA and PSAP genes causing metachromatic leukodystrophy. Hum. Mutat. 2016, 37, 16–27. [Google Scholar] [CrossRef]
- Santhanakumaran, V.; Groeschel, S.; Harzer, K.; Kehrer, C.; Elgün, S.; Beck-Wödl, S.; Hengel, H.; Schöls, L.; Haack, T.B.; Krägeloh-Mann, I.; et al. Predicting clinical phenotypes of metachromatic leukodystrophy based on the arylsulfatase A activity and the ARSA genotype?–Chances and challenges. Mol. Genet. Metab. 2022, 137, 273–282, Erratum in Mol. Genet. Metab. 2023, 138, 107372. [Google Scholar] [CrossRef]
- Trinidad, M.; Hong, X.; Froelich, S.; Daiker, J.; Sacco, J.; Nguyen, H.P.; Campagna, M.; Suhr, D.; Suhr, T.; LeBowitz, J.H.; et al. Predicting disease severity in metachromatic leukodystrophy using protein activity and a patient phenotype matrix. Genome Biol. 2023, 24, 172. [Google Scholar] [CrossRef]
- Laugwitz, L.; Schoenmakers, D.H.; Adang, L.A.; Beck-Woedl, S.; Bergner, C.; Bernard, G.; Bley, A.; Boyer, A.; Calbi, V.; Dekker, H.; et al. Newborn screening in metachromatic leukodystrophy–European consensus-based recommendations on clinical management. Eur. J. Paediatr. Neurol. 2024, 49, 141–154. [Google Scholar] [CrossRef]
- Harrington, M.; Whalley, D.; Twiss, J.; Rushton, R.; Martin, S.; Huynh, L.; Yang, H. Insights into the natural history of metachromatic leukodystrophy from interviews with caregivers. Orphanet J. Rare Dis. 2019, 14, 89. [Google Scholar] [CrossRef] [PubMed]
- Eichler, F.; Sevin, C.; Barth, M.; Pang, F.; Howie, K.; Walz, M.; Wilds, A.; Calcagni, C.; Chanson, C.; Campbell, L. Understanding caregiver descriptions of initial signs and symptoms to improve diagnosis of metachromatic leukodystrophy. Orphanet J. Rare Dis. 2022, 17, 370. [Google Scholar] [CrossRef]
- Mohajer, A.; Sevagamoorthy, A.; Bean, K.; Mutua, S.; Pang, F.; Adang, L.A. Characterizing diagnostic delays in metachromatic leukodystrophy: A real-world data approach. J. Inherit. Metab. Dis. 2025, 48, e70049. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, F.; Calbi, V.; Gallo, V.; Zambon, A.A.; Recupero, S.; Ciotti, F.; Adang, L.A. Long-term effects of atidarsagene autotemcel for metachromatic leukodystrophy. N. Engl. J. Med. 2025, 392, 1609–1620. [Google Scholar] [CrossRef] [PubMed]
- Horgan, C.; Watts, K.; Ram, D.; Rust, S.; Hutton, R.; Jones, S.; Wynn, R. A retrospective cohort study of Libmeldy (atidarsagene autotemcel) for MLD: What we have accomplished and what opportunities lie ahead. JIMD Rep. 2023, 64, 346–352. [Google Scholar] [CrossRef]
- Adang, L.A.; Bonkowsky, J.L.; Boelens, J.J.; Mallack, E.; Ahrens-Nicklas, R.; Bernat, J.A.; Bley, A.; Burton, B.; Darling, A.; Eichler, F.; et al. Consensus guidelines for the monitoring and management of metachromatic leukodystrophy in the United States. Cytotherapy 2024, 26, 739–748. [Google Scholar] [CrossRef]
- Biffi, A.; Montini, E.; Lorioli, L.; Cesani, M.; Fumagalli, F.; Plati, T.; Baldoli, C.; Martino, S.; Calabria, A.; Canale, S.; et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013, 341, 1233158. [Google Scholar] [CrossRef]
- Sessa, M.; Lorioli, L.; Fumagalli, F.; Acquati, S.; Redaelli, D.; Baldoli, C.; Canale, S.; Lopez, I.D.; Morena, F.; Calabria, A.; et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: AN ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet 2016, 388, 476–487. [Google Scholar] [CrossRef]
- US Food and Drug Administration. FDA Approves First Gene Therapy for Children with Metachromatic Leukodystrophy [Press Release] 2024. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapy-children-metachromatic-leukodystrophy (accessed on 1 August 2025).
- National Institute for Health and Care Excellence. Atidarsagene Autotemcel for Treating Metachromatic Leukodystrophy 2022. Available online: https://www.nice.org.uk/guidance/hst18 (accessed on 1 August 2025).
- European Medicines Agency. Libmeldy: European Public Assessment Report 20220. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/libmeldy (accessed on 1 August 2025).
- Beschle, J.; Döring, M.; Kehrer, C.; Raabe, C.; Bayha, U.; Strölin, M.; Böhringer, J.; Bevot, A.; Kaiser, N.; Bender, B.; et al. Early clinical course after hematopoietic stem cell transplantation in children with juvenile metachromatic leukodystrophy. Mol. Cell Pediatr. 2020, 7, 12. [Google Scholar] [CrossRef]
- Boucher, A.A.; Miller, W.; Shanley, R.; Ziegler, R.; Lund, T.; Raymond, G.; Orchard, P.J. Long-term outcomes after allogeneic hematopoietic stem cell transplantation for metachromatic leukodystrophy: The largest single-institution cohort report. Orphanet J. Rare Dis. 2015, 10, 94. [Google Scholar] [CrossRef]
- Groeschel, S.; Kühl, J.-S.; Bley, A.E.; Kehrer, C.; Weschke, B.; Döring, M.; Böhringer, J.; Schrum, J.; Santer, R.; Kohlschütter, A.; et al. Long-term outcome of allogeneic hematopoietic stem cell transplantation in patients with juvenile metachromatic leukodystrophy compared with nontransplanted control patients. JAMA Neurol. 2016, 73, 1133–1140. [Google Scholar] [CrossRef]
- van Rappard, D.F.; Boelens, J.J.; van Egmond, M.E.; Kuball, J.; van Hasselt, P.M.; Oostrom, K.J.; Pouwels, P.J.; van der Knaap, M.S.; Hollak, C.E.; Wolf, N.I. Efficacy of hematopoietic cell transplantation in metachromatic leukodystrophy: The Dutch experience. Blood 2016, 127, 3098–3101. [Google Scholar] [CrossRef]
- Armstrong, N.; Olaye, A.; Noake, C.; Pang, F. A systematic review of clinical effectiveness and safety for historical and current treatment options for metachromatic leukodystrophy in children, including atidarsagene autotemcel. Orphanet J. Rare Dis. 2023, 18, 248. [Google Scholar] [CrossRef] [PubMed]
- Schoenmakers, D.H.; Asbreuk, M.; Martin, T.; Datema, M.; Beerepoot, S.; Inbar-Feigenberg, M.; Groeschel, S.; Kehrer, C.; Øberg, A.; Sevin, C.; et al. Key lessons from the first international treatment eligibility committee: The case of metachromatic leukodystrophy. Eur. J. Paediatr. Neurol. 2025, 57, 72–81. [Google Scholar] [CrossRef]
- Hong, X.; Daiker, J.; Sadilek, M.; Ruiz-Schultz, N.; Kumar, A.B.; Norcross, S.; Dansithong, W.; Suhr, T.; Escolar, M.L.; Ronald Scott, C.; et al. Toward newborn screening of metachromatic leukodystrophy: Results from analysis of over 27,000 newborn dried blood spots. Genet. Med. 2021, 23, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Laugwitz, L.; Mechtler, T.P.; Janzen, N.; Oliva, P.; Kasper, A.-R.; Teunissen, C.E.; Bürger, F.; Janda, J.; Döring, M.; Weitz, M.; et al. Newborn screening and presymptomatic treatment of metachromatic leukodystrophy. N. Engl. J. Med. 2024, 391, 1256–1258. [Google Scholar] [CrossRef]
- Malvagia, S.; Bettiol, A.; Porcaro, M.; Mura, M.; Funghini, S.; Ombrone, D.; Forni, G.; Scolamiero, E.; Coppi, F.; Damiano, R.; et al. Newborn screening for metachromatic leukodystrophy in Tuscany: The paradigm of a successful preventive medicine program. Int. J. Neonatal Screen. 2025, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Bekri, S.; Bley, A.; Brown, H.A.; Chanson, C.; Church, H.J.; Gelb, M.H.; Hong, X.; Janzen, N.; Kasper, D.C.; Mechtler, T.; et al. Higher precision, first tier newborn screening for metachromatic leukodystrophy using 16:1-OH-sulfatide. Mol. Genet. Metab. 2024, 142, 108436. [Google Scholar] [CrossRef]
- Kelly, N.R.; Orsini, J.J.; Goldenberg, A.J.; Mulrooney, N.S.; Boychuk, N.A.; Clarke, M.J.; Paleologos, K.; Martin, M.M.; McNeight, H.; Caggana, M.; et al. ScreenPlus: A comprehensive, multi-disorder newborn screening program. Mol. Genet. Metab. Rep. 2024, 38, 101037. [Google Scholar] [CrossRef]
- Wu, T.H.Y.; Brown, H.A.; Church, H.J.; Kershaw, C.J.; Hutton, R.; Egerton, C.; Cooper, J.; Tylee, K.; Cohen, R.N.; Gokhale, D.; et al. Improving newborn screening test performance for metachromatic leukodystrophy: Recommendation from a pre-pilot study that identified a late-infantile case for treatment. Mol. Genet. Metab. 2024, 142, 108349. [Google Scholar] [CrossRef]
- New York State Department of Health. Newborn Screening Pilot Study for Metachromatic Leukodystrophy (MLD) 2024. Available online: https://reporter.nih.gov/search/2z_4bW9o3Ea8zaFgr7IVCg/project-details/11199664 (accessed on 1 August 2025).
- Lam, W.K.K.; Ream, M.A.; Grosse, S.D.; Ojodu, J.; Jones, E.; Smith, H.S.; Comeau, A.M.; Tanksley, S.; Kemper, A.R. Evidence regarding metachromatic leukodystrophy newborn screening. Pediatrics, 2025; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Pennsylvania Department of Health. Addition of Metachromatic Leukodystrophy to the Supplemental Conditions Mandated for Screening in This Commonwealth; Public Comment 2025. Available online: https://www.pacodeandbulletin.gov/Display/pabull?file=/secure/pabulletin/data/vol55/55-16/528.html (accessed on 1 August 2025).
- Minnesota Department of Health. Metachromatic Leukodystrophy (MLD) to Be Added to Newborn Screening Panel 2025. Available online: https://www.health.state.mn.us/news/pressrel/2025/newborn050925.html (accessed on 1 August 2025).
- Illinois 103rd General Assembly (2023–2024). Newborn Metabolic Screening. Available online: https://www.ilga.gov/Legislation/BillStatus?DocNum=67&GAID=17&DocTypeID=SB&SessionID=112&GA=103 (accessed on 27 October 2025).
- Health Systems and Policy Monitor Network. Norway Expands Its Newborn Screening Programme to 30 Rare Serious Congenital Disorders 2024. Available online: https://eurohealthobservatory.who.int/monitors/health-systems-monitor/updates/hspm/norway-2020/norway-expands-its-newborn-screening-programme-to-30-rare-serious-congenital-disorders (accessed on 27 October 2025).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Spacil, Z.; Babu Kumar, A.; Liao, H.-C.; Auray-Blais, C.; Stark, S.; Suhr, T.R.; Scott, C.R.; Turecek, F.; Gelb, M.H. Sulfatide analysis by mass spectrometry for screening of metachromatic leukodystrophy in dried blood and urine samples. Clin. Chem. 2016, 62, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Kumar, A.B.; Daiker, J.; Yi, F.; Sadilek, M.; De Mattia, F.; Fumagalli, F.; Calbi, V.; Damiano, R.; Della Bona, M.; et al. Leukocyte and dried blood spot arylsulfatase A assay by tandem mass spectrometry. Anal. Chem. 2020, 92, 6341–6348. [Google Scholar] [CrossRef]
- Wasserstein, M.P.; Orsini, J.J.; Goldenberg, A.; Caggana, M.; Levy, P.A.; Breilyn, M.; Gelb, M.H. The future of newborn screening for lysosomal disorders. Neurosci. Lett. 2021, 760, 136080. [Google Scholar] [CrossRef]
- Jones, S.A.; Cheillan, D.; Chakrapani, A.; Church, H.J.; Heales, S.; Wu, T.H.Y.; Morton, G.; Roberts, P.; Sluys, E.F.; Burlina, A. Application of a novel algorithm for expanding newborn screening for inherited metabolic disorders across Europe. Int. J. Neonatal Screen. 2022, 8, 20. [Google Scholar] [CrossRef]
- Bean, K.; Jones, S.A.; Chakrapani, A.; Vijay, S.; Wu, T.; Church, H.; Chanson, C.; Olaye, A.; Miller, B.; Jensen, I.; et al. Exploring the cost-effectiveness of newborn screening for metachromatic leukodystrophy (MLD) in the UK. Int. J. Neonatal Screen. 2024, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, F.; Calbi, V.; Natali Sora, M.G.; Sessa, M.; Baldoli, C.; Rancoita, P.M.V.; Ciotti, F.; Sarzana, M.; Fraschini, M.; Zambon, A.A.; et al. Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: Long-term results from a non-randomised, open-label, phase 1/2 trial and expanded access. Lancet 2022, 399, 372–383. [Google Scholar] [CrossRef]
- Zambon, A.A.; Rancoita, P.M.V.; Quattrini, A.; Butera, C.; Gentile, F.; Facchini, M.; Mazza, S.; Recupero, S.; Gallo, V.; Shenker, A.; et al. Effects of atidarsagene autotemcel gene therapy on peripheral nerves in late-infantile metachromatic leukodystrophy. Brain, 2025; online ahead of print. [Google Scholar]
- Faccioli, S.; Sassi, S.; Pandarese, D.; Borghi, C.; Montemaggiori, V.; Sarzana, M.; Scarparo, S.; Butera, C.; Calbi, V.; Aiuti, A.; et al. Preserving ambulation in a gene therapy-treated girl affected by metachromatic leukodystrophy: A case report. J. Pers. Med. 2023, 13, 637. [Google Scholar] [CrossRef]
- Bonkowsky, J.L.; Wilkes, J.; Bardsley, T.; Urbik, V.M.; Stoddard, G. Association of diagnosis of leukodystrophy with race and ethnicity among pediatric and adolescent patients. JAMA Netw. Open 2018, 1, e185031. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, A.M.; Ream, M.A. Recent advancements in the diagnosis and treatment of leukodystrophies. Semin. Pediatr. Neurol. 2021, 37, 100876. [Google Scholar] [CrossRef]
- Fahim, S.M.; Lin, G.; Suh, K.; Carlson, J.J.; Richardson, M.; Herce-Hagiwara, B.; Dickerson, R.; Pearson, S.D.; Rind, D.M.; Agboola, F. Atidarsagene autotemcel for metachromatic leukodystrophy—A summary from the Institute for Clinical and Economic Review’s California Technology Assessment Forum. J. Manag. Care Spec. Pharm. 2024, 30, 201–205. [Google Scholar]
- Jonckheere, A.I.; Kingma, S.D.K.; Eyskens, F.; Bordon, V.; Jansen, A.C. Metachromatic leukodystrophy: To screen or not to screen? Eur. J. Paediatr. Neurol. 2023, 46, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Laugwitz, L.; Santhanakumaran, V.; Spieker, M.; Boehringer, J.; Bender, B.; Gieselmann, V.; Beck-Woedl, S.; Bruchelt, G.; Harzer, K.; Kraegeloh-Mann, I.; et al. Extremely low arylsulfatase A enzyme activity does not necessarily cause symptoms: A long-term follow-up and review of the literature. JIMD Rep. 2022, 63, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Gissen, P. Atidarsagene autotemcel for metachromatic leukodystrophy. Drugs Today 2023, 59, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Morton, G.; Thomas, S.; Roberts, P.; Clark, V.; Imrie, J.; Morrison, A. The importance of early diagnosis and views on newborn screening in metachromatic leukodystrophy: Results of a Caregiver Survey in the UK and Republic of Ireland. Orphanet J. Rare Dis. 2022, 17, 403. [Google Scholar] [CrossRef]
- Penati, R.; Fumagalli, F.; Calbi, V.; Bernardo, M.E.; Aiuti, A. Gene therapy for lysosomal storage disorders: Recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. J. Inherit. Metab. Dis. 2017, 40, 543–554. [Google Scholar] [CrossRef]
- Ruiz-Schultz, N.; Sant, D.; Norcross, S.; Dansithong, W.; Hart, K.; Asay, B.; Little, J.; Chung, K.; Oakeson, K.F.; Young, E.L.; et al. Methods and feasibility study for exome sequencing as a universal second-tier test in newborn screening. Genet. Med. 2021, 23, 767–776. [Google Scholar] [CrossRef]
- Sevin, C.; Mochel, F. Chapter 20-Hematopoietic Stem Cell Transplantation in Leukodystrophies. In Handbook of Clinical Neurology; Lynch, D.S., Houlden, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 204, pp. 355–366. [Google Scholar]
- Tucci, F.; Consiglieri, G.; Cossutta, M.; Bernardo, M.E. Current and future perspective in hematopoietic stem progenitor cell-gene therapy for inborn errors of metabolism. Hemasphere 2023, 7, e953. [Google Scholar] [CrossRef]
- van Rappard, D.F.; Boelens, J.J.; Wolf, N.I. Metachromatic leukodystrophy: Disease spectrum and approaches for treatment. Best. Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 261–273. [Google Scholar] [CrossRef]
- Shaff, A.; Basheeruddin, K.; Bekri, S.; Brown, H.A.; Church, H.J.; Gianares, J.; Hong, X.; Jones, S.A.; Kappell, T.; Kubaski, F.; et al. Newborn screening for metachromatic leukodystrophy: Preparation of reagents and methodology for measurement of Sulfatides and arylsulfatase a enzymatic activity in dried blood spots. Mol. Genet. Metab. 2025, 145, 109138. [Google Scholar] [CrossRef]
- van der Ham, M.; Hoytema van Konijnenburg, E.; van Rossum, W.; Gerrits, J.; van Hasselt, P.; Prinsen, H.; Jans, J.; Schlotawa, L.; Laugwitz, L.; de Sain-van der Velden, M. Profiling and semi-quantitation of urine sulfatides by UHPLC-Orbitrap-HRMS. Anal. Chim. Acta 2025, 1350, 343824. [Google Scholar] [CrossRef]
- Gelb, M.H. Newborn screening and post-screening diagnosis of lysosomal diseases. Mol. Genet. Metab. 2017, 120, S50–S51. [Google Scholar] [CrossRef]
- Calbi, V.; Fumagalli, F.; Fratini, E.S.; Palasciano, A.; Recupero, S.; Gallo, V.; De Mattia, F.; Corti, A.; Bona, M.D.; Malvagia, S.; et al. Blood sulfatides as disease biomarker for metachromatic leukodystrophy: Disease characterization, early diagnosis, and response to treatment. Mol. Genet. Metab. 2023, 138, 107043. [Google Scholar] [CrossRef]
- Pettazzoni, M.; Rotaru, I.; Ruet, S.; Cheillan, D.; Sevin, C.; Acquaviva-Bourdain, C.; Froissart, R. LC-MS/MS quantification of three C16 sulfatide species in dried blood spots for the diagnosis and treatment monitoring of metachromatic leukodystrophy. Mol. Genet. Metab. 2023, 138, 107265. [Google Scholar] [CrossRef]
- Wiesinger, T.; Schwarz, M.; Oliva, P.; Mechtler, T.P.; Streubel, B.; Chanson, C.; Essing, M.M.; Murko, S.; Bley, A.; Santer, R.; et al. Newborn screening for metachromatic leukodystrophy in Northern Germany—A prospective study. Mol. Genet. Metab. 2021, 132, S112. [Google Scholar] [CrossRef]
- Ridsdale, R.; Kroll, C.; Sanders, K.; Olgesbee, D.; Rinaldo, P.; Hopwood, J.; Lorey, F.; Gelb, M.; Raymond, K.; Gavrilov, D.; et al. Newborn screening (NBS) for metachromatic leukodystrophy (MLD): Results from a study of 100,000 deidentified NBS samples. Mol. Genet. Metab. 2017, 120, S115. [Google Scholar] [CrossRef]
- Bean, K.; Preston, B.; Adang, L.A.; Pang, F. Exploring the net monetary benefit of implementing newborn screening for metachromatic leukodystrophy in California. Mol. Genet. Metab. 2025, 144, 108651. [Google Scholar] [CrossRef]
- Bean, K.; Gelb, M.H.; Adang, L.A.; Chanson, C.; Pang, F. Cost-effectiveness framework by tandem mass spectrometry (TMS) for newborn screening of metachromatic leukodystrophy (MLD) in the United States (US). Mol. Genet. Metab. 2024, 141, 107769. [Google Scholar] [CrossRef]
- Faqueti, L.; Iop, G.; da Silva, L.A.L.; Kubaski, F.; Borges, H.B.L.; Netto, A.B.O.; Brusius-Facchin, A.C.; Leistner-Segal, S.; Gus, R.; Sanseverino, M.T.V.; et al. A Brazilian patient with late infantile metachromatic leukodystrophy treated with lentiviral hematopoietic stem-cell gene therapy: A report from prenatal diagnosis to early treatment. Mol. Genet. Metab. 2023, 138, 107094. [Google Scholar] [CrossRef]
- Yoon, I.C.; Bascou, N.A.; Poe, M.D.; Escolar, M.L. Long-term neurodevelopmental, neurophysiological, and neuroradiological outcomes of hematopoietic stem cell transplantation for treatment of late-infantile metachromatic leukodystrophy. Mol. Genet. Metab. 2020, 129, S164–S165. [Google Scholar] [CrossRef]
- Oliva, P.; Mechtler, T.P.; Schwarz, M.; Streubel, B.; Chanson, C.; Janzen, N.; Kasper, D.C. A MLD newborn screening pilot-study for metachromatic leukodystrophy in Germany: Results of the first 12 months. Mol. Genet. Metab. 2023, 138, 107249. [Google Scholar] [CrossRef]
- Suhr, D.; Suhr, T.R.; Gelb, M.H. Scientific, clinical, social, and policy status and considerations for implementing newborn screening of metachromatic leukodystrophy. Mol. Genet. Metab. 2020, 129, S149–S150. [Google Scholar] [CrossRef]
- Wynn, R.F.; Jones, S.; Fumagalli, F.; Calbi, V.; Aiuti, A.; Gröschel, S.; Lang, P.; van Hasselt, P.; Lindemans, C.A.; Sevin, C.; et al. Atidarsagene autotemcel, a European post-regulatory approval model for delivery of autologous hematopoietic stem cell gene therapy products via a network of qualified treatment centers (QTCs). Transplant. Cell Ther. 2023, 29 (Suppl. 2), S227. [Google Scholar] [CrossRef]
- Terrell, A.; Sapp, K.; Graham, B.; McPheron, M.; Wetherill, L. Exploratory study on the challenges of newborn screening for lysosomal storage disorders emphasizes the need for multitier testing and collaborative approaches to management. JIMD Rep. 2025, 66, e70027. [Google Scholar] [CrossRef]
- Streubel, B.; Oliva, P.; Mechtler, T.P.; Schwarz, M.; Chanson, C.; Essing, M.M.; Laugwitz, L.; Groeschel, S.; Janzen, N.; Fingerhut, R.; et al. Newborn screening (NBS) for metachromatic leukodystrophy–A prospective study. J. Inherit. Metab. Dis. 2024, 47, 39–40. [Google Scholar]
- Kanate, A.S.; Perales, M.A.; Hamadani, M. Eligibility criteria for patients undergoing allogeneic hematopoietic cell transplantation. J. Natl. Compr. Canc Netw. 2020, 18, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.Y.; Boelens, J.J.; Jones, S.A.; Wynn, R.F. Hematopoietic stem cell transplantation in inborn errors of metabolism. Front. Pediatr. 2019, 7, 433. [Google Scholar] [CrossRef]
- Wilson, J.M.G.; Jungner, G. Principles and Practice of Screening for Disease; World Health Organization: Geneva, Switzerland, 1968. [Google Scholar]
- Burlina, A.; Jones, S.A.; Chakrapani, A.; Church, H.J.; Heales, S.; Wu, T.H.Y.; Morton, G.; Roberts, P.; Sluys, E.F.; Cheillan, D. A new approach to objectively evaluate inherited metabolic diseases for inclusion on newborn screening programmes. Int. J. Neonatal Screen. 2022, 8, 25. [Google Scholar] [CrossRef]
- Vermette, L.; Washburn, J.; Klug, T. Analysis of the effect of demographic variables on lysosomal enzyme activities in the Missouri newborn screening program. Int. J. Neonatal Screen. 2025, 11, 48. [Google Scholar] [CrossRef]
- Yu, S.H.; Kubaski, F.; Arno, G.; Phinney, W.; Wood, T.C.; Flanagan-Steet, H.; Pollard, L.M.; Steet, R. Functional assessment of IDUA variants of uncertain significance identified by newborn screening. NPJ Genom. Med. 2024, 9, 68. [Google Scholar] [CrossRef]
- Gelb, M.H.; Lin, Y. Massively parallel biochemical annotation of VOUS for lysosomal disorders. Mol. Genet. Metab. 2025, 144, 108730. [Google Scholar] [CrossRef]
- Jain, S.; Trinidad, M.; Nguyen, T.B.; Jones, K.; Neto, S.D.; Ge, F.; Glagovsky, A.; Jones, C.; Moran, G.; Wang, B.; et al. Evaluation of enzyme activity predictions for variants of unknown significance in Arylsulfatase A. Hum. Genet. 2025, 144, 295–308. [Google Scholar] [CrossRef]
- Ozkan, S.; Padilla, N.; de la Cruz, X. QAFI: A novel method for quantitative estimation of missense variant impact using protein-specific predictors and ensemble learning. Hum. Genet. 2025, 144, 191–208. [Google Scholar] [CrossRef]
- Stark, Z.; Scott, R.H. Genomic newborn screening for rare diseases. Nat. Rev. Genet. 2023, 24, 755–766. [Google Scholar] [CrossRef]
- Mori, M.; Chaudhari, B.P.; Ream, M.A.; Kemper, A.R. Promises and challenges of genomic newborn screening (NBS)–Lessons from public health NBS programs. Pediatr. Res. 2025, 97, 1327–1336. [Google Scholar] [CrossRef]
- Kehrer, C.; Blumenstock, G.; Gieselmann, V.; Krägeloh-Mann, I. The natural course of gross motor deterioration in metachromatic leukodystrophy. Dev. Med. Child. Neurol. 2011, 53, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jiang, H.; Huang, L.; Liu, S.; Zhou, X.; Cai, Y.; Li, M.; Gao, F.; Liang, X.; Tsang, K.S.; et al. Lentivirus-modified hematopoietic stem cell gene therapy for advanced symptomatic juvenile metachromatic leukodystrophy: A long-term follow-up pilot study. Protein Cell 2025, 16, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Schoenmakers, D.H.; Beerepoot, S.; Adang, L.A.; Asbreuk, M.; Bergner, C.G.; Bley, A.E.; Boelens, J.J.; Calbi, V.; Darling, A.; Eklund, E.; et al. Gene therapy in advanced metachromatic leukodystrophy: Tempering expectations. Protein Cell 2024, 16, 12–15. [Google Scholar] [CrossRef]
- Calbi, V.; Gallo, V.; Zambon, A.; Mazza, S.; Bernardo, M.E.; Fard, S.M.; Volpe, B.; Recupero, S.; Inverso, E.; Giacco, L.D.; et al. Lentiviral hematopoietic stem cell gene therapy (atidarsagene autotemcel) for late juvenile Metachromatic leukodystrophy (MLD): Interim analysis of a Phase III trial. Mol. Ther. 2025, 33, S83–S84. [Google Scholar]
- Baier, W.; Harzer, K. Sulfatides in prenatal metachromatic leukodystrophy. J. Neurochem. 1983, 41, 1766–1768. [Google Scholar] [CrossRef]
- Kubaski, F.; Herbst, Z.M.; Burin, M.G.; Michelin-Tirelli, K.; Trapp, F.B.; Gus, R.; Netto, A.B.O.; Brusius-Facchin, A.C.; Leistner-Segal, S.; Sanseverino, M.T.; et al. Measurement of sulfatides in the amniotic fluid supernatant: A useful tool in the prenatal diagnosis of metachromatic leukodystrophy. JIMD Rep. 2022, 63, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Morton, G.; Elson, N.; Raebel, E.M. White Paper on Improved Outcomes for Children with MLD Following Gene Therapy 2022. Available online: https://mpssociety.org.uk/resources/white-paper-on-improved-outcomes-for-children-with-mld-following-gene-therapy (accessed on 1 August 2025).
- Chudleigh, J.; Chinnery, H.; Bonham, J.R.; Olander, E.; Moody, L.; Simpson, A.; Morris, S.; Ulph, F.; Bryon, M.; Southern, K. Qualitative exploration of health professionals’ experiences of communicating positive newborn bloodspot screening results for nine conditions in England. BMJ Open 2020, 10, e037081. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Potter, B.K.; Hayeems, R.Z. Maximizing benefits and minimizing harms: Diagnostic uncertainty arising from newborn screening. Pediatrics 2021, 148, e2021052822. [Google Scholar] [CrossRef] [PubMed]
- Raspa, M.; Kutsa, O.; Andrews, S.M.; Gwaltney, A.Y.; Mallonee, E.; Creamer, A.; Han, P.K.J.; Biesecker, B.B. Uncertainties experienced by parents of children diagnosed with severe combined immunodeficiency through newborn screening. Eur. J. Hum. Genet. 2024, 32, 392–398. [Google Scholar] [CrossRef]
- Boychuk, N.A.; Mulrooney, N.S.; Kelly, N.R.; Goldenberg, A.J.; Silver, E.J.; Wasserstein, M.P. Parental depression and anxiety associated with newborn bloodspot screening for rare and variable-onset disorders. Int. J. Neonatal Screen. 2022, 8, 59. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Cazzorla, C.; Gueraldi, D.; Puma, A.; Loro, C.; Porcù, E.; Stornaiuolo, M.; Miglioranza, P.; Salviati, L.; Burlina, A.P.; et al. Light and shadows in newborn screening for lysosomal storage disorders: Eight years of experience in Northeast Italy. Int. J. Neonatal Screen. 2023, 10, 3. [Google Scholar] [CrossRef]



| Method Development & Feasibility Studies | Prospective Pilot Studies | ||||
|---|---|---|---|---|---|
| Hong et al. (2021) [29] | Wu et al. (2024) [34] | Bekri et al. (2024) [32] | Laugwitz et al. (2024) [30] | Malvagia et al. (2025) [31] | |
| Country | US | UK | Multiple | Germany | Italy |
| Study design | Retrospective pilot | Retrospective pre-pilot | Retrospective analysis | Prospective pilot | Prospective pilot |
| First-tier screen | C16:0 (≥0.170 μM) | C16:0 (≥0.170 μM) | C16:0 (1.65 MoM) and/or C16:1-OH (2.70 MoM) | C16:0 (≥0.17 μM) and/or C16:1-OH (≥0.05 μM) | C16:0 (≥0.196 μM), C16:0-OH (≥0.228 μM), C16:1 (≥0.041 μM), C16:1-OH (≥0.060 μM) and sum of the four sulfatides (≥0.485 μM) |
| Second-tier screen | ARSA activity (<20% of daily mean) | ARSA activity (<20% of daily mean) | NA | ARSA activity (≤0.015 μM/h) | ARSA activity (<20% of daily mean) |
| Third-tier screen | ARSA gene | ARSA gene | NA | ARSA, SUMF1, PSAP genes | ARSA gene |
| Genetic sequencing technique | NGS | Sanger sequencing | NA | NGS | NR |
| Number of newborns screened | 27,335 | 3687 | 135,824 c | 109,259 | 42,262 |
| Number of first-tier positives | 195 (0.71%) | 11 (0.30%) | C16:0: 2456 (1.8%) C16:1-OH: 64 (0.048%) (0.030%) | 381 (0.35%) | 90 (0.21%) f |
| Number of second-tier positives | 2 a | 0 | NA | 20 d | 6 g |
| Number of third-tier positives | 1 | NA | NA | 3 e | NA |
| Confirmed MLD cases | None b | 1 | NR | 3 | 0 |
| MLD samples for first-tier assay validation | 15/15 detected | NR | 40/40 detected | Cross-validated with Bekri et al. 2024 [32] | 23/23 detected |
| Limitations/Challenges | Unable to recall the infant with a screen positive sample; only 122/195 samples with elevated sulfatides available for second-tier assay due to DBS storage time | Special review by UK research and health authorities was needed to obtain permission to de-anonymize a pre-pilot DBS sample | Study designed to evaluate the first-tier assay only | ARSA assay not available until the study was already underway | High recall rate due to absence of a third-tier screening g, second DBS sample required for genetic sequencing |
| Study | Study Type | Numbers of Patients | Disease Subtype (Treated Group) | Follow-Up | Key Outcomes and Study Findings |
|---|---|---|---|---|---|
| Arsa-cel | |||||
| Fumagalli et al. 2022 [47] a | Analysis of data from two prospective non-randomized, open-label, phase 1/2 clinical study and expanded-access frameworks | 29 (arsa-cel) 31 (NHx) | PS LI-MLD (n = 16) b PS EJ-MLD (n = 5) ES EJ-MLD (n = 8) | Median FU (range), in yrs:
| Motor function at 2 years (mean differences in total GMFM-88 scores between treated patients and age-matched and MLD subtype-matched untreated patients)
|
| Fumagalli et al. 2025 [15] a | Analysis of data from two prospective non-randomized, open-label, phase 1/2 clinical study and expanded-access frameworks | 37 (arsa-cel) c 49 (NHx) | PS LI-MLD (n = 18) PS EJ-MLD (n = 8) ES EJ-MLD (n = 11) d | Median FU (range), in yrs:
| Primary efficacy endpoint Arsa-cel resulted in a significantly lower risk of severe motor impairment (defined as GMFC-MLD level ≥ 5) or death than no treatment
At 2 years
|
| Zambon et al. 2025 [48] a | Post hoc analysis of data from two prospective non-randomized, open-label, phase 1/2 clinical study and expanded-access frameworks | 15 (arsa-cel) 16 (NHx) | PS LI-MLD | Median FU (range), in yrs: 4.69 (1.95–12.11) | NCV values at 2 years (treated vs. untreated patients)
|
| Faccioli et al. 2023 [49] a | Case report | 1 | PS LI-MLD | 106 months | Patient treated at 15 months of age and stable until the age of 6 years (increasing gait difficulties thereafter) |
| Faqueti et al. 2023 [71] | Case report | 1 | PS LI-MLD | 4 months | Patient surpassed the age of onset of his older brother Developing well and acquiring new motor and cognitive skills |
| HCST | |||||
| Beschle et al. 2020 [23] | Case–control study | 12 (HSCT) 35 (NHx) | J-MLD | Mean FU (range), in yrs: 6.75 (3.0–13.5) | Disease progression in treated patients within 2 years of treatment
|
| Boucher et al. 2015 [24] | Retrospective cohort study | 40 | LI-MLD (n = 4) J-MLD (n = 27) A-MLD (n = 9) | Median FU (range), in yr, mos: 10.0 (0.1–30.6) | Overall survival at 5 years
|
| Groeschel et al. 2016 [25] | Retrospective cohort study | 24 | J-MLD | Median FU (range), in yrs: 7.5 (3.0–19.7) | Survival Treated
|
| Van Rappard et al. 2016 [26] | Prospective longitudinal study | 13 (HSCT) 22 (no HSCT) | LI-MLD (n = 2) J-MLD (n = 5) A-MLD (n = 6) | Mean FU, in yrs:
| Overall survival at last assessment (HSCT vs. no HSCT): 76.9% vs. 63.6% (p = 0.62) Intervention-free survival (no occurrence of death, wheelchair dependency, gastrostomy, or intrathecal baclofen treatment; HSCT vs. no HSCT): 69.2% vs. 9.1% (p = 0.03) Activities of daily living compromise-free survival (no occurrence of death, motor [clinically relevant peripheral neuropathy, spasticity, or ataxia, gross motor function ≥ 3], or cognitive [IQ decline ≥ 6 points] deterioration; HSCT vs. no- HSCT): 46.2% vs. 0% (p = 0.01) Intervention-free survival in patients who underwent HSCT (pre-symptomatic vs. symptomatic at time of HSCT): 100% vs. 42.9% (p = 0.052) Activities of daily living compromise-free survival in patients who underwent HSCT (pre-symptomatic vs. symptomatic at time of HSCT): 66.7% vs. 28.6% (p = 0.11) |
| Yoon et al. 2020 [72] | Prospective longitudinal study | 18 | LI-MLD Asymptomatic (n = 11) Symptomatic (n = 7) | NR | Asymptomatic patients had significantly better cognitive and language skills than symptomatic patients who experienced regression similar to untreated patients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laugwitz, L.; Shenker, A.; Sluys, E.F.; Pintat, S.; Whiteman, D.; Chanson, C. Newborn Screening for Metachromatic Leukodystrophy: A Systematic Literature Review. Int. J. Neonatal Screen. 2025, 11, 103. https://doi.org/10.3390/ijns11040103
Laugwitz L, Shenker A, Sluys EF, Pintat S, Whiteman D, Chanson C. Newborn Screening for Metachromatic Leukodystrophy: A Systematic Literature Review. International Journal of Neonatal Screening. 2025; 11(4):103. https://doi.org/10.3390/ijns11040103
Chicago/Turabian StyleLaugwitz, Lucia, Andrew Shenker, Erica F. Sluys, Stéphane Pintat, David Whiteman, and Charlotte Chanson. 2025. "Newborn Screening for Metachromatic Leukodystrophy: A Systematic Literature Review" International Journal of Neonatal Screening 11, no. 4: 103. https://doi.org/10.3390/ijns11040103
APA StyleLaugwitz, L., Shenker, A., Sluys, E. F., Pintat, S., Whiteman, D., & Chanson, C. (2025). Newborn Screening for Metachromatic Leukodystrophy: A Systematic Literature Review. International Journal of Neonatal Screening, 11(4), 103. https://doi.org/10.3390/ijns11040103

